1. OVERVIEW

1.1 What is Mathematics?

- Mathematics per se consists of discovering and proving **theorems** () from **definitions** ().
- Axiomatic approach a.k.a. deductive system
- Axiom (): the starting point of mathematical studies with undefined terms
- Mathematical objects: numbers, structures, sets, manifolds, relations, etc.

1.2 Hierarchy of Mathematical Studies

[Algebra] [Analysis] [Topology] [Number Theory] [Discrete Math] [Probability & Statistics]

[Set Theory] [Logic] [Mathematical Philosophy]

1.3 Set Theory (,集合論)

- Why? To resolve many paradoxes, esp. Russell's paradox
- What? Foundation of mathematics; sets, relations, functions, etc.
- Subfields: Axioms, Category Theory, Set Theory, etc.

1.4 Logic (, 論理)

- Why? To make firm foundation of mathematics
- What? Propositions, Formulas, Syntax, Semantics, etc.
- Subfields: Model Theory, Proof Theory, Propositional Logic, 1st/ 2nd/ High-Order Logic, Lambda Calculus, etc.

1.5 Algebra (,代數學)

- Why? To find the solutions of polynomials ().
- What? Structures of Set associated with one or two operations; group, ring, field, vector spaces, modules, etc.
- Subfields: Group/Ring/Field Theory, Linear Algebra(), Algebraic Geometry, etc.

1.6 Analysis (, 解晳學)

- Why? To make firm foundation of Calculus ()
- What? Microscopic viewpoint, special case of topology; limit, differentiation(), integration(), continuity of functions, epsilon-delta reasoning, etc.
- Subfields: Calculus, Real/Complex Analysis(/), Differential Equations(), Differential Geometry(), Functional Analysis, Harmonic Analysis, Measure Theory, etc.

1.7 Topology (, 位相數學)

- Why? To study analysis with geometric concept; general viewpoint of Analysis
- What? Classification of n-dimensional manifolds; open/closed set, compact space, connected space, etc.
- Subfields: Algebraic Topology, Knot Theory (), Low-Dimensional Topology, etc.

1.8 Number Theory (,正數論)

- Why? What? To study the properties of numbers, esp. integers
- Subfields: Algebraic/Analytic/Transcendental Number Theory, Congruence, Elliptic Curves, Prime Numbers, etc.

1.9 Discrete Mathematics (, 離散數學)

- Why? What? To study characteristics of discrete objects; <-> continuous math
- Subfields: Automata, Coding Theory, Combinatorics, Computer Science, Finite Groups, Graph Theory, Information Theory, Recurrence Relations, etc.

1.10 Probability and Statistics (, 確率 統計)

- Why? What? To study randomness in the real world
- Subfields: Stochastic Process, Queuing Theory, Bayesian Analysis, Error Analysis, Markov Processes, Moments, Multivariate Statistics, Random Numbers, Random Walks, Statistical Tests, etc.

1.11 References

- "A First Course in Abstract Algebra" (Fraleigh)
- "Topology" (Munkres)
- "Real Analysis & Foundations" (Krantz)
- "Elementary Number Theory" (Rosen)
- "Discrete Mathematics" (Johnsonbaugh)
- Lecture Notes of Comp 409 "Logic in Computer Science" (Vardi)

2. SET THEORY

2.1 Preliminaries

<u>Undefined Terms</u> set and element (with some condition) cf. class (without condition) <u>Quantifiers</u> \exists : there exists, ! \exists : not exist, \exists !: uniquely exist, and \forall : for all <u>Equality</u> (1) <u>element</u>: a = b iff a, b: symbols for the same object, (2) <u>set</u>: A = B iff $a \in A \Leftrightarrow a \in B$ <u>Set Relations</u> $A \subseteq B$ (subset), $A \cap B$ (intersection), $A \cup B$ (union), and $A \times B$ (Cartesian product) $N = \{0, 1, 2, 3 ...\}, Z = \{..., -2, -1, 0, 1, 2 ...\}, Z_{+} =$ set of positive integers, $Q = \{a/b \mid a, b \in Z\}, R =$ set of real numbers, $C = \{x + y \mid x, y \in R\}$ <u>Notations</u> Def = Definition, Thm = Theorem, Ex = Example, Rmk = Remark

2.2 Relations

<u>Def</u> A relation R of set A and B is a subset of $A \times B$. That is, $R \subseteq A \times B$.

2.2.1 Equivalent Relations

Let R be a relation on A, that is, $R \subseteq A \times A$.

<u>Def</u> A relation R on a set A is *reflexive* if $\forall x \in A, xRx$.

<u>Def</u> A relation R on a set A is *symmetric* if xRy, then yRx.

Def A relation R on a set A is *transitive* if xRy and yRz, then xRz.

Def A relation R is an equivalent relation if it is reflexive, symmetric, and transitive

Thm By an equivalence relation, we can make equivalent classes, and partition.

2.2.2 Order Relations

<u>Def</u> A relation R is *comparable* if $\forall x, y \in A$ such that $x \neq y$, either xRy or yRx. <u>Def</u> A relation R is *nonreflexive* if $! \exists x$ in A such that xRx. <u>Def</u> A relation R is *order relation* if it is comparable, non-reflexive, and transitive.

Let A be a set of order relation and $A' \subseteq A$.

Def (immediate) predecessor, (immediate) successor.

<u>Ex</u> Compare $\mathbf{Z}_+ \times [0, 1)$ and $[0, 1) \times \mathbf{Z}_+$ with dictionary order relations

<u>Def</u> b: *largest element(smallest)* or *maximum(minimum)* of A' if $b \in A'$ and if $x \le (\ge)$ b for $\forall x \in A'$. <u>Def</u> A' is *bounded above (below)* if $b \in A$ such that $x \le (\ge)$ b for $\forall x \in A'$. Say b: *upper (lower) bound* <u>Def</u> If the set of all upper (lower) bounds for A' has a smallest (largest) element,

then this element is called *least upper bound* (greatest lower bound) or supremum (infimum). <u>Def</u> A set satisfies *least upper bound property* if \forall nonempty bounded-above subset has a supremum. <u>Ex</u> [0, 1]×[0, 1] and [0, 1)×[0, 1] : satisfy but [0, 1]×[0, 1) and [0, 1)×[0, 1) : not satisfy

2.2.3 Examples

P = set of all people in the world and **R** = set of real numbers D = {(x,y) ∈ P×P | x is descendent of y}. (nonreflexive, transitive) B = {(x,y) ∈ P×P | x has an ancestor who is also an ancestor of y}. (reflexive, symmetric) S = {(x,y) ∈ P×P | the parents of x are the parents of y}. (reflexive, symmetric, transitive) "X¹<Y¹" = {(x,y) ∈ **R**×**R** | x < y}. (comparable, nonreflexive, transitive) → order relation "X²<Y²" = {(x,y) ∈ **R**×**R** | x²<y²}. (nonreflexive, transitive) "X²=Y²" = {(x,y) ∈ **R**×**R** | x²=y²}. (transitive)

2.3 Functions

<u>Def</u> A relation f ⊂ A×B is a *function* if, $\forall x \in A, \exists ! y \in B$ such that $(x, y) \in f$. In other words, if x = y, then f(x) = f(y). (*Well-defined*) Write f: A→B.

<u>Def</u> Let f: A \rightarrow B, then say that A: *domain*, B: *codomain*, and f(A): *range*.

<u>Def</u> A function f is *injective (one-to-one)* if f(x) = f(y), then x = y. <u>Def</u> A function f is *surjective (onto)* if $\forall y \in B$, $\exists x \in A$ such that f(x) = y. <u>Def</u> A function f is *bijective (one-to-one correspondence)* if it is injective and surjective <u>Thm</u> If \exists injective f: A \rightarrow B and \exists injective g: B \rightarrow A, then \exists bijective k: A \rightarrow B

<u>Def</u> Let f: A→B and g: B→C. *Composite* of f and g is gof: A→C by (gof)(a) = g(f(a)). <u>Rmk</u> Composite of 2 injective (surjective) functions is injective (surjective). <u>Def</u> Let f: A→B be bijective. *Inverse function* of f is a function defined by f^1 : B→A by $f^1(b) = a$ such that f(a) = b. <u>Def</u> A *binary operation* on a set A is a function f: A×A→A

<u>Ex</u> Let f: A→B and A₀, A₁ ⊆ A, B₀, B₁ ⊆ B. Then the followings hold. If A₀⊆ A₁, then f (A₀) ⊆ f(A₁). If B₀⊆ B₁, then f¹(B₀) ⊆ f¹ (B₁). f (A₀ ∪ A₁) = f(A₀) ∪ f(A₁) and f¹(B₀ ∪ B₁) = f¹(B₀) ∪ f¹(B₁). f (A₀ ∩ A₁) ⊆ f(A₀) ∩ f(A₁) and f¹(B₀ ∩ B₁) ⊆ f¹(B₀) ∩ f¹(B₁). "=" holds if f is injective. A₀ ⊆ f¹(f(A₀)), and "=" holds if f is injective. B₀ ⊆ f (f¹(B₀)), and "=" holds if f is surjective.

2.4 Countable and Uncountable Sets

<u>Def</u> A set A is *finite* if \exists bijective function of A with some selection of positive integers.

That is, if it is empty or if \exists bijection f: A \rightarrow {1, ..., n} for some n \in Z₊.

<u>Thm</u> If A is finite, then $! \exists$ bijection of A with a proper subset of itself.

<u>Def</u> A set is *infinite* if it is not finite.

Ex \mathbb{Z}_+ is infinite because \exists bijection such that f: $\mathbb{Z}_+ \rightarrow \mathbb{Z}_+$ -{1} by f(n) = n+1.

<u>Def</u> A set A is *countably infinite* if \exists bijection f: $A \rightarrow \mathbf{Z}_+$.

Ex Z is countably infinite because \exists bijection such that f(n) = 2n (if n > 0) or -2n+1 (if $n \le 0$)

 $\underline{Ex} \mathbf{Z}_{+} \times \mathbf{Z}_{+}, \mathbf{Q}$, the set of all polynomials, and the set of algebraic numbers are countable.

<u>Def</u> A set is *countable* if it is either finite or countably infinite. <u>Thm</u> A countable union of countable set is countable.

<u>Thm</u> A finite product of countable set is countable.

Def A set is uncountable if it is not countable.

 $\underline{Ex} \mathbf{R}$ is uncountable by Cantor's diagonal method.

<u>Ex</u> {0, 1}^{ω} is uncountable, where X $^{\omega}$ = { f: **Z**₊ \rightarrow X | f: function}.

<u>Thm</u> Let A be a set and P(A) be the power set of A. Then $|A| \le |P(A)|$ (strictly larger). <u>Rmk</u> Continuum Hypothesis (Cantor) "! \exists A such that $|\mathbf{Z}_+| \le A \le |\mathbf{R}|$."

2.5 References

"Set Theory: An Intuitive Approach" (Y. Lin and S. Lin)

"Topology" (Munkres)

"Mystery of Aleph" (Aczel, 한역판: "무한의 신비")

"Gödel, Escher, Bach: an Eternal Golden Braid" (Hofstadter, 한역판: "괴델, 에셔, 바흐")

3. LOGIC

3.1 Definition of Logic

- (1) The ability to determine correct answers through a standardized process
- (2) The study of formal inference
- (3) A sequence of verified statements
- (4) Reasoning, as opposed to intuition
- (5) The deduction of statements from a set of statements

3.2 Short History of Logic

- (1) Philosophical Logic (500 B.C. to 19th Century)
- Some problems due to the ambiguity of natural language
- Liar's paradox ("This sentence is a lie"), Sophist' paradox (a trial between student and school), Surprise Paradox
- (2) Symbolic Logic (mid to late 19th Century)
- George Boole tried to formulate logic in terms of a mathematical language
- Venn Diagram was developed as a means of reasoning about sets
- (3) Mathematical Logic (late 19th to mid 20th Century)
- As mathematical proofs became more sophisticated, paradoxes began to show up
- Russell's paradox (" $T = \{S | S \text{ not belongs to } S\}$, then $T \in T$?"), Cantor's Continuum Hypothesis
- Gödel's First and Second Incompleteness Theorems, Church and Turing's undecidable problems
- (4) Logic in Computer Sciences (mid 20th Century to current time)
- Computability Theory (1930s), Computational Complexity Theory (1970s)
- Boolean logic, Database design, Semantics in Programming Languages, Design Validation/Verification, AI, etc.

3.3 The Syntax of Propositional Logic

A language consists of two parts: syntax and semantics.

Metadef The syntax of a language is the way to make a concrete representation of the meaning

Metadef The semantics of a language is our understanding of words or how the words relate to real world objects.

Metadef A metalanguage is a language that talks about both the syntax and the semantics of a language.

Now, let's start studying about the syntax propositional logic with our metalanguage English.

Def A proposition is a sentence which is either true or false. Prop is the set of all propositions.

<u>Def</u> An *expression* is a string composed of propositions, connectives $(\neg, \land, \lor, \rightarrow)$, and parenthesis. <u>Ex</u> ") \rightarrow p".

<u>Def</u> The set of formulas, *Form*, is defined as the smallest set of expressions such that: (here, $\circ: \land, \lor$ and, \rightarrow)

(1) $Prop \subseteq Form$, and (2) (closure property) If $\alpha, \beta \in Form$, then $(\neg \alpha) \in Form$ and $(\alpha \circ \beta) \in Form$.

<u>Def</u> The *primary connective* and *immediate sub-formula(s)* of a given formula φ are defined as follows:

- (1) If φ is atomic, then it has no primary connective and no immediate sub-formula(s).
- (2) If φ is $(\neg \psi)$, then \neg is a primary connective and ψ is an immediate sub-formula.
- (3) If φ is $(\theta \circ \psi)$, then \circ is a primary connective and, θ and ψ are immediate sub-formulas.

Thm (Unique Readability) A composite formula has a unique primary connective and unique immediate sub-formulas

3.4 The Semantics of Propositional Logic

<u>Def</u> A *truth assignment*, τ , is an element of 2^{*Prop*}.

<u>Rmk</u> There are two ways to think of truth assignments:

- (1) 2^{Prop} can be thought of as the power set of *Prop*, and a truth assignment X is an element of it, i.e., $X \subseteq Prop$.
- (2) We can think of 2^{Prop} as set of all functions from *Prop* to $\{0, 1\}$. A truth assignment is a function τ : *Prop* \rightarrow $\{0, 1\}$.

Let's consider now three different, but equivalent, perspectives of semantics.

3.4.1 Philosopher's view

For a philosopher, semantics is a binary relation |= between structures and formulas.

 $\tau \models \phi$ means (1) τ satisfies ϕ or (2) τ is true of ϕ or (3) τ holds at ϕ or (4) τ is a model of ϕ .

<u>Def</u> $\models \subseteq (2^{Prop} \times Form)$ is a binary relation, where the left side has a truth assignment and the right side has a formula. \models is called the *satisfaction relation*, or the *truth relation*. We shall define it inductively:

|

- (1) $\tau \models p$ for some proposition p if $\tau(p) = 1$
- (2) $\tau \models \neg \phi$ if it is not the case that $\tau \models \phi$, that is, $\tau \models ! \phi$ (Note: this is so only in 2-valued world)
- (3) $\tau \models \theta \lor \psi$ if $\tau \models \theta$ or $\tau \models \psi$, (4) $\tau \models \theta \land \psi$ if $\tau \models \theta$ and $\tau \models \psi$, (5) $\tau \models \theta \rightarrow \psi$ if $\tau \models ! \theta$ or $\tau \models \psi$.

Ex Let $\tau = \{p, q, r, t\}$, then $\tau \models (p \rightarrow q) \land r$ and $\tau \models ! p \land s$.

3.4.2 Electrical Engineer's view

To an electrical engineer, the truth assignment is simply a mapping of voltages on a wire: τ : *Prop* \rightarrow {0, 1}.

Operations are carried out by gates, which represent logical connectives.

<u>Def</u> \neg : {0, 1} \rightarrow {0, 1} is a function defined by \neg (0) = 1 and \neg (1) = 0.

<u>Def</u> \wedge : $\{0, 1\}^2 \rightarrow \{0, 1\}$ is a function defined by $\wedge (0, 0) = \wedge (0, 1) = \wedge (1, 0) = 0$ and $\wedge (1, 1) = 1$.

<u>Def</u> \vee : {0, 1}² \rightarrow {0, 1} is a function defined by \vee (1, 1) = \vee (1, 0) = \vee (0, 1) = 1 and \vee (0, 0) = 0.

<u>Def</u> →: $\{0, 1\}^2 \rightarrow \{0, 1\}$ is a function defined by $\rightarrow (1, 1) = \rightarrow (0, 0) = \rightarrow (0, 1) = 1$ and $\rightarrow (0, 1) = 0$.

<u>Def</u> Let $p \in Prop$, $\tau \in 2^{Prop}$. Then the semantics is defined according to the following rules:

(1) $p(\tau) = \tau(p)$ (meaning of a wire), (2) $(\neg \varphi)(\tau) = \neg(\varphi(\tau))$, (3) $(\theta \circ \psi)(\tau) = \circ(\theta(\tau), \psi(\tau))$. <u>Thm</u> Let $\varphi \in Form$ and $\tau \in 2^{Prop}$, then $\tau \models \varphi$ if and only if $\varphi(\tau) = 1$.

3.4.3 Software Engineer's view

A software engineer describes truth assignments in which a given formula is true.

<u>Def</u> This mapping from formula to sets of truth assignments is called *models*, where *models*: Form $\rightarrow 2^{2^{Prop}}$. <u>Def</u> Let φ be a formula, then *models*(φ) is defined as follows:

- (1) $\varphi = p$: *models*(p) = { $\tau | \tau (p) = 1$ }, where $p \in Prop$.
- (2) $\varphi = (\neg \theta)$: models($\neg \theta$) = 2^{*Prop*} models(θ).
- (3) $\varphi = (\theta \land \psi)$: *models*($\theta \land \psi$) = *models*(θ) \cap *models*(ψ).
- (4) $\varphi = (\theta \lor \psi)$: models $(\theta \lor \psi) = models(\theta) \cup models(\psi)$.
- (5) $\varphi = (\theta \rightarrow \psi)$: models $(\theta \rightarrow \psi) = (2^{Prop} models(\theta)) \cup models(\psi)$.

<u>Thm</u> Let $\varphi \in Form$ and $\tau \in 2^{Prop}$, then $\varphi(\tau) = 1$ if and only if $\tau \in models(\varphi)$. That is, $models(\varphi) = \{\tau \mid \varphi(\tau) = 1\}$.

4. ALGEBRA

4.1 Preliminaries

<u>Def</u> A *binary operation* * on S is a function *: $S \times S \rightarrow S$ defined by (a, b) $| \rightarrow a * b$.

<u>Def</u> $H \subseteq S$ and * on S. Say that H is closed under * if h, $k \in H \rightarrow h^*k \in H$.

<u>Def</u> * on S is *commutative*, if a*b = b*a for $\forall a, b \in S$; * on S is *associative*, if (a*b)*c = a*(b*c) for $\forall a, b, c \in S$.

Let (S, *) and (S', *') be binary algebraic structures.

<u>Def</u> An *isomorphism* of S into S' is a bijective function f: $S \rightarrow S'$ such that $f(x^*y) = f(x)^* f(y)$

<u>Def</u> S and S' are *isomorphic* if \exists an isomorphism from S to S'. Write S \approx S'.

<u>Rmk</u> If two algebraic structures are isomorphic, then they share the same algebraic properties.

Rmk The isomorphism is an equivalent relation on the set of algebraic structures

 \underline{Ex} (**R**, +) and (**R**+, *) are isomorphic.

4.2 Groups

Def A group is a set G with an operation * that satisfies the following conditions (cf. semigroup, monoid)

(1) * is associative, (2) \exists identity e in G, and (3) $\forall g \in G, \exists g'(\text{inverse}) \in G$ such that $g^*g' = e$.

Def An element $e \in S$ is an *identity* for * if s*e = e*s = s for $\forall s \in S$.

<u>Def</u> A group G is *abelian* if the operation is commutative.

Thm A group has a unique identity, and all inverses are unique.

<u>Ex</u> Z_p , Z, Q, R, C are abelian groups with addition operations. {e}: trivial group. But $\langle N, + \rangle$ is not a group. <u>Ex</u> $GL_2 = \{2 \text{ by } 2 \text{ matrices with non-zero determinant}\}$. GL_2 is a non-abelian group.

<u>Def</u> Let $\langle G, * \rangle$ be a group. H \subseteq G is a subgroup of G if H is a group under the same operation *.

 $\underline{Thm}\ A$ subset H of G is a subgroup of G (write H < G) if and only if

(1) H is closed under the operation of G, (2) the identity e of G is in H, and (3) for $\forall a \in H$, $a^{-1} \in H$. <u>Ex</u> T = {2 by 2 matrices with determinant 1} \subset GL₂, and T < GL₂.

<u>Def</u> A group G is *cyclic* if $\exists a \in G$ such that $\forall g \in G, g = a^n$ for some $n \in \mathbb{Z}_+$.

Thm Every cyclic group is abelian.

Ex Z_p , Z, Q, R, C are cyclic groups; but V ($\approx Z_2 \times Z_2$) is not cyclic. Compare the structures of V and Z_4

4.3 Groups of Permutations

<u>Def</u> A *permutation* on a nonempty set S is a bijective function f: $S \rightarrow S$.

Thm A collection of all permutations on A is a group under permutation multiplication.

<u>Def</u> The group in the preceding theorem is called a *symmetric group*.

Ex S₃ (symmetric group of 3 letters) and S₄ (symmetric group of 4 letters) are symmetric groups.

The structure of group S_3 is shown in the following table.

 S_3

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

\mathbb{Z}_4	+	e	а	b	c
	e	e	а	b	c
	а	а	e	с	b
	b	b	с	e	a
	с	с	b	а	e

v

	PO	P1	P2	M1	M2	M3
P0	PO	P1	P2	M1	M2	M3
P1	P1	P2	PO	M3	M1	M2
P2	P2	PO	P1	M2	M3	M1
M1	M1	M2	M3	PO	P1	P2
M2	M2	M3	M1	P2	P0	P1
M3	M3	M1	M2	P1	P2	P0

4.4 Homomorphism

<u>Def</u> A function f: G \rightarrow G' of groups is a *homomorphism* if f(a*b) = f(a)*'f(b) for \forall a, b \in G.

Ex Let g: $G \rightarrow G'$ be defined by g(a) = e' for $\forall a \in G$. Then g is a *trivial homomorphism*.

Ex Let $(\mathbf{F}, +)$, $(\mathbf{R}, +)$ be groups and $\mathbf{c} \in \mathbf{R}$, where **R** is the set of real numbers and $\mathbf{F} = \{\mathbf{f} \mid \mathbf{f} : \mathbf{R} \rightarrow \mathbf{R}\}$.

Then $E_c: \mathbf{F} \rightarrow \mathbf{R}$, defined by $E_c(f) = f(c)$ for $f \in \mathbf{F}$, is the *evaluation homomorphism*.

 \underline{Ex} Let $GL(n, \mathbf{R})$ be the multiplicative group of all invertible n*n matrices.

Then the *determinant* function det: $GL(n, \mathbf{R}) \rightarrow \mathbf{R}$ is a homomorphism because det(AB) = det(A)det(B).

Ex Let $C_{[0,1]}$ be the additive group of *continuous* functions with domain [0, 1].

Then I: $\mathbf{C}_{[0,1]} \rightarrow \mathbf{R}$, defined by $I(f) = \int_0^1 f(x) dx$, is a homomorphism.

 \underline{Ex} Let **D** be the additive group of all *differentiable* functions mapping **R** into **R**.

Then the *derivative* function der: $\mathbf{D} \rightarrow \mathbf{F}$, defined by der(f) = f', is a homomorphism because (f + g)' = f' + g'.

<u>Thm</u> Let f: $G \rightarrow G'$ be a homomorphism of groups, then

(1) $f(e) = e', (2) f(a^{-1}) = f(a)^{-1}, (3) H < G \rightarrow f(H) < G', (4) H' < G' \rightarrow f^{-1}(H') < G.$

4.5 Factor Groups

<u>Def</u> Let f: G→G' be a homomorphism of groups. Then $f^{1}[\{e'\}] = \{x \in G \mid f(x) = e'\}$ is the *kernel* of f. Write Ker(f). <u>Def</u> Let H<G. Then aH = {ah | h ∈ H} is the *left coset* of H, and Ha = {ha | h ∈ H} is the *right coset* of H. <u>Def</u> A subgroup H of G is *normal* if aH = Ha for $\forall a \in G$. ($\leftrightarrow aHa^{-1} = H \leftrightarrow aha^{-1} H$ for h ∈H). Write H \triangleleft G. <u>Thm</u> All subgroups of abelian groups are normal.

<u>Thm</u> The kernel of a homomorphism f: $G \rightarrow G'$ is a normal subgroup of G.

<u>Thm</u> Let $H \triangleleft G$. Then the set of cosets forms a group G/H under the binary operation (aH)(bH) = (ab)H.

<u>Def</u> The group G/H is the *factor group* (or *quotient group*) of G modulo H.

Ex r: $\mathbf{Z} \rightarrow \mathbf{Z}$, defined by r(m) = the remainder of m/3, is a homomorphism, and Ker(r) = 3 \mathbf{Z} , which is a normal subgroup.

The set of cosets of 3Z forms a group Z/3Z, i.e., $\{3Z, 1+3Z, 2+3Z\}$ with coset addition operations.

Ex The trivial subgroup $\{0\}$ of Z is normal, then $Z/\{0\} \approx Z$.

<u>Ex</u> Compute $(Z_4 \times Z_6) / <(0, 2)>$. $<(0, 2)> = \{(0,0), (0,2), (0,4)\}$. $(Z_4 \times Z_6) / <(0, 2)> \approx Z_4 \times Z_2$.

<u>Def</u> A group is *simple* if it has no proper nontrivial normal subgroups.

Ex S_n is simple for $n \ge 5$. In 1980, Griess constructed a simple group of order more than 808 * 10¹⁷.

<u>Def</u> A maximal normal subgroup of a group G is a normal subgroup M s.t. $M < N < G \rightarrow N = M$ or N = G.

4.6 Advanced Group Theory

<u>Thm</u> Let $f:G \rightarrow G'$ be a group homomorphism and $R:G \rightarrow G/\ker(f)$ be the canonical homomorphism.

Then \exists ! isomorphism I: G/ker(f) \rightarrow f[G] such that f = I \circ R.

<u>Thm</u> If H<G and N \triangleleft G, then (HN) / N \approx H / (H \cap N).

<u>Thm</u> If H, K \triangleleft G with H<K, then G / H \approx (G/K) / (H/K).

<u>Thm</u> Let G be a group with $|G| = p^n m$ and p not divide m.

Then $\exists H \leq G$ such that $|H| = p^k$ for $1 \leq k \leq n$, and $H_i \leq H_j$ when $|H^i| = p^i$, $|H^j| = p^j$, and $i \leq j \leq n$. <u>Thm</u> Let P_1 and P_2 be *Sylow p-subgroups* of a finite group G. Then $P_1 = xP_2x^{-1}$ for some $x \in G$. <u>Thm</u> Let G is a finite group with $p \mid |G|$ and s be the number of Sylow p-subgroups. Then $s \equiv 1 \pmod{p}$ and $s \mid |G|$.

4.7 Rings

<u>Def</u> A *ring* <R, +, *> is a set R with binary operations + and *, such that

(1) <R, +> : abelian group, (2) * is associative, (3) $a^{*}(b+c) = a^{*}b + a^{*}c$ for $\forall a, b, c \in \mathbb{R}$ (distributive law) <u>Ex</u> {0} is the *zero ring* because 0 + 0 = 0 and (0)(0) = 0.

 $\underline{Ex} < \mathbf{Z}, +, * > \text{ is a ring. So are } \mathbf{Q}, \mathbf{R}, \text{ and } \mathbf{C}.$

<u>Ex</u> $M_2(Z) = \{2 \text{ by } 2 \text{ matrices with integer entries}\}\$ is a ring with matrix addition and multiplication.

<u>Ex</u> $P[\mathbf{Z}] = \{a_0 + a_1x^1 + ... + a_nx^n | a_i \in \mathbf{Z} \text{ and } n \in \mathbf{Z}+\}$ is a ring with polynomial addition and multiplication. <u>Ex</u> $n\mathbf{Z} = \{na | a \in \mathbf{Z}\}$ is a ring with + and *.

<u>Thm</u> Let R be a ring and a, b \in R. Then a*(-b) = (-a)*b = -(a*b) and (-a)*(-b) = a*b for $\forall a, b \in$ R.

<u>Def</u> A *subring* of a ring is a subset of the ring that is ring under induced operations from the whole ring. <u>Def</u> A function f: $R \rightarrow R'$ of rings is a *ring homomorphism* if f(a + b) = f(a) + f(b) and f(a*b) = f(a)*f(b) for $\forall a, b \in R$.

Ex Let g: $Z \rightarrow Z$ defined by g(a) = -a. g is a group homomorphism but not a ring homomorphism.

Ex Let $f_1: \mathbb{Z} \to \mathbb{Z}$ by $f_1(a)=a$, $f_2: \mathbb{Z} \to \mathbb{Z}$ by $f_2(a)=0$, and $f_3: \mathbb{Z} \to \mathbb{Z}$ by $f_3(a)=2a$. Only f_1 and f_2 are ring homomorphisms.

4.8 Integral Domains and Fields

Def A ring in which the multiplication is commutative is a *commutative ring*.

<u>Def</u> Let R be a ring, then $i \in R$ is *unity* if $a^*i = i^*a = a$, for $a \in R$, and $b \in R$ is a *unit* if $b^{-1} \in R$ such that $b^*b^{-1} = i$. <u>Ex</u> Let (**Z**, +, *) be a ring, then 1 is a unity, -1 is a unit ((-1)(-1) = 1), and 2 is not a unit.

Def A ring with a multiplicative identity (unity) is a ring with unity.

Def A ring R is a *division ring* if every nonzero element is a unit.

Def A ring is a *field* if it is a commutative division ring, and a noncommutative division ring is called a *skew field*.

Def A subfield of a field is a subset of the field that is field under induced operations from the whole field.

 \underline{Ex} Z is a ring with unity but not division ring. Q and R are division rings and commutative, so fields.

Ex $\mathbf{H} = \{a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mid a, b, c, d \in \mathbf{R}\}$ is a division ring but not commutative because $\mathbf{ij} = \mathbf{k}$ and $\mathbf{ji} = -\mathbf{k}$.

<u>Def</u> Let R be a ring. If a, $b \in \mathbb{R}$ such that $a\neq 0$, $b\neq 0$, and a*b=0, then a, b are zero divisors.

Def A commutative ring with unity and without zero divisors is an *integral domain*.

Ex \mathbb{Z}_5 is an integral domain, but \mathbb{Z}_6 is not because 2*3=0 in \mathbb{Z}_6 .

<u>Thm</u> Every field is an integral domain.

 \underline{Thm} Every finite integral domain is a field.

 \underline{Cor} If p is a prime, then \mathbf{Z}_p is a field.

4.9 Vector Spaces

Def A vector space V over a field F consists of the following:

- (1) F: a field of *scalars*;
- (2) (V, +): an abelian group where V is set of vectors and + is vector addition +: $V \times V \rightarrow V$
- (3) Scalar multiplication *: $F \times V \rightarrow V$ satisfying the following conditions; (a) $1^*v = v$ for $\forall v \in V$, (b) (ab)* $v = a(b^*v)$, (c) $a^*(v + w) = a^*v + a^*w$, (d) $(a + b)^*v = a^*v + b^*v$, where $a, b \in F$ and $v \in V$.

<u>Ex</u> $\mathbf{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbf{Q}\}\$ is a vector space over \mathbf{Q} with a *basis* $\{1, \sqrt{2}\}$.

<u>Ex</u> For any field F, F[x] is a vector space over F, where $F[x] = \{a_0 + a_1x^1 + ... + a_nx^n | a_i \in F \text{ and } n \in \mathbb{Z}+\}$.

4.10 References

"A First Course in Abstract Algebra" (John B. Fraleigh)

"Algebra" (Thomas W. Hungerford)

"Linear Algebra" (Hoffman and Kunze)

"Linear Algebra and its Applications" (Gilbert Strang)

5. ANALYSIS

5.1 Sequences

<u>Def</u> A sequence of real (or complex) numbers is a function f: $\mathbf{N} \rightarrow \mathbf{R}$ (or **C**). Write $\{f_n\}_{n=1}^{\infty}$.

<u>Def</u> {a_n} converges to α if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $|a_n - \alpha| < \epsilon$ if $n \ge N$. Write $a_n \rightarrow \alpha$ or $\lim_{n \le \infty} a_n = \alpha$.

<u>Def</u> {a_n} diverges to $+\infty$ (or $-\infty$) if $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ such that $a_n > M$ (or $a_n < M$) if $n \ge N$. Write $a_n \rightarrow +\infty$ (or $-\infty$).

<u>Def</u> { a_n } is *bounded* if $\exists M > 0$ such that $a_n < M$ for $\forall n \in \mathbb{N}$.

<u>Def</u> { a_n } is *monotone* if $a_n \le a_{n+1}$ for $\forall n \in \mathbb{N}$ (increasing) or $a_n \ge a_{n+1}$ for $\forall n \in \mathbb{N}$ (decreasing).

<u>Thm</u> If $a_n \rightarrow \alpha$ and $b_n \rightarrow \beta$, then

(1) α is unique, (2) {a_n} is bounded, (3) $ca_n \rightarrow c \alpha$, (4) $(a_n + b_n) \rightarrow \alpha + \beta$, (5) $(a_n \cdot b_n) \rightarrow \alpha \cdot \beta$, (6) $(a_n/b_n) \rightarrow \alpha / \beta$. <u>Ex</u> $lim_{n \rightarrow \infty} (1+1/n)^n = \sum_{n=0}^{\infty} 1/(n!) = e$ and $\sum_{n=0}^{\infty} (-1)^n 1/(2n+1) = \pi/3$.

5.2 Basic Topology

 $\begin{array}{l} \underline{Def}\left(a,b\right) = \{x \in \mathbb{R} \mid a < x < b\}, (a,b] = \{x \in \mathbb{R} \mid a < x \le b\}, [a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}\\ \underline{Def} \text{ A set } S \subseteq \mathbb{R} \text{ is open if } \forall x \in S, \exists \epsilon > 0 \text{ such that } x \in (x \cdot \epsilon, x + \epsilon) \subseteq S.\\ \underline{Def} \text{ A set } V \subseteq \mathbb{R} \text{ is closed if } V^c \text{ is open.}\\ \underline{Thm} \text{ Let } \{U_a \mid a \in A\}, \{U_i \mid 1 \le i \le n\} \text{ be collections of open sets, then } \cup_{a \in A} U_a \text{ and } \cap_{i=1}^n U_i \text{ are also open sets.}\\ \underline{Ex} \text{ Let } U_n = (-1/n, 1/n + 1), \text{ then } \cap_{n=1}^{\infty} U_n = [0, 1], \text{ which is closed.}\\ \underline{Ex} \text{ Let } \mathbb{Q} = \{q_1, q_2 \ldots\} \text{ and } U_n = (q_n - \epsilon/2^n, q_n + \epsilon/2^n), \text{ then } U = \cup_{n=1}^{\infty} U_n \text{ is open.} \mathbb{Q} \subseteq U \text{ but the length of } U \text{ is just } 2\epsilon! \\ \end{array}$

<u>Def</u> A point x is an *accumulation point* of S if $\forall \varepsilon > 0$, (x- ε , x+ ε) contains infinitely many elements of S.

<u>Def</u> A point x is an *isolated point* of S if $x \in S$ and $\exists \varepsilon > 0$ such that $(x \cdot \varepsilon, x + \varepsilon) \cap S = \{x\}$.

<u>Def</u> A point x is a *boundary point* of S if $\forall \varepsilon > 0$, $(x - \varepsilon, x + \varepsilon) \cap S \neq \{\}$ and $(x - \varepsilon, x + \varepsilon) \cap S^{\varepsilon} \neq \{\}$.

<u>Def</u> A point x is an *interior point* of S if $\exists \epsilon > 0$ such that $(x-\epsilon, x+\epsilon) \subseteq S$.

<u>Def</u> A set $S \subseteq \mathbf{R}$ is *compact* if every sequence in S has a subsequence that converges to an element of S.

<u>Thm</u> A set $S \subseteq \mathbf{R}$ is compact if and only if S is closed and bounded.

<u>Def</u> $\{O_a\}_{a \in A}$ is an *open covering* of S if O_a is open and $S \subseteq \bigcup_{a \in A} O_a$.

Thm S is compact if and only if every open covering has a finite subcovering.

<u>Ex</u> $O_n = (1/n, 1+1/n)$, S = (0, 1]; S is bounded, not closed; $\{O_n\}$ is an open covering, but doesn't have finite subcovering. <u>Ex</u> $O_n = (n-2, n)$, $S = [1, \infty)$; S is closed, not bounded; $\{O_n\}$ is an open covering, but doesn't have finite subcovering.

<u>Def</u> S is *disconnected* if \exists disjoint nonempty U, V such that $S = (U \cap S) \cup (V \cap S)$. S is *connected* if it is not disconnected. <u>Ex</u> The Cantor Set $C = \bigcap_{n=1}^{\infty} C_n$; C is compact, has zero length, is uncountable, and $\{x + y \mid x, y \in C\} = [0, 2]$.

5.3 Limits and Continuity of Functions

<u>Def</u> Let f: [a, b] → R, then $\lim_{x\to c} f(x) = L$ if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that if $|x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

<u>Thm</u> Let $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = M$, then

(1) L is unique, (2) $\lim_{x \to c} (f(x) + g(x)) = L + M$, (3) $\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$, (4) $\lim_{x \to c} (f(x)/g(x)) = L/M$ if $M \neq 0$.

LEE, GENE MOO

<u>Def</u> A function f is *continuous at p* if $\lim_{x \to p} f(x) = f(p)$.

<u>Thm</u> If f and g are continuous at p, then f+g, f-g, α f, f/g, fg are also continuous at p.

<u>Thm</u> A function f: $E \rightarrow \mathbf{R}$ is continuous if and only if $f^{1}(O) = E \cap O'$ for all open sets O, where O' is also open.

<u>Thm</u> If f is a continuous function and K is a compact set, then f(K) is compact.

<u>Thm</u> If f is a continuous function and L is a connected set, then f(L) is connected.

5.4 Differentiation of Functions

Let f, g be real functions. In other words, f: $S \rightarrow \mathbf{R}$ and g: $S \rightarrow \mathbf{R}$. <u>Def</u> f is *differentiable at p* if \exists the *derivative* of f at p; f'(p) := $\lim_{h \rightarrow 0} \{(f(p + h)-f(p)) / h\}$. <u>Def</u> f is *differentiable* if it is differentiable at each a in its domain. <u>Def</u> Cⁿ (I) is the collection of real functions whose n-th derivatives exist and are continuous on I. <u>Thm</u> If f is differentiable at p, then f is continuous at p. <u>Ex</u> h(x) = |x| is continuous at 0 but not differentiable there.

Thm Let f and g are differentiable at p, then

(1) (f + g)'(x) = f'(x) + g'(x), (2) $(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$, (3) $(f/g)'(x) = \{g(x) \cdot f'(x) - f(x) \cdot g'(x)\} / g^2(x)$. <u>Thm</u> If f is differentiable at p and g is differentiable at f(p), then $g \circ f$ is differentiable at p with $(g \circ f)'(p) = g'(f(p)) \cdot f'(p)$. <u>Thm</u> (L'Hopital) Let f and g are differentiable on an open interval I, $p \in I$, $f(x) \circ f$ for $x \in I - \{p\}$.

If $\lim_{x \to p} f(x) = \lim_{x \to p} g(x) = 0$ and $\exists \lim_{x \to p} (f'(x) / g'(x)) = L$, then $\lim_{x \to p} (f(x) / g(x)) = L$

<u>Thm</u> Let f be an invertible function on an interval (a, b) with nonzero derivative at a point $x \in (a, b)$, and X = f(x).

Then $(f^{-1})'(X)$ exists and equals 1/f'(x).

Thm (Mean Value) Let f be a continuous function on the closed interval [a, b] that is differentiable on (a, b).

Then \exists a point $\xi \in (a, b)$ such that $f'(\xi) = (f(b) - f(a)) / (b - a)$.

5.5 Integral of Functions

Let f be a function on a closed interval [a, b] in **R**. In other words, f: [a, b] \rightarrow **R**.

<u>Def</u> A finite, ordered set of points $P = \{x_0, x_1, \dots, x_{k-1}, x_k\}$ such that $a=x_0 \le x_1 \le \dots \le x_{k-1} \le x_k = b$ is a *partition* of [a, b]. <u>Def</u> Let P is a partition of [a, b]. I_j denotes the interval $[x_{j-1}, x_j]$, Δj denotes the length of I_j , and the *mesh* m(P) is max Δj . <u>Def</u> Let $P = \{x_0, x_1, \dots, x_{k-1}, x_k\}$ is a partition of [a, b] and s_j is an element of I_j for each j.

Then the corresponding *Riemann sum* is $R(f, P) = \sum_{i=1}^{k} f(s_i) \Delta j$.

<u>Def</u> We say that the Riemann sums of f tend to a limit L as m(P) tends to zero if

 $\forall \epsilon > 0, \exists \delta > 0$ such that if *P* is any partition of [a, b] with $m(P) < \delta$ then $|R(f, P) - L| < \epsilon$ for every choice of $s_j \in I_j$.

<u>Def</u> A function f is *Riemann integrable* on [a, b] if the Riemann sums of R(f, P) tend to a limit as m(P) tends to zero.

The value of the limit, when it exists, is *Riemann integral* of f over [a, b] and is denoted by $\int_a^b f(x) dx$.

Thm Let f be a continuous function on a nonempty closed interval [a, b], then f is Riemann integrable on [a, b].

<u>Thm</u> Let [a, b] be a nonempty interval, f and g be Riemann integrable functions on the interval, and $\alpha \in \mathbf{R}$.

Then f + g, and α f are integrable; (1) $\int_a^b \{f(x) + g(x)\} dx = \int_a^b f(x) dx + \int_a^b g(x) dx$., (2) $\int_a^b \alpha \cdot f(x) dx = \alpha \cdot \int_a^b f(x) dx$. <u>Thm</u> If f and g are Riemann integrable on [a, b], then so is the function f·g. <u>Thm</u> If f is Riemann integrable on [a, b] and φ is a continuous function on a compact interval containing the range of f. Then $\varphi \circ f$ is Riemann integrable.

<u>Thm</u> (Fundamental Theorem of Calculus) Let [a, b] be a closed, bounded interval and f: $[a, b] \rightarrow \mathbf{R}$.

- (1) If f is continuous on [a, b] and $F(x) = \int_a^x f(t)dt$, then $F \in C^1[a, b]$ and F'(x) = f(x).
- (2) If f is differentiable on [a, b] and f' is integrable on [a, b], then $\int_a^x f'(t)dt = f(x) f(a)$ for each $x \in [a, b]$.

5.6 References

"Real Analysis & Foundations" (Krantz)

"An Introduction to Analysis" (Wade)

6. TOPOLOGY

6.1 Topological Spaces

<u>Def</u> A topology on a set X is a collection T of subsets of X having the following properties:

(1) $\emptyset, \mathbf{X} \in \boldsymbol{T}, (2) \forall \{\mathbf{U}_{a} \mid a \in A\} \subseteq \boldsymbol{T}, \cup_{a \in A} \mathbf{U}_{a} \in \boldsymbol{T}, \text{ and } (3) \forall \{\mathbf{U}_{1}, \mathbf{U}_{2}, ..., \mathbf{U}_{n}\} \subseteq \boldsymbol{T}, \cap_{i=1}^{n} \mathbf{U}_{i} \in \boldsymbol{T}.$

<u>Ex</u> Let $X = \{a, b, c\}$. Then $T_1 = \{X, \emptyset\}$, $T_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{c\}, \{a, c\}\}$, and $T_3 = 2^X$ are topologies on X.

<u>Def</u> If X is any set, the collection of all subsets is the *discrete topology* on X, and $\{\emptyset, X\}$ is the *indiscrete topology* on X. <u>Ex</u> Let $X \neq \emptyset$ and $T_f = \{U \subseteq X \mid X - U$ is finite, or U is X $\}$. T_f is called *finite complement topology* on X. <u>Def</u> Let T_I and T_2 be topologies on X, with $T_I \subseteq T_2$. Then T_2 is *finer* than T_I .

6.2 Basis for a Topology

 $\underline{\text{Def}}$ If X is a set, a *basis* for a topology on X is a collection **B** of subsets of X such that

(1) $\forall x \in X, \exists B \in B \text{ such that } x \in B, \text{ and } (2) \text{ If } x \in B_1 \cap B_2, \text{ then } \exists B_3 \in B \text{ such that } x \in B_3 \subseteq B_1 \cap B_2.$

<u>Thm</u> If **B** is a basis, the topology **T** on X generated by **B** is described as follows;

A subset U of X is open in X if $\forall x \in U$, $\exists B \in B$ such that $x \in B \subseteq U$.

<u>Def</u> Let $B = \{(a, b) | a \le b\}$. The topology generated by B is called the *standard topology* (\mathbf{R}) on \mathbf{R} . <u>Def</u> Let $B' = \{[a, b) | a \le b\}$. The topology generated by B' is called the *lower limit topology* (\mathbf{R}_l) on \mathbf{R} . <u>Def</u> Let $\mathbf{K} = \{1/n | n \in \mathbf{Z}+\}, B'' = B \cup \{(a, b) - K\}$. The topology generated by B'' is called the *K-topology* (\mathbf{R}_k) on \mathbf{R} . <u>Def</u> Let $B''' = \{[a, b] | a \le b\}$. The topology generated by B''' is called the *discrete topology* on \mathbf{R} . Thm The K-topology and the lower limit topology are finer than the standard topology.

6.3 Order Topology, Product Topology, and Subspace Topology

Let X be a set with a simple order relation with more than two elements

<u>Def</u> Let **B** be the collection of all sets of the following types: (here, a_0 , b_0 are the smallest and largest in X, if any)

(1) All open intervals (a, b) in X, (2) All intervals of form [a₀, b) of X, and (3) All intervals of form (a, b₀] of X.

Then the collection **B** is a basis for a topology on X, which is called the *order topology* on X.

 \underline{Ex} The standard topology on **R** is just the order topology derived from the usual order on **R**.

Let X and Y be topological spaces.

<u>Def</u> The *product topology* on X×Y is the topology $T_{X\times Y}$ defined by {U×V | U is open in X, V is open in Y}. <u>Ex</u> The product of the standard topology on **R** is a topology on **R**×**R** = **R**².

Let X be a topological space with topology T.

<u>Def</u> If $Y \subseteq X$, the collection $T_Y = \{Y \cap U \mid U \in T\}$ is a topology on Y, called the *subspace topology*.

Ex Let (**R**, *T*) be the standard topology and $Y = [0, 1) \cup \{2\}$. Then $T_Y = \{Y \cap U \mid U \in T\}$ is a subspace topology on Y.

6.4 The Metric Topology

<u>Def</u> A *metric* on a set X is a function d: $X \times X \rightarrow \mathbf{R}$ satisfying the followings: for $\forall x, y, z \in X$

(1) $d(x, y) \ge 0$ ("=" holds if and only if x = y), (2) d(x, y) = d(y, x), and (3) $d(x, y) + d(y, z) \ge d(x, z)$. <u>Ex</u> Let X be a set and d: $X \times X \rightarrow \mathbf{R}$ defined by d(x, y) = 0 (if x = y), or 1 (if $x \neq y$). d is called the *discrete metric* on X. <u>Ex</u> Let X = \mathbf{R} and d: $\mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ defined by d(x, y) = |x - y|. d is called the *Euclidean metric* on \mathbf{R} . <u>Def</u> Let (X, d) be a set X with a metric d. The ε -ball centered at x is $B_d(x, \varepsilon) = \{y \mid d(x, y) < \varepsilon\}$, where $\varepsilon > 0$. <u>Thm</u> { $B_d(x, \varepsilon) \mid x \in X$ and $\varepsilon > 0$ } forms a basis of a topological space on X. <u>Def</u> A topology (X, T) is *metrizable* if \exists a metric on X such that the topology generated by the metric equals to T. <u>Ex</u> A discrete topology (X, D) is metrizable because the discrete metric induces the discrete topology on \mathbf{R} .

Let $\mathbf{x} = (x_1, x_2..., x_n) \in \mathbf{R}^n$,

<u>Def</u> The *Euclidean metric* d on \mathbf{R}^n is defined by $d(x, y) = [(x_1 - y_1)^2 + ... + (x_n - y_n)^2]^{1/2}$.

 $\underline{Def} \text{ The square metric } \rho \text{ on } \mathbf{R}^n \text{ is defined by } \rho(x, y) = max \ \{|x_1 - y_1| \dots, |x_n - y_n|\}.$

<u>Thm</u> The topologies on \mathbf{R}^n induced by the d and ρ are the same as the product topology on \mathbf{R}^n .

6.5 Continuous Functions and Homeomorphisms

<u>Def</u> (In Analysis) A function f: $\mathbf{R} \rightarrow \mathbf{R}$ is *continuous* if $\forall x, y \in \mathbf{R}$, $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $|x-y| < \delta$, then $|f(x)-f(y)| < \epsilon$. <u>Def</u> (In Topology) A function f: $(X, T) \rightarrow (Y, U)$ is *continuous* if \forall open set $A \in U$, $f^1(A)$ is open in X, i.e., $f^1(A) \in T$. <u>Rmk</u> The continuity defined by " $\epsilon - \delta$ " method is equivalent to the topological definition. <u>Ex</u> A function f: $\mathbf{R} \rightarrow \mathbf{R}_l$ defined by f(x) = x is not continuous because $f^1[a, b) = [a, b)$ is not open in R. Ex A function f: $\mathbf{R}_l \rightarrow \mathbf{R}$ defined by f(x) = x is continuous because $f^1(a, b) = (a, b) = \bigcup_{n=k}^{\infty} [a+1/n, b)$.

<u>Def</u> A function f: (X, T) \rightarrow (Y, U) is a *homeomorphism* if (1) f is bijective, (2) f is continuous, and (3) f¹ is continuous. <u>Def</u> Two topologies T and T' are *homeomorphic* if \exists a homeomorphism from T to T'. <u>Ex</u> A function f: (-1, 1) \rightarrow R defined by f(x) = $tan(\pi \cdot x/2)$ and f = $2/\pi \cdot tan^{-1}(x)$ is a homeomorphism. <u>Ex</u> A function f: [0,1) \rightarrow S \subseteq R² defined by f(t)=($cos(2\pi \cdot t), sin(2\pi \cdot t)$) is not a homeomorphism, where S={(x, y) |x²+y²=1}.

6.6 Connectedness

Let X be a topological space.

<u>Def</u> A separation of X is a pair $\{U, V\}$ of disjoint nonempty open subsets of X such that $U \cup V = X$.

 $\underline{\text{Def}}$ X is *connected* if there is no separation for X.

 $\underline{Ex} A = \{p, q\}$ with discrete topology is not connected, but A with indiscrete topology is connected.

 $\underline{Ex} \mathbf{R}_{l} \text{ is disconnected because } \mathbf{R} = (-\infty, \mathbf{a}) \cup [\mathbf{a}, \infty) = \{ \cup_{n \in \mathbf{Z}+} (-n, \mathbf{a}) \} \cup \{ \cup_{m \in \mathbf{Z}+} [\mathbf{a}, m) \}.$

<u>Thm</u> If $\{A_a \mid a \in J\}$ is a collection of connected subsets of X with $\bigcap_{a \in J} A_a \neq \emptyset$, then $\bigcup_{a \in J} A_a$ is also connected. <u>Thm</u> If f: X \rightarrow Y is a continuous function and X is connected, then f(X) is a connected subspace of Y. Thm If X and Y are connected, then X \times Y is also connected.

6.7 Compactness

Let X be a topological space.

 $\underline{Def} A \text{ collection } A = \{A_a \subseteq X \mid a \in J\} \text{ is an open covering of } X \text{ if } \cup_{a \in J} A_a = X \text{ and each } A_a \text{ is open in } X.$

 $\underline{Def} X \text{ is compact if } \forall \text{ open covering of } X, \exists \text{ a finite subcollection } \{A_1 \dots A_n\} \subseteq A \text{ such that } \cup_{i=1}^n A_i = X.$

 \underline{Def} (In Analysis) A set $S \subseteq \mathbf{R}$ is *compact* if every sequence in S has a subsequence that converges to an element of S

 \underline{Ex} Let X = **R** with finite complement topology, then X is compact.

Ex Let X = **R** with standard topology and Y = $\{0\} \cup \{1/n \mid n \in \mathbb{Z}+\}$, then Y is compact.

Thm If X is compact and Y is a closed subspace of X, then Y is compact.

<u>Thm</u> If X is compact and f: $X \rightarrow Y$ is a continuous function, then f(X) is compact in Y.

<u>Thm</u> If X and Y are compact, then $X \times Y$ is also compact.

6.8 References

"Topology" (James R. Munkres),

"General Topology" (Seymour Lipschutz).