
CSE310 Algorithm, November 28, 2003

- 1 -

NP-Completeness: an Overview

Young Eun Kim and Gene Moo Lee

Department of Computer Science and Engineering, Korea University

Abstract
This paper presents an overview of NP-complete problems. The theory of NP-completeness is important not only in 

theoretical aspect but also in reality.First, we will take a look at the formal definition and some examples of NP-complete 

problems. Then, we will see how to prove a problem is NP-complete and how to cope with NP-complete problems.

Keywords – NP-completeness, class P, class NP, nondeterministic Turing machine, polynomial-time reducibility

Contents
1 Introduction

2 Motivation

3 Background Knowledge

3.1 Decision and Optimization problems

3.2 Turing Machine and class P

3.3 Nondeterministic Turing machine and class NP

3.4 Polynomial-time reducibility

4 Definition of NP-completeness

5 Examples of NP-complete problems

6 Hierarchy of Problems

6.1 Undecidable Problems

6.2 P, NP, PSPACE, and EXPTIME

6.3 Conjectures with P and NP classes

7 How to prove a problem is NP-complete

7.1 Proving NP-completeness

7.2 Cook’s Theorem

7.3 NP-complete problems tree

8 How to cope with NP-complete problems

8.1 Heuristic Algorithm

8.2 Approximation

8.3 Quantum Computation

9 Summary

1. Introduction
N the theory of computation, there are two major 

approaches. First, we want to know what kind of 

problems can be solved in the computer (Computability 

Theory). If we could solve the problem, secondly, then we 

want to know how fast the problem can be solved 

(Complexity Theory). In the Complexity Theory, we 

analyze the algorithm in two points of view: time and space.

In the theory of NP-completeness, we categorize the 

problems by the time complexity.

2. Motivation
So far in this class, we’ve learned many algorithms to solve 

problems like Sorting, Shortest-Path, String Matching, etc. 

And the time complexity of those algorithms was all in the 

form O(n), O(n2), or O(n*log n). But in the reality, not all 

problems have polynomial time algorithm. In some 

situation, we have to check out all the possible situations to 

find the correct answer, and in that case, we could have an

exponential time algorithm like of O(2n) time complexity.

   But the problem is that these exponential time 

algorithms may be just useless. [Table 1] indicates 

approximated computing time in the given time complexity, 

and shows that it is impossible to compute exponential time.

I



CSE310 Algorithm, November 28, 2003

- 2 -

10 30 60

O(n) 0.00001 sec .00003sec .00006sec

O(n̂ 2) .0001sec .0009sec .0036sec

O(n̂ 3) .001sec .027sec .216sec

O(n̂ 5) 1 sec 24.3sec 13.0min

O(2^n) .001sec 17.9min 366 centuries

O(3^n) .059sec 6.5yrs 1.3*10^13centuries

[Table 1] Polynomial and exponential time complexity

To solveTraveling Salesperson Problem (TSP) in brute-

force algorithm in the case “n = 1000” , we have to compute 

1000! cases. However, even if all the electrons in the 

universe have computing power of super-computers and 

they work from the beginning of the universe, we can’ t 

compute all 1000! times. In other words, it is simply 

impossible to do solve that problem!

In reality, we faced many problems like TSP, which is 

called to be NP-complete. In this paper, we present the 

definition of NP-complete problems first. Then we show 

how to prove a problem is NP-complete and how to cope 

with NP-complete problems.

3. Background Knowledge
Before defining NP-completeness formally, we have to 

define three notations: class P, class NP, and polynomial 

time reducibility.

3.1. Decision and Optimization Problems

Many problems of interest are optimization problems, in 

which each feasible (i.e., “ legal” ) solution has an associated 

value, and we wish to find the feasible solution with the 

best value.However, NP-completeness applies directly not 

to optimization problems, but to decision problems, in 

which the answer is simply “yes”  or “no.”  Then we can cast 

a given optimization problem as a related decision problem 

by imposing a bound on the value to be optimized.

For example, in a problem that we call Shortest-Path, we 

wish to find the path from u to v that uses the fewest edges.

The related decision problem, which we call PATH, is 

whether the given graph has a path from u to v consisting of 

at most k edges. Thus, even though the theory of NP-

completeness restricts its attention to decision problems, the 

theory often has implications for optimization problems.

From now, we will consider decision problems.

3.2. Turing Machine and class P

In order to know the exact ability of computers, we have to 

define the mathematical model of real computers. By 

Church-Turing thesis, we accept that the power of real 

computers is equivalent to that of Turing machines. So we 

can know the power of computers by analyzing equivalent 

Turing machines. The formal definition of Turing machine 

is the following

Definition 1

A Turing machine is a 7-tuple (Q, ∑, Γ, δ, q0, qaccept, qreject), 

where,

1) Q is the finite set of states, 

2) ∑ is the finite set of input alphabets, 

3) Γ is the tape alphabet, where ⌂ Γ and ∑ Γ, 
4) δ : Q*Γ� Q*Γ*{L,R} is the transition function, 

5) q0 Q is the start state,

6) qaccept Q is the accept state, and

7) qreject Q is the reject state, where qaccept≠ qreject.

Now, we can define the class of problems that have 

efficient algorithms to resolve, namely class P.

Definition 2

P is the class of languages that are decidable in polynomial 

time on a Turing machine. In other words,

P = k>0 TIME (nk).

Then problem like Sorting is in P because it has 

algorithms with time complexity O(n2). The class P plays a 

central role in our theory and is important because1) P is 

invariant for all models of computation that are 

polynomially equivalent to the deterministic single-tape 



CSE310 Algorithm, November 28, 2003

- 3 -

Turing machine, and2) P roughly corresponds to the class 

of problems that are realistically solvable on a computer.

3.3. Nondeterministic Turing machine and class NP

Unlike those problems in P, we don’t know of a fast way to 

determine whether a graph has a Hamiltonian path

(HAMPATH problem). However, if such a path were 

discovered somehow, we could easily convince that the path 

is Hamiltonian. In other words, verifying the existence of 

Hamiltonian path may be easier than determining its 

existence. This kind of problem is in class NP.

Definition 3

NP is the class of languages that have polynomial time 

verifiers.

We could also define the class NP with a powerful 

version of Turing machine which has guessing ability. The 

following is the formal definition of this machine.

Definition 4

A nondeterministic Turing machine is a Turing machine 

with the transition function has the form

δ : Q * Γ� P(Q * Γ * {L, R}).

The conceptual diagram of nondeterministic Turing 

machine(NTM) is in [Figure 1]. 

The power of an NTM is the same as that of deterministic 

Turing machine in view of computability. But in view of 

complexity, NTM can solve problems much faster than a 

normal Turing machine. In addition, NTM has a guessing 

module to choose the evidence answer nondeterministically.

We can determine whether a problem is in NP or not by 

the following theorem. In fact, the class NP is defined in 

terms of NTM in some books.

Theorem 1

A language is in NP if and only if it is decided by some 

nondeterministic polynomial time Turing machine.

[Figure 1] Schematic representation of NTM

   We can describe the two classes above like this.

P = the class of languages where membership can be 

decided quickly.

NP = the class of languages where membership can be 

verified quickly.

3.4. Polynomial-time Reducibility

The last thing to understand the notion of NP-completeness 

is polynomial-time reducibility.

Definition 5

Language A is polynomial time reducible, to language B, 

written A  B, if a polynomial time computable function f : 

∑* � ∑* exists, where for every w ∑*, 

 w  A  iff  f(w)  B.

The function f is called the polynomial time reduction of A 

to B.

Let’s see the underlying meaning of this definition.If we 

have a polynomial time reduction from A to B, then it 

means that problem A can be converted to problem B, and 

problem B is “no harder to solve” than problem A. In other 

words, A is harder than B, or they are equally hard to solve.

4. Definition of NP-completeness
Now, we can define NP-completeness formally.

Definition 6

A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and

2. Every A in NP is polynomial time reducible to B.

A language is said to be NP-hard if it satisfies the second 

condition above.



CSE310 Algorithm, November 28, 2003

- 4 -

NP-Complete problem is the “hardest”  problem in class 

NP because all problems in NP can be transformed to the 

problem in class NP-complete. Also, all NP-complete

problems are unknown whether a polynomial-time 

algorithm exists. 

To explain the underlying meaning, “NP”  means 

Nondeterministic Polynomial. We add the word “complete”

because if one of NP-complete problems is proved to be 

solved in polynomial time, then it means that we can solve 

all the NP-complete problems in polynomial time.

5. Some Examples
Let’s look at some examples of NP-complete problems.

- Satisfiability: Given a propositional formula φ, is there a 

truth assignment that makes φ to be true?

- Traveling Salesperson Problem: Given n cities and roads 

between the cities, what is the path to visit each city one 

time with minimum cost?

- Longest Path: Given a graph and two vertices s and t, what 

is the longest path from s to t? (cf. Shortest Path is in P)

- Real-time Scheduling: Given a set of processes with 

release time and deadline, is there a schedule to satisfy the 

release time constraints and to meet all the deadlines?

- Hamiltonian Cycle: Given a directed graph, does the 

graph have a Hamiltonian cycle? (cf. Euler Cycle is in P)

6. Hierarchy of Problems
In this chapter, we want to know the locations of P and NP 

problems in the whole hierarchy of problems.

6.1. Undecidable Problems

In the past, people thought that computers can do anything 

with enough amounts of memory and time. However, it is 

proved that computers cannot solve some problems. Those 

problems are called undecidable. For instance, Halting

problem, determining whether a Turing machine halts 

(accepts or rejects) on a given input, is undecidable.

6.2. P, NP, PSPACE, and EXPTIME

Before explaining the relationships, we had better know the 

definition of P, NP, PSPACE, and EXPTIME.

1) P is the class of languages that are decidable in 

polynomial time on a Turing machine.

2) NP is the class of languages that have polynomial time 

verifiers.

3) PSPACE is the class of languages that are decidable in 

polynomial space on a deterministic Turing machine.

4) NPSPACE is the class of languages that are decidable in 

polynomial space on a nondeterministic Turing machine.

5) EXPTIME is the class in which some TM decides 

problems and halts in exponential time.

The relationship among P, NP, PSPACE, and EXPTIME is

like this:

P  NP  PSPACE = NPSPACE EXPTIME

We don’t know whether any of these containments is 

actually equality. We may not yet discover a simulation 

about these relationships.  However, P ≠ EXPITME has 

been proved. Therefore at least one of the preceding 

containment is proper, but we are unable to say which! 

Indeed, most researchers believe that all the containments 

are proper.

[Figure 3] Conjectured Hierarchy of Problems

6.3. Conjecture with P and NP problems

1) By general definition, P  NP. This means that an 

efficient algorithm on a deterministic machine does not 

existrelevant to a NP problem.

2) On the contrary, another relation, P = NP, is included in 

the list of the most important mathematical problems for the 

EXPTIME

PSPACE

NP
P



CSE310 Algorithm, November 28, 2003

- 5 -

new century.  P = NP means that an efficient algorithm on 

a deterministic machine is not found yet relevant to a NP 

problem.

Figure 2 represents the conjectures with P and NP problems.

[Figure 2] Two Conjectures between P and NP

7. How to prove a problem is NP-complete
Now, let’s see how to prove a hard problem is NP-complete.

First, let’s see the following theorem.

7.1. Proving NP-Completeness

Theorem 2

If a problem C is in NP, and there exists NP-Complete 

problem B with B C, then C is NP-complete.

Since all problems in NP can be polynomial time reduced to 

B and B can be reduced to C, we can conclude that all 

problems in NP can be polynomial time reduced to C.

Then to prove a problem is NP-Complete, we need at 

least one NP-complete problem. By the following theorem, 

we get the first NP-complete problem.

7.2. Cook’s Theorem

Theorem 3 (Cook)

Satisfiability (SAT) is NP-complete.

Recall that Satisfiability problem (SAT) is to test whether a 

Boolean formula is satisfiable.

SAT = {<Φ> | Φ is a satisfiable Boolean formula}

A Boolean formula is satisfiable if some assignment of 0s 

and 1s to the variables makes the formula evaluate to 1.

To prove this theorem we need five pages of space!! If you 

want to see it, please look at reference [3] or [4].

7.3. NP-complete problems Tree

[Figure 3] Polynomial Reductions with six problems

It can be shown easily that these six problems (3SAT, 3DM, 

VC, PARTITION, HC, and CLIQUE) are NP problem. First, 

there problems are in NP because a nondeterministic 

algorithm can guess a truth assignment for the variables and 

check in polynomial time whether that truth setting satisfies 

whole the problems (L  NP). Also, by the reduction in 

Figure 3, we can show that all NP problems can be reduced 

to these problems. Therefore, they are NP-Complete.

8. How to cope with NP-complete problems
Even though we proved that a problem is NP-complete, the 

problem will not disappear and we have to find alternatives

to resolve the problem. Here we propose three ways to cope 

with NP-complete problems.

8.1. Using Heuristic Algorithms

Heuristic algorithm is to find a “ good”  solution within an 

acceptable amount of time, not to find the best solution. The 

most widely applied technique is that of “neighborhood 

search” (or local search). In this technique, a pre-selected 

set of local operations is used to repeatedly improve an 

initial solution. This process is continued until no further 

local improvements can be made and a “ locally optimum”

solution has been obtained. In other words, heuristic 

algorithm reduces the search space. For example, there are 

practical solutions to solve SAT problem: zChaff, Berkmin, 

GRASP, SATO, QingTing, etc. These solvers solve SAT in 

considerable amount of time.

SATISFIABILITY

3SAT

3DM VC

PARTITION HC CLIQUE



CSE310 Algorithm, November 28, 2003

- 6 -

8.2. Approximation

An approximation algorithm is designed to find 

approximately optimal solutions. In practice, we may not 

need the absolute best or optimal solution to a problem. A

nearly optimalsolution may be good enough and may be 

much easier to find.

For example,there is an approximation algorithm for 

finding the smallest vertex covers. This algorithm produces 

a vertex cover that is never more than twice the size of one 

of the smallest vertex covers.

8.3. Quantum Computation

Quantum computing usesa pulse of light. In detail, the bits, 

0 and 1, are substituted by the spins of quantum. The spin is 

expressed by ‘spin up’ (0) or ‘spin down’ (1). Because the 

speed of processing by quantum is equal to that of light, 

quantum computer can calculate a time-consuming problem 

in a relatively short time than current computers. Therefore, 

some NP problems requiring about 300 years or more to 

find an answer can be solved just in a few seconds. For 

instance, an algorithm was developed for factoring numbers 

on a quantum computer which runs in O((logN)2+ε ) steps.

This is roughly quadratic in the input size, so factoring a 

1000 digit number with such an algorithm would require 

only a few million steps.

9. Summary
Theoretically, the class NP-complete is important because if 

one of the problems in NP-complete is proved to have a 

polynomial time algorithm, then we have polynomial 

algorithm to solve all the problems in NP. Also, if we find 

such an efficient algorithm, then the class P and NP become 

the same. However, we believe that those two classes are 

different, i.e, P is a proper subset of NP. 

Practically, as we saw in this book, we know that many 

real problems of our interest are NP-complete, and to be 

NP-Complete means that many scholars and researchers 

have tried to solve the problem in efficient algorithm but 

failed to achieve such a good algorithm. We can prove that 

a problem is NP-complete, just by finding a polynomial 

time reduction from an existing NP-complete problem to 

the would-be-proved problem as NP-complete. After 

proving, we don’t have to struggle to find such an efficient 

algorithm, instead we could solve the problem in different 

ways: 1) we can use heuristic algorithms to reduce the 

search space, 2) we may try to find approximated results 

instead of the exact answers, and 3) in the future, we could 

apply quantum computation to solve the problems.

References
[1] , . C .

[2] Cormen, Leiserson, Rivest. Introduction to Algorithms.

[3] Sipser. Introduction to the Theory of Computation.

[4] Garey, Johnson. Computers and Intractability, A Guide 

to the Theory of NP-completeness.

[5] Kitaev, Shen. Classical and Quantum Computation.

Epilogue
Young Eun Kim ( ) student#: 2000160129

019-302-9214 / gimyoungeun@hotmail.com

It was a good experience to prepare for the presentation. 

During preparing, I got chances to study about a given 

subject in detail, search for information through many 

books and websites, and discuss with my partner, Gene 

Moo. I appreciate for Prof. Hwang to give me the good

opportunity.

Gene Moo Lee ( ) student#: 2000160184

011-9931-2518 / gm0707@hanmail.net

http://klug.korea.ac.kr/~gm0707

I am preparing for studying abroad and my main interest is 

the theory of computation. So it was good time for me to 

prepare this subject. I really want everybody come to 

understand by our presentation. If you have any curiosity, 

feel free to contact me. I want to thank Young-Eun for 

collaboration and thank Prof. Hwang to give us such a good 

opportunity.


