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ABSTRACT

A form of sensitivity analysis is described that illustrates the effects that inputs have on outputs of statistical models.
The strength and sign of relationships, the types of nonlinearity, and the presence of interactions between inputs can be
diagnosed using this technique. Intended for interpreting flexible nonlinear models, the graphical sensitivity analysis is
applied to artificial neural networks (ANNs) in this study. As ANNs are increasingly being used for climate prediction,
the discussion focuses on specific problems associated with their use in this context. The technique is illustrated
using a real-world, long-range climate prediction example. Principal components (PCs) of circulation fields prior to
the Indian summer monsoon are related to rainfall during monsoon months for the 1958–98 period. The skill of multiple
linear regression and ensemble ANNs are compared using a resampling procedure. Interpretation of the models is then
conducted using traditional diagnostic tools and graphical sensitivity analysis. This provides an improved investigation of
precursor circulation field–summer monsoon rainfall relationships identified in a previous modelling study. The relatively
stable, linear relationship identified between the May 200 hPa geopotential height field and summer monsoon rainfall is
confirmed. Correlations previously identified between 850 hPa geopotential heights during January and rainfall by ANNs
are shown to be the result of a weakly nonlinear, interactive relationship involving the first and second PCs of this
field. An analysis of out-of-sample model predictions suggests that this relationship does not persist over the entire study
period. This may result from a modulation of the strength of the circulation–rainfall relationship by El Niño–southern
oscillation. Stratification of the results also reveals a relatively strong, nearly linear relationship with monsoon strength
during years exhibiting positive scores of the second PC. On extending the analysis to longer lead-times, the surface
pressure and 850 hPa geopotential height fields during November show relatively strong, persistent precursor relationships
with summer monsoon rainfall. Sensitivity analyses suggest a mildly nonlinear relationship that is common to both fields.
Copyright  2002 Environment Canada. Published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The climate system is extremely complex. Until recently, statistical relationships between climate variables
were modelled using relatively simple linear methods (e.g. multiple linear regression (MLR) models or
canonical correlation analysis) (Hsieh and Tang, 1998). Though linear models are fully specified and their
parameters have simple meanings (von Storch and Zwiers, 1999), they are poorly suited to modelling the
complex, often nonlinear, relationships that exist between climate variables.
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Recently, flexible models capable of representing nonlinear relationships have started being used in
climatological research; however, unlike linear methods, many of these models can be difficult to interpret.
Connectionist models, such as artificial neural networks (ANNs), lack widely accepted, straightforward
methods for describing the functions they represent. Certain techniques, like generalized additive models
(Hastie and Tibshirani, 1990), multivariate adaptive regression splines (Friedman, 1991), and recursive
partitioning trees (Breiman et al., 1984), do contain built-in methods for interpreting relationships between
inputs and outputs. Comparing and contrasting different models can, however, be a challenging task without
a common method of interpretation. Also, with the adoption of ensemble averaging as a means of improving
the stability of flexible nonlinear models (Hsieh and Tang, 1998), even methods that are usually simple to
interpret become difficult to decipher.

This perceived lack of interpretability has slowed the adoption of nonlinear methods in certain areas of
climate analysis. In many cases, ANNs and other flexible statistical models applied to climate prediction
tasks have been thought of as little more than ‘black boxes’. Models are frequently deemed acceptable for
forecast use but are rarely used to analyse climate relationships (Hewitson and Crane, 1994). For example,
Cannon and McKendry (1999) used ANNs to relate circulation conditions in southeast Asia to Indian summer
monsoon rainfall, but then used linear methods to investigate the circulation–rainfall relationships. Kumar
et al. (1995) pointed out that most nonlinear models applied to monsoon forecasting rely on linear methods to
first identify predictors. As a result, nonlinear predictive relationships may be missed and the full capabilities
of flexible nonlinear models may not be realized.

The current study describes a method for visualizing the input–output mappings of statistical models.
Unlike other techniques, graphical sensitivity analysis is not specific to any one statistical prediction model.
The method is conceptually simple, can be used to diagnose complex model relationships, and provides
results in both graphical and numerical formats. The usefulness of the technique is demonstrated by analysing
results from a real-world statistical climate forecasting problem, specifically the seasonal prediction of Indian
monsoon rainfall using ANNs and MLR models. This provides an improved analysis of circulation–rainfall
relationships identified by Cannon and McKendry (1999). To highlight the suitability of the method for use in
statistical climate modelling, the study addresses complicating factors such as pre-processing using principal
component analysis (PCA), model validation through resampling, and the ensemble averaging of models.

2. METHOD

2.1. Multi-layer perceptron ANN

ANNs form a class of models loosely based on the biological nervous system. Clustering, classification,
and regression tasks can be performed using different varieties of ANN (Sarle, 1994). Of these varieties, the
multi-layer perceptron (MLP) ANN is commonly used for nonlinear classification and regression. Practical
guidelines for their use are given by Smith (1993) and Reed and Marks (1999). Reviews of MLP ANN
applications in meteorology and climatology have been conducted by Gardner and Dorling (1998) and Hsieh
and Tang (1998).

MLP ANN models in the current study related Xi input variables to a single output Y using a single hidden
layer of j hyperbolic tangent processing nodes. The model architecture is described by the equation

Y =
∑

j

[

tanh

(
∑

i

Xi
1wij + 1bj

)]
2wj + 2b (1)

Model parameters in the MLP ANN are the hidden-layer weights 1wij , the hidden-layer biases 1bj , the
output-layer weights 2wj , and the output layer bias 2b. Given this architecture, the MLP ANN can account
for nonlinear relationships and interactions between input variables. The exact form of these relationships
need not be specified prior to modelling. With a sufficient number of hidden-layer nodes, the MLP ANN
model is capable of approximating any continuous function to an arbitrary level of accuracy (Hornik et al.,
1989).
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2.2. Sensitivity analysis

Sensitivity analyses assess the effects that changes in model inputs have on the model output. For example,
in the equation defining a simple MLR model

Y =
∑

i

Xiai + b (2)

the slope parameters ai can be directly interpreted as sensitivities. A single unit change in input Xi contributes
an ai unit change in the output Y , assuming that all other inputs are fixed. However, in most flexible nonlinear
models the parameters cannot be interpreted in this way. Instead, perturbation-based sensitivity analyses have
been proposed as an indirect means of analysing relationships between model inputs and outputs.

Hewitson and Crane (1994) used a perturbation-based sensitivity analysis to interpret an ANN MLP model
relating principal components (PCs) of synoptic-scale circulation conditions to local precipitation in southern
Mexico. To identify the relative importance of circulation variables at the surface and at 500 hPa to variability
in precipitation, they measured the sensitivity of the model output to small perturbations in PC scores on
each day in the record. Vector lengths of sensitivities for the PCs were used as measures of the importance of
each atmospheric level on a given day. To avoid small or zero lengths resulting from sensitivities of opposite
sign, vector lengths were computed using absolute values of the individual sensitivities. As this approach only
considers the sensitivity of the network to small changes in input, irrespective of the magnitude of the output
variable, the same sensitivity value can have very different meanings depending on the value of the output.
Hewitson and Crane (1994) recognized this problem and scaled the sensitivities by a logarithmic function
of precipitation, thereby giving more weight to sensitivities associated with low precipitation amounts. Time
series plots of sensitivities were then constructed to gain insight into the relative importance of SLP and
500 hPa conditions during different seasons. Spatial sensitivity maps were also plotted, showing the influence
of different regions during different periods of time. Novel in this approach was the mapping of the PC
sensitivities back to the original grid-point locations.

Tangang et al. (1998) applied a similar form of sensitivity analysis to ANN MLP models used to predict
sea-surface temperature (SST) anomalies in the equatorial Pacific Ocean. They assessed the sensitivity of
the model output to removal or pruning of input variables. Unlike the analysis performed by Hewitson
and Crane (1994), this method considers the net importance of a given input, not sensitivities of individual
cases. Root-mean-squared errors and correlation coefficients between outputs from the original network and
the pruned networks were computed and used as indicators of input variable importance. Based on these
measures of importance, an improved model was constructed containing four of the eight original input
variables.

While capable of estimating the influence of different input variables on the output, these methods do not
provide any insight into the types of relationship present between inputs and outputs. Trends, nonlinearities,
and interactions between variables cannot easily be diagnosed. Recently, Plate et al. (2000) proposed a
modified form of sensitivity analysis for visualizing and interpreting input–output mappings from ANN
models. Combining aspects of the sensitivity analyses used by Hewitson and Crane (1994) and Tangang et al.
(1998), the importance of inputs, nonlinearity of modelled relationships, interactions between inputs, and
trends in the effects of inputs can be readily identified using this method. This form of sensitivity analysis
was used in the current study to help interpret predictive relationships between atmospheric circulation fields
and Indian monsoon rainfall. Further details on the modelling study are given in subsequent sections. Because
this form of analysis has not been widely used in the atmospheric sciences, a relatively detailed description is
given here. Following the description offered by Plate et al. (2000), the method is also compared with those
introduced by Hewitson and Crane (1994) and Tangang et al. (1998). In addition, details relevant for use in
climatological applications are considered.

In graphical sensitivity analysis, the effects of changing model inputs Xi from some arbitrary baseline
values bi to their original values are calculated and plotted for a set of cases. Output effects !i are defined
as

!i = Y (X) − Y (X1, . . . , Xi−1, bi, Xi+1, . . . , Xk) (3)
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where k is the index of the last input variable. For standardized Xi , values of bi are typically set to zero,
the mean of each input variable. By definition !i equals zero when Xi equals the baseline value. As in the
study conducted by Tangang et al. (1998), the effect of removing input variables from the network forms
the basis for the sensitivity analysis described here. However, unlike their method, values of the effects
are calculated and retained for individual cases. This allows the sensitivities to be plotted graphically (i.e.
a scatter plot of !i versus Xi) thereby giving more insight into the nature of the modelled input–output
relationships.

For complicated relationships involving both nonlinearities and interactions between inputs, simple scatter
plots of the effects can be hard to interpret. Effects are instead plotted as short line segments, with slopes
of the segments given by partial derivatives of the output with respect to Xi . By plotting the effects as line
segments instead of points, the trends and the types of nonlinear relationships that are present are easier to
identify. Partial derivatives used to define the line segment slopes can be calculated analytically (Egmont-
Petersen et al., 1994) or they can be approximated using finite differences (Bishop, 1995). In the sensitivity
analysis conducted by Hewitson and Crane (1994), partial derivatives of ANN outputs were approximated
using finite differences. The same approach was taken in the current study. For climatological applications,
partial derivatives can be used to construct time-series plots and maps of sensitivities or sensitivity vector
lengths in the manner described by Hewitson and Crane (1994). However, more detailed investigations of
modelled relationships can be performed by analysing the partial derivatives in conjunction with values of !i .

By combining the sensitivities, slopes, and input values on one graph, the effects plot, insight into the
nonlinearity of modelled relationships, trends in the effects of input variables, the importance of variables,
and the presence of interactions between variables can be gained. Trends and nonlinearity in effects plots
relate directly to trends and nonlinearity in effects of a particular variable on model output. The overall
vertical range indicates the variable’s importance and the vertical spread at points along the abscissa indicates
interactions between the plotted input and at least one other input variable. Variables with no effect on the
output appear as horizontal lines on the sensitivity plots. Additive variables plot as single lines or curves. To
illustrate these characteristics, effects plots for a simple, synthetic function of six variables

Y = 5 sin(10X1X2) + 20(X3 − 0.5)2 − 10X4 + 20X5X6 (4)

are given in Figure 1. As described above, graphs are constructed by plotting values of variable Xi along the
abscissa and variable effects !i along the ordinate. A synthetic example was chosen to allow clear links to
be made between the relationships described by the mathematical function and the features of the sensitivity
analysis plots. The method is applied to a real-world example in subsequent sections.

For this particular function, variables X1 and X2 interact with one another and have a nonlinear effect on
Y . X3 is not involved in any interactions, instead having an additive nonlinear effect on Y . X4 is also additive,
and has a negative linear effect on Y . Variables X5 and X6 exhibit a simple multiplicative relationship. These
relationships can be seen in the corresponding effects plots for each variable. Vertical spread in the effects for
X1 and X2 indicates the presence of an interaction. The sinusoidal form of the nonlinearity for these variables
can be seen by following the trace of the line segment slopes in their effects plots. Similarly, the parabolic
relationship is present in the effects plot for X3; absence of vertical spread suggests an additive contribution
for this variable. The slopes of effects for X4 are negative. Increases in this variable are therefore associated
with decreases in Y . As the effects lie along a straight line, the relationship between X4 and Y is linear and
additive. Vertical spread in effects for X5 and X6 suggests the presence of interactions. The linear trace of
the slopes indicates a simple multiplicative interaction. In terms of variable importance, roughly measured by
the vertical range in effects, variables X1 and X2 appear most important, followed by X5 and X6, then X4,
and finally X3. Interaction strength is more difficult to diagnose graphically, but, judging from the degree of
vertical spread, X1 and X2 appear less additive than X5 and X6.

Although variable importance and interaction strength can be estimated from the effects plot, Plate et al.
(2000) also introduced objective numerical measures for these quantities. Variable importance is measured by
computing the variance of the effects for Xi . This statistic is equivalent to the root-mean-squared error
measure adopted by Tangang et al. (1998). Variable interaction strength, or degree of non-additivity, is
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Figure 1. Example effects plots for inputs to the function in Equation (4)

measured by fitting a smooth curve to the scatter plot of the partial derivatives and then calculating the
deviation of points from this curve. Partial derivative scatter plots for Equation (4) are given in Figure 2.
Partial derivatives for additive variables, such as X3 and X4, fall along single lines or curves. As a result,
deviations of points from the fitted curve are generally small. Partial derivatives for variables involved in
interactions, such as X1, X2, X5, and X6, plot as clouds of points. In these cases, a fitted curve provides
a poor approximation and deviations of points from the curve are generally large. Averaged over all cases,
a small deviation, therefore, indicates a near additive relationship and a large deviation indicates a non-
additive relationship. Curves can be drawn using any of a number of smoothing techniques (Cleveland and
Loader, 1996). Locally weighted linear regression was chosen for this particular example. Figure 3 shows
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Figure 2. Example partial derivative plots for inputs to Equation (4)

plots of variable importance versus interaction strength for variables X1 to X6. The objective measures
are consistent with impressions gained through visual inspection of the effects plots and partial derivative
plots.

For the example given in Figure 1, determining which variables were involved in specific interactions was
relatively straightforward. In practice, relationships may be more complex and may involve multiple variables.
In these situations, simple effects plots are not sufficient for identifying which variables are interacting with
one another. Instead, stratified effects plots may be used to help identify specific interactions. In stratified
effects plots, line segments for a given input variable are coloured according to values of another input
variable. If the two inputs are involved in an interaction, colours should appear in distinct bands in the effects
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Figure 3. Scatter plot showing quantitative measures of variable importance (abscissa) and variable interaction strength (ordinate) for
inputs to Equation (4)

plot. If the two inputs are not involved in an interaction, colours should be distributed randomly across the
plot. Examples of stratified effects plots for variables X1 and X2 and X5 and X6 are given in Figure 4. For
X1 and X2 the colours show the ranges of variables X2 and X3; for X5 and X6 the colours show the ranges
of X4 and X5. The plot indicates the presence of an interaction between X1 and X2 and between X5 and X6,
but not between X2 and X3 or between X4 and X5.

In situations where split-sample or resampling methods, such as cross-validation or bootstrapping, are
used to estimate model performance, modifications to the basic sensitivity analysis procedure described by
Plate et al. (2000) are required. Owing to the random selection of training and testing cases, variations
in sensitivity plots will be present between samples. Rather than choose a single model from one sample
to represent the input–output relationships, effects plots are instead modified to include information from
all available samples. Conceptually, this is similar to the bootstrap procedure developed by Baxt and
White (1995) to assess ANN sensitivities. Median values of effects and partial derivatives are plotted to
represent average conditions over the range of models. Lower and upper quartile values are also shown
on the same graph to indicate the variability in these quantities across the samples. This modification
was used successfully by Cannon and Whitfield (2001) to visualize relationships in models relating
precipitation and antecedent climate conditions to water quality. Examples of this approach are presented
in Section 4.

Modifications to the sensitivity analysis procedure are also required when PCA is used to reduce the
dimension of gridded datasets. In this case, interpreting sensitivities in terms of the original grid-point
locations can be difficult. Though PC loadings can help in the spatial interpretation of the effects plots,
the presence of nonlinear and interactive effects make this difficult. As an alternative, PC sensitivities can
be mapped back to the original grid points (Hewitson and Crane, 1994). Using this approach, the model
is expanded to include the projection of the grid-point data onto the PCs. Instead of perturbing the PCs to
calculate the effects, the grid-point data are perturbed, the perturbed data are then projected onto the PCs,
and the resulting scores are then entered into the model. Examples of spatial effects plots are presented in
later sections.
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Figure 4. Stratified effects plots for inputs X1 (top left), X2 (top right), X5 (bottom left), X6 (bottom right) to Equation (4). Colours
show the ranges of the variables X2 (top left), X3 (top right), X4 (bottom left), and X5 (bottom right): black, ≤0.25; red, >0.25 and

≤0.5; green, >0.5 and ≤0.75; blue, >0.75

3. DATA

3.1. Sea-level pressure and geopotential height

To illustrate the sensitivity analysis procedure, relationships between Indian monsoon rainfall and gridded
circulation data from four atmospheric levels over the South Asian subcontinent were investigated using MLR
and MLP ANN models. Data and models are similar to those considered by Cannon and McKendry (1999).

For use as inputs to models, daily averaged SLP, 850 hPa, 500 hPa, and 200 hPa geopotential height data
(2.5° by 2.5° resolution) were obtained from National Centers for Environmental Prediction–National Center
for Atmospheric Research (NCEP–NCAR) reanalysis model output (Kalnay et al., 1996). A subset covering
the region from 62.5° to 95 °E and 7.5° to 35 °N was extracted and averages for months preceding the summer
monsoon (October–May) were computed for the 41 year period from 1958 to the end of 1998. This extends
the analysis conducted by Cannon and McKendry (1999), which only considered the period 1958–94 and
months from December–May. Gridded data were averaged in space to a resolution of 5° by 5°. Standardized
SLP and geopotential height anomalies were then computed by subtracting the climatological monthly mean
from each of the monthly average values and dividing by the monthly standard deviation.

The eight monthly series of standardized anomaly fields (36 grid points) were used as indicators of pre-
monsoon circulation at each atmospheric level. Because grid-point values during the study period were
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Table I. Cumulative percent explained variance for PCs of gridded circulation data. N indicates the number of PCs
retained for each atmospheric level

Level N October November December January February March April May

SLP 3 93.0 88.5 91.9 92.4 93.0 90.3 89.0 88.7
850 hPa 3 95.5 93.6 95.6 94.9 93.4 93.7 93.4 93.5
500 hPa 4 96.5 95.6 97.5 97.2 97.2 97.3 96.5 96.4
200 hPa 4 97.7 97.2 98.1 97.5 97.7 97.1 96.9 97.4

highly correlated in space, PCA was used to reduce the dimensionality of the original dataset and provide
uncorrelated representations of the circulation data. For each series and level, an S-mode PCA (Green, 1978)
was performed on the correlation matrix of the pre-monsoon circulation anomalies. The number of PCs to
retain as predictors was determined by taking the average of three truncation criteria: the rule-N test (Overland
and Preisendorfer, 1982), the eigenvalue-one rule (Kaiser, 1959), and PCs accounting for 90% of the total
variance in the original dataset. Table I shows the cumulative percent variance accounted for by the retained
components at each level and month. In all cases the cumulative explained variance exceeded 88%.

Unlike Cannon and McKendry (1999), where PCs were not rotated, retained PCs in the current study
were rotated orthogonally using Kaiser’s varimax criterion (Kaiser, 1958). Enhanced meteorological and
climatic interpretability of rotated PC solutions has been documented by Richman (1986) and Barnston and
Livezey (1987). However, in the current study PCA was used mainly for data reduction and filtering purposes;
interpretation of PCs as dominant modes of atmospheric variability was of less importance.

3.2. All-India summer monsoon rainfall

The all-India summer monsoon rainfall (AISMR) dataset consists of area-weighted averages of summer
(June–September) rainfall totals from 306 district rain gauge stations. Approximately 90% of India is
accounted for, with a number of mountainous regions removed from the analysis. Originally developed
and described by Parthasarathy et al. (1987) for the period 1871–1984, the dataset was recently extended
by Parthasarathy et al. (1994) to include years through 1993. Data from 1994–98 were obtained from the
Indian Institute of Tropical Meteorology. To match the available circulation data record, AISMR totals for
years from 1958 to 1998 were extracted from the series. For use in the forecast models, the mean value over
the 1958–98 subset was subtracted from each summer’s reported total. Anomalies were then standardized by
dividing by the standard deviation for the subset data period.

4. RESULTS

4.1. Model predictions

The MLP ANN model architecture was used to relate regional circulation PCs to AISMR. All networks
in the current study were trained using the resilient backpropagation algorithm (Riedmiller, 1994). Control
parameters were set to suggested default values. Initial values for weights and biases were set to random
values ranging from −0.5 to 0.5. To avoid nonlinear instability and overfitting of the training data, ensemble
averaging and stopped training procedures were used to build the models (Hsieh and Tang, 1998). Ensemble
models in the current study each contained 20 networks.

The bootstrap aggregation (bagging) ensemble averaging procedure (Breiman, 1996) was used to reduce
overfitting and improve performance of the ANNs developed in the current study. In bagging, a number of
training datasets are generated by sampling with replacement from the available pool of data. Models are
then trained on the resampled datasets and results from individual ensemble members are averaged to yield
final output values. Ensemble averaging reduces the variance of the outputs due to the random initialization
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of weights and biases and the random selection of training set cases. Each resampled training set is selected
to be equal in size as the original dataset.

As resampling is done with replacement, approximately 37% of training cases are not included in each of
the bagged sets. These ‘out-of-bag’ cases can be used to estimate the generalization error of the model, thereby
allowing training to be stopped at a point prior to overfitting. This procedure is a simple method for ensuring
good model performance on data not used in the training process (Finnoff et al., 1993). Rather than choosing
the weights and biases that maximize performance on the bagged training set, final weights and biases are
chosen to maximize performance on the out-of-bag cases. During the optimization process, network weights
and biases are stored after each presentation of the bagged training cases and an error value is calculated using
these data. The out-of-bag cases are then presented to the model and another error value is calculated using
the stored weights and biases. This provides an estimate of the model’s performance on data not included
in the training set. Following convergence on the training dataset, weights and biases corresponding to the
minimum error value on the out-of-bag cases are retrieved and are used as final parameters in the trained
model.

Given the small sample size available (41 years), a resampling procedure based on the repeated application
of split-sample validation (Weiss and Kulikowski, 1991) was used to estimate the predictive skill of the models.
Parameters were set using three-quarters of the available cases (30 years) and the resulting model was used to
predict output values for the remaining cases (11 years). Predictive skill on test set cases was then evaluated
using the Pearson product-moment correlation coefficient r . The split and test procedure was repeated 200
times, with each trial using different randomly selected training and testing sets. Empirical distributions of
r on the 200 randomly selected test sets were used to estimate the significance of the circulation–AISMR
relationships.

For comparison with the ensemble ANN MLP models, MLR models were also constructed using the same
input and output data. Because models in each split-sample validation trial used the same training and testing
sets, the significance of differences in model performance was also estimated. Split-sample validation results
for the MLR and ANN MLP model forecasts are given in Table II. For each atmospheric level, median
values of r and differences in r between models are listed, as are empirical estimates of probability values
for the significance of r and differences in r calculated based on the split-sample validation trials. The level
of significance was set at 0.10. As the primary goal of this study was the demonstration of the graphical
sensitivity analysis, statistics are only shown for predictors with statistically significant circulation–AISMR
relationships. The full set of results is available from the authors.

Consistent with the findings of Cannon and McKendry (1999), PCs of the 200 hPa geopotential height
field in May exhibited the strongest correlations with summer monsoon rainfall. Median values of r over the
trials equalled or exceeded 0.65 for MLR and MLP ANN models. For PCs of 850 hPa geopotential height, a
maximum in skill was evident in January, although significant correlations were only noted for the MLP ANN
models and not the MLR models. For the longer lead-times, only SLP and 850 hPa geopotential height PCs
during November showed significant relationships with AISMR. Both MLR and MLP ANN models identified
these relationships.

Split-sample validation results were evaluated using training and test sets selected from the entire 41 year
period of record. As previous studies have suggested that the strength of predictor–AISMR relationships may

Table II. Split-sample validation results for MLP ANN and MLR model predictions of AISMR.
Values of r are medians from the 200 split-sample validation trials. Probability values are empirical

estimates from the split-sample validation trials

Level Month r MLP r MLR r MLP − r MLR

200 hPa May 0.65 (p < 0.005) 0.67 (p < 0.005) −0.01 (p = 0.68)
850 hPa January 0.40 (p = 0.10) 0.12 (p = 0.32) 0.25 (p = 0.09)
850 hPa November 0.37 (p = 0.06) 0.27 (p = 0.13) 0.11 (p = 0.20)
SLP November 0.50 (p = 0.05) 0.39 (p = 0.09) 0.11 (p = 0.23)
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change on decadal time scales (Parthasarathy et al., 1991; Hastenrath and Greischar, 1993), some means of
evaluating stationarity of the circulation–AISMR relationships was also needed. In Cannon and McKendry
(1999), multiple correlation coefficients between PCs and AISMR were calculated for 11 year and 15 year
sliding windows. This method did not, however, accurately describe out-of-sample forecast performance and
only measured the strength of linear relationships between circulation PCs and AISMR.

In the current study, split-sample validation was used to evaluate stationarity of both MLR and MLP ANN
forecast skill between 1958 and 1998. Thirty years of data were used for model training and 11 years of
data were used to test out-of-sample model performance. Training and test sets were not, however, selected
randomly from the 41 year period of record. Test sets were instead taken from an 11 year sliding window
and training data from the remaining 30 years. To gauge variability in MLP ANN results, ten ensembles
were trained and evaluated for each 11 year window. Results are shown in Figure 5. Bars indicate correlation
coefficients for MLR models and lines indicate the range in correlation coefficients for the ten ensemble MLP
ANNs. The black line indicates the median correlation coefficient for the ten ensemble MLP ANN models.
Results are plotted for the centre year in each 11 year window.

Of the relationships identified in Table II, only PCs of the May 200 hPa geopotential height field exhibited
long-term periods of statistically significant, positive skill for both linear and nonlinear forecast models. Skill
for both model types exceeded r = 0.8 through the middle of the 1970s. In the 1980s, however, the skill
dropped to the 0.05 significance level. Values below the 0.10 significance level were noted for windows
centred between 1989 and 1991. For PCs of the 850 hPa circulation field during January, the skill of the
MLP ANN models was consistently higher than that of the linear models. Centred on the mid to late 1970s,
ensemble MLP ANNs showed positive skill above the 0.10 significance level for five consecutive sliding
window periods. Skill during the 1980s and 1990s declined to near zero. Positive skill was, however, evident
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Figure 5. Sliding split-sample validation results for November SLP PCs, November 850 hPa geopotential height PCs, January 850 hPa
geopotential height PCs, and May 200 hPa geopotential height PCs
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in results for SLP PCs over this latter period of record, nearing the 0.10 significance level from 1982 onward.
Ensemble MLP ANNs using November PCs of SLP and 850 hPa geopotential height fields as predictors
exhibited positive skill levels over the entire period of record. For SLP predictors, models showed positive
skill at the 0.05 significance level since the early 1980s, with a dip below the 0.10 significance level during
the mid 1990s. Prior to 1981, skill was positive, but was not statistically significant. For 850 hPa geopotential
height predictors, statistically significant skill levels were noted during the early 1980s. For both atmospheric
levels, MLR models tended to perform less well than the corresponding MLP ANN models.

4.2. Statistical circulation–AISMR relationships

Statistically significant relationships between pre-monsoon circulation PCs and AISMR were present during
the 1958–98 study period. In this section, the nature of these relationships are examined using traditional
diagnostic plots and the graphical sensitivity plots described above. Comparisons are made for circulation
fields listed in Table II, starting with the 200 hPa level in May. For completeness, relationships between
each of the four retained PCs and AISMR are illustrated for this level and lead-time. However, for January
and November the discussion focuses on PCs exhibiting the strongest relationships with AISMR. Unless
noted, relationships between other PCs and AISMR were not significant during these months. Likewise, large
differences between the linear and nonlinear models were not evident for other PCs at these two lead-times.

4.2.1. May. Rotated PC loadings for the 200 hPa geopotential height field in May are given in Figure 6.
Contour values show the magnitude of linear correlations between PC scores and the standardized anomaly
series at each grid point. Scatter plots between PC scores and AISMR, as well as correlation coefficients
between the circulation PCs and AISMR, are also given, as are best-fit linear regression and locally weighted
linear regression lines (Cleveland and Loader, 1996). Scores of PC3 and PC4 in May were strongly and
significantly correlated (r = 0.45, p = 0.003 and r = 0.47, p = 0.002 respectively) with summer monsoon
rainfall. Correlations between AISMR and PC1 and PC2 were not statistically significant. Best-fit linear and
locally weighted regression lines for May 200 hPa PCs did not suggest the presence of nonlinear relationships
between AISMR and these components, a finding consistent with model prediction results presented in
Table II.

The rotated PC loadings and scatter plots shown in Figure 6 suggest that the two most important pre-
monsoon circulation controls during the study period were (1) the magnitude and sign of 200 hPa geopotential
height anomalies over Pakistan (PC3), and (2) the magnitude and sign of the 200 hPa geopotential height
anomalies across west-central India (PC4). May months with positive (negative) height anomalies centred
over Pakistan were generally associated with positive (negative) AISMR anomalies. May months with
positive (negative) height anomalies over west-central India were associated with positive (negative) AISMR
anomalies.

For comparison with loading plots and PC–AISMR scatter plots, the sensitivity analysis was applied to
MLR and MLP ANN models for AISMR. Effects plots for PC predictors are given in Figure 7, with results
from the MLP ANNs plotted next to those from the corresponding MLR models. In these plots, the central
dark-coloured lines represent median values of the effects and partial derivatives over the 200 resampling
trials; the peripheral light-coloured lines represent the upper and lower quartile values. Because the total
number of PC predictors was relatively small, quantitative measures of variable importance and interaction
strength were not calculated. To facilitate visual comparison, the ordinate of each plot was scaled to the same
range for all levels and lead-times. For the May 200 hPa predictors, sensitivity effects plots for the linear
and nonlinear models each showed the same basic trends and magnitudes of variable effects. Consistent with
the PC loadings and scatter plots, PC1, PC3, and PC4 of the May 200 hPa geopotential height field showed
positive linear trends, with PC2 exhibiting a negative linear trend. There was little evidence for interactions
between input variables. Effects were strongest for PC3 and PC4, stronger than for any other PC predictor,
agreeing with results of the linear correlation analysis. Median and upper and lower quartiles of effects and
partial derivatives were very consistent, showing little variability across the 200 split-sample validation trials.

To illustrate the geographic distribution of model sensitivity better, effects plots were constructed using the
grid-point perturbation technique described above. Spatial effects plots for the MLP ANN model are given in
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Figure 6. PC loadings for May 200 hPa geopotential height data (top). Scatter plot showing the relationship between May 200 hPa
geopotential height PC scores and AISMR (bottom). The solid line shows the best-fit linear regression line. The dashed line shows the

locally weighted linear regression curve

Figure 8. Strongest effects were concentrated in the northern and west-central portions of the study domain.
The weak negative correlation between PC2 and AISMR, evident in Figure 6, is seen in the area of negative
effects centred over the northeastern corner of the region. As expected from Figure 7, relationships were
additive and linear at this level and lead-time.

4.2.2. January and November. Loadings for PC2 of the 850 hPa geopotential height anomaly field in
January are given in Figure 9, along with scatter plots between scores of PC2 and AISMR. The correlation
between PC2 and AISMR was relatively low (r = −0.28, p = 0.08). The highest PC loadings were present
over the northern portion of the domain, decreasing southward toward peninsular India. As the results
indicated significant differences between the skill of MLR and MLP ANN models, the true strength of
the circulation–rainfall relationship at this level and lead-time may have been underestimated by the linear
correlation. However, the scatter plot and best-fit lines between PC scores and AISMR did not seem to
indicate the presence of a simple nonlinear relationship between PC2 and AISMR.
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Figure 6. (Continued)

Effects plots for PC2 of the January 850 hPa field are given in the top panel of Figure 10. Unlike the results
for the May predictors, distinct differences between the MLR and MLP ANN models were present at this level
and lead-time. In the MLR model, a large negative effect was noted for PC2. In the MLP ANN model, the
relationship between PC2 and AISMR was nonlinear. Perturbing negative scores of PC2 had almost no effect
on the model, whereas perturbing positive scores resulted in a significant negative trend in model output.
Line-segment slopes suggest that the local sensitivity of the model was greatest when positive values of PC2
were low to moderate (0.5–1 standard deviation unit) and that local sensitivity decreased with higher values
of PC2 (>1 standard deviation unit). The nonlinearity in Figure 10 was verified following stratification of the
PC scores and recalculation of the correlation coefficients. When scores were greater than or equal to zero,
r = −0.63 (p = 0.001, N = 24); when scores were less than zero, r = −0.19 (p = 0.47, N = 17).

The presence of an interaction between PC1 and PC2 was also suggested in the effects plots for the MLP
ANN model. Stratified effects plots for these two variables are shown in Figure 11. Unlike previous plots,
which showed the effects for observed data points, line segments in this case were plotted at 200 random
points spanning the input space. This allowed sparsely populated areas of the input space to be visualized.
A multiplicative relationship was present between PC1 and PC2. Negative trends in effects of PC2 were
strongest when values of PC1 were high, and weaker when values of PC1 were low. Conversely, effects of

Copyright  2002 Environment Canada. Published by John Wiley & Sons, Ltd. Int. J. Climatol. 22: 1687–1708 (2002)



STATISTICAL CLIMATE MODEL SENSITIVITY ANALYSIS 1701

-1.40

-0.93

-0.47

0.00

0.47

0.93

1.40
May 200 hPa MLR

-80

-40

0

40

80

120

-1.40

-0.93

-0.47

0.00

0.47

0.93

1.40
May 200 hPa MLP

-120

-80

-40

0

40

80

120

-1.40

-0.93

-0.47

0.00

0.47

0.93

1.40
May 200 hPa MLR

-120

-80

-40

0

40

80

120

-1.40

-0.93

-0.47

0.00

0.47

0.93

1.40
May 200 hPa MLP

-120

-80

-40

0

40

80

120

-1.40

-0.93

-0.47

0.00

0.47

0.93

1.40
May 200 hPa MLR

-120

-80

-40

0

40

80

120

-1.40

-0.93

-0.47

0.00

0.47

0.93

1.40
May 200 hPa MLP

-120

-80

-40

0

40

80

120

-1.40

-0.93

-0.47

0.00

0.47

0.93

1.40
May 200 hPa MLR

-120

-80

-40

0

40

80

120

-120-1.40

-0.93

-0.47

0.00

0.47

0.93

1.40

∆ 
(S

.D
.)

May 200 hPa MLP

-120

-80

-40

0

40

80

120

PC1 (S.D.)PC1 (S.D.)
2.97 -2.14 -0.43 1.27 2.97-2.14 -0.43 1.27

∆ 
(S

.D
.)

∆ 
(m

m
)

-2.57 -0.94 0.69 2.33 -2.57 -0.94 0.69 2.33

PC4 (S.D.) PC4 (S.D.)

PC3 (S.D.) PC3 (S.D.)

-2.22 -0.50 1.22 2.94 -2.22 -0.50 1.22 2.94

PC2 (S.D.) PC2 (S.D.)
-2.17 -0.58 1.02 2.61 -2.17 -0.58 1.02 2.61

∆ 
(S

.D
.)

∆ 
(S

.D
.)

∆ 
(m

m
)

∆ 
(m

m
)

∆ 
(S

.D
.)

∆ 
(m

m
)

∆ 
(S

.D
.)

∆ 
(m

m
)

∆ 
(S

.D
.)

∆ 
(m

m
)

∆ 
(S

.D
.)

∆ 
(m

m
)

∆ 
(m

m
)

Figure 7. Effects plots for May 200 hPa geopotential height PC predictors to MLP ANN and MLR models
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Figure 8. Effects plots for May 200 hPa grid-point predictors in the MLP ANN models. The top left plot corresponds to the grid point
centred on 34 °N and 66 °E. The bottom right plot corresponds to the grid point centred on 9 °N and 91 °E. The vertical scale on each

plot ranges from −60 to +60 mm or −0.7 to +0.7 standard deviation units

PC1 were positive when values of PC2 were lowest, and near zero or negative when values of PC2 were
moderate to high.

Relationships between AISMR and 850 hPa geopotential height and SLP anomalies during November are
shown in the bottom two panels of Figure 9. For both fields, significant relationships were observed between
PC3 and AISMR (r = −0.40, p = 0.01 for 850 hPa geopotential height and r = −0.46, p = 0.003 for SLP).
Loadings were similar for each field, exhibiting maximum correlations over the Arabian Sea in the southwest
portion of the domain. For 850 hPa geopotential heights in January, the skill of MLP ANNs using November
circulation PCs as predictors exceeded the skill of the corresponding linear models. Though not statistically
significant, differences were notable. Again, inspection of the scatter plots and best-fit lines did not suggest
the presence of simple forms of nonlinearity.
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Figure 10. Effects plots for January 850 hPa geopotential height, November 850 hPa geopotential height, and November SLP PC
predictors to MLP ANN and MLR models

Effects plots for PCs of 850 hPa geopotential height and SLP fields in November shared the same basic
features (Figure 10). This was expected, as the PCs were very similar for these fields (Figure 9). For both
SLP and 850 hPa geopotential heights, PC3 had a strong negative effect on model output, almost equal in
range to effects observed for PC3 and PC4 of May 200 hPa geopotential heights. Differences in effects of
the linear and MLP ANN models were evident for PC3. Trends in effects for both MLR and MLP ANN
models were negative, but slopes of effects for the MLP ANN model decreased with absolute magnitude
of PC3. This sigmoidal nonlinearity was present in results for both circulation fields. Performance statistics
for MLP ANN models using November 850 hPa geopotential height and SLP PCs as predictors were better
than corresponding linear models (Table II), although significant differences were not identified. The slight
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Figure 11. Stratified ANN MLP effects plots for PC1 and PC2 of the January 850 hPa geopotential height field. Colours in each plot
correspond to ranges in scores of the other PC: black, ≤−1; red, >−1 and ≤0; green, >0 and ≤+1; blue, >+1

nonlinearity in the relationship between the PC3 and AISMR might explain the small difference in skill
present between the model types.

5. DISCUSSION AND CONCLUSIONS

The graphical sensitivity analysis described in the current study provides a simple and effective method for
investigating input–output mappings of statistical models. Although applied to ensemble MLP ANNs in this
study, the method can be used with any statistical modelling technique. Unlike traditional analyses, which
concentrate either on average sensitivities (Tangang et al., 1998) or local sensitivities (Hewitson and Crane,
1994), the graphical method is based on both types of information. By taking this approach, quantitative and
qualitative indicators of variable importance, interaction strength, and nonlinearity can be used to diagnose
input–output relationships. In addition, because the method acts on inputs and outputs, without reference to
individual model parameters, it can easily be applied to combinations of models, such as ensemble MLP
ANNs. To illustrate, the procedure was applied to a seasonal climate forecasting problem. Pre-monsoon PCs
of geopotential height and SLP fields over the South Asian subcontinent were used as predictors for AISMR
during the 1958–98 period. Predictive skill and stationarity of ensemble MLP ANNs and MLR models were
assessed using a split-sample resampling procedure. The graphical sensitivity analysis was then used to gain
insight into the form of the modelled relationships.

As found in the study by Cannon and McKendry (1999), pre-monsoon PCs of the 200 hPa geopotential
height field in May formed a compact, interpretable, and significant set of predictors for AISMR (median
r = 0.67, p < 0.005). Differences in performance between the MLP ANN and MLR models were small and
not statistically significant. Results from the graphical sensitivity analysis suggest linear circulation–rainfall
relationships at this lead-time. This is consistent with prior research. In an observational and GCM study,
Yang et al. (1996) formed composites of spring geopotential height, wind, and temperature anomalies at the
200 hPa level during strong and weak Indian monsoon years. They found evidence of precursor relationships
similar to those shown here and consistent with the upper-level circulation features identified in other studies
(Verma and Kamte, 1980; Parthasarathy et al., 1991; Cannon and McKendry, 1999). Strong monsoon years
were associated with positive 200 hPa height anomalies over the entire Indian region, whereas weak monsoon
years were associated with negative anomalies. Easterly wind anomalies in spring were associated with strong
monsoon years, whereas enhanced upper-level westerlies were associated with weak monsoon years. Prior to
strong monsoon years an anomalous upper-level anticyclonic circulation was present over the Tibetan plateau,
whereas an anomalous cyclonic circulation existed before weak monsoon years. These monsoon precursors
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appear to be related to the nature of the winter–summer transition in upper-level circulation regimes from
one dominated by the subtropical westerly jet stream to one dominated by the tropical easterly jet stream.

At longer lead-times, MLP ANNs tended to perform better than MLR models, although differences were
only significant for January 850 hPa PCs (median r = 0.4, p = 0.10; median difference r = 0.25, p = 0.09).
A sliding split-sample model validation for this predictor field showed little indication of a persistent
relationship over the 1958–98 study period. However, the sensitivity analysis did show that the relationship
between January 850 hPa PCs and AISMR, was strong when values of the second PC were positive, but
was near zero when values of the second PC were negative. Interactions between PC1 and PC2 were also
present, contributing to the increased skill of the MLP ANN model. A physical mechanism linking 850 hPa
geopotential height anomalies in January with AISMR has not been suggested in the monsoon forecasting
literature. With the strongest correlations found over the northern portion of the domain, it is possible that
the 850 hPa response is related to snow cover, a boundary condition thought to be relevant to subsequent
development of the summer monsoon circulation (Dey and Kumar, 1983). Through recent observational
and modelling studies have linked regional snow cover and snow depths at various points in Eurasia with
AISMR (Parthasarathy and Yang, 1995; Bamzai and Shukla, 1999; Kripalani and Kulkarni, 1999), Bamzai
and Shukla (1999) found no significant relationship between Himalayan snow cover and summer monsoon
rainfall. Interestingly, Sankar-Rao et al. (1996) found that the relationships between winter snow in Eurasia
and AISMR were strongest when excluding El Niño years from the analysis. Stratifying the current sample
based on El Niño–southern oscillation (ENSO) conditions yields a correlation with AISMR of r = 0.58
(p = 0.04, N = 13) during El Niño years and r = −0.14 (p = 0.48, N = 28) during La Niña and neutral
years. This suggests that the relationship between PC2 of the January 850 hPa geopotential height field and
AISMR may have been modulated by ENSO, with the strongest coupling tending to occur during El Niño
years. Reasons for the weak relationship seen in the current study when anomalously low heights were present
over the northern portion of the domain, and for the strong relationship when heights were above average,
still need to be determined. Efforts to investigate the correspondence and linkages between ENSO conditions,
January 850 hPa circulation conditions, and AISMR are ongoing.

Examination of other months prior to monsoon onset shows that November SLP (median r = 0.5, p = 0.05)
and 850 hPa PCs (median r = 0.37, p = 0.06) were significantly correlated with AISMR. A slight sigmoidal
nonlinearity in relationships between AISMR and the third PC of the two fields was evident, possibly
accounting for the small differences in skill between the linear and nonlinear models. Given that rotated
PC loadings for SLP and 850 hPa geopotential heights were similar, the nonlinear circulation–AISMR
relationship was probably a coherent near-surface precursor signal of monsoon strength. Few significant
regional circulation–AISMR relationships have previously been identified for lead-times 5 months prior to
the onset of the monsoon. It is possible that correlations between AISMR and November surface circulation
over the Arabian Sea are related to anomalous SSTs in this region. In a recent study by Clark et al. (2000),
significant positive correlations between AISMR and SSTs in the Arabian Sea and central Indian Ocean were
noted in the winter and autumn preceding the summer monsoon. Correlations of the opposite sign would
be expected for SLP and geopotential height fields. Preliminary analyses suggest a weak, but statistically
significant, negative relationship between PC3 of the November SLP field and November SST anomalies at
the location defined by Clark et al. (2000) for their Arabian Sea index (r = −0.38, p = 0.016, N = 40).

The combined use of PCA, ensemble MLP ANN models, and the graphical sensitivity analysis procedure
allowed statistical relationships between regional circulation conditions over South Asia and Indian summer
monsoon rainfall to be investigated in detail. In general, wider application of graphical sensitivity analysis
is recommended, especially given the increasing use of different nonlinear models in climatology and the
simplicity of the procedure. Following the results from this study, further work is needed to identify physical
mechanisms responsible for the statistical relationships identified by the sensitivity analysis. Comparisons
between PCs exhibiting significant correlations with AISMR and indices identified in other studies might
be a simple means of starting this process. A dynamical analysis, similar to the one performed by Yang
et al. (1996), is another possible approach. As previous work has shown that predictors for AISMR can be
highly correlated, an integrated assessment of circulation field predictors in an operational forecast setting
is also necessary. Combining circulation predictors from different lead-times with ENSO, cross-equatorial,
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global/hemispheric, and other regional predictors would indicate whether or not the PCs identified in the
current study are capable of generating real increases in predictive skill.
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