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Abstract

This study compared 12 variations of regression-based and weighted-average approaches for interpolating daily maximum and

minimum temperatures over British Columbia, Canada, a domain with complex topography and highly variable density and

elevational distribution of climate stations. The approaches include simple extrapolation with elevation from the nearest climate

station; nine variations of weighted-average methods employing three approaches to calculate lapse rates, two methods for station

selection and three approaches for weight calculation; multiple linear regression using station coordinates as predictor variables; a

method combining multiple regression and weighted averaging. Cross-validation for years with different densities and elevational

distribution of climate stations showed varied mean prediction errors, which also depended on elevation and month. Methods that

compute local lapse rates from the control points performed better for years for which there were a greater number of higher-

elevation stations, which allowed for better estimation of lapse rates. The methods that involved specified lapse rates all performed

similarly, indicating that the method for selecting control stations and for calculating weights have less effect on predictive accuracy

than the method for accounting for elevation.

# 2006 Elsevier B.V. All rights reserved.

Keywords: Air temperature; Spatial interpolation; Lapse rates; Kriging; Trend surface

www.elsevier.com/locate/agrformet

Agricultural and Forest Meteorology 139 (2006) 224–236
1. Introduction

Air temperature is one of the most important input

variables in environmental models, in relation to both

biological processes, such as phenological development

of forest pests (e.g., Régnière, 1996; Logan and Powell,

2001) and physical processes, such as snow melt (e.g.,

Hock, 2003). The continuing development and applica-

tion of spatially explicit environmental models has
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generated a need for methods for predicting spatial

fields of weather variables, including air temperature,

from irregularly spaced station data. While many

studies have focused on the interpolation of climate

normals (e.g., Holdaway, 1996; Nalder and Wein, 1998;

Daly et al., 2002; Hamann and Wang, 2005), several

have tested methods for spatial interpolation of daily

maximum and minimum temperature (e.g., Dodson and

Marks, 1997; Thornton et al., 1997; Bolstad et al., 1998;

Couralt and Monestiez, 1999; Shen et al., 2001; Xia

et al., 2001; Jarvis and Stuart, 2001; Hasenauer et al.,

2003; Garen and Marks, 2005). In mountainous regions,

the spatial variability of climate variables is modified by
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physiographic features, the importance of which depends

on the scale of interest (Daly, 2006): at larger scales,

elevation is the most important factor; for medium to

smaller scales additional terrain-related factors become

relevant. For smaller regional scales with known physical

influences, such as air flow barriers, water or ice bodies

and urban areas, progress has also been made with the

modelling at higher spatial and temporal resolutions

through the inclusion of additional relevant guiding

variables, such as incident solar radiation (Régnière,

1996; Choi et al., 2003; Chung and Yun, 2004). A general

problem in mountainous regions is the lack of high-

elevation observations to derive relations with elevation.

Regional studies have supplemented high-elevation

observations with data from other sources, such as

upper-level soundings (Garen and Marks, 2005); at larger

scales but high temporal resolution, first applications

have started to test the inclusion of data from of meso-

scale weather models (e.g., Liston and Elder, 2006). In

this paper, we concentrate on the comparison of methods

applicable over large, data sparse mountainous regions.

Schemes for spatial interpolation of air temperature

vary in relation to three aspects: (1) the approach to

adjusting for elevation, (2) the model used for

characterising the spatial variation of air temperature

and (3) the method of choosing prediction points. The

simplest approach is to choose the nearest station and

adjust for elevation according to some assumed lapse

rate. Where more than one station is used in the

prediction, a model is required to determine how to

interpolate from them. Some models fit a surface to the

data, including multiple regressions that use location

variables as predictors (e.g., Bolstad et al., 1998; Xia

et al., 2001; Jarvis and Stuart, 2001) and thin plate

splines (Xia et al., 2001). Others can be framed as

weighted-average approaches, most of which apply an

equation similar to the following:

T p ¼
Pn

i¼1 wi½Ti þ f ðh p � hiÞ�Pn
i¼1 wi

(1)

where Tp is the predicted temperature, Ti the observed

temperature at control point i and wi is the weight

associated with control point i, and f(hp – hi) is a

function (usually linear) of the difference in elevation

(h) between the prediction point and the control point.

Interpolation weights have been estimated using a

range of approaches, including inverse-distance mea-

sures (Dodson and Marks, 1997; Shen et al., 2001), a

truncated Gaussian filter (Thornton et al., 1997) and

geostatistical methods based on kriging (Bolstad et al.,

1998; Couralt and Monestiez, 1999; Garen and Marks,
2005). Jarvis and Stuart (2001) fitted a multiple

regression model to account for effects of topographic

and land-cover influences, then interpolated the resi-

duals. Control points are typically chosen to lie within

a defined cut-off distance, which has been specified a

priori (e.g., Shen et al., 2001) or by using an iterative

scheme based on station density (Thornton et al., 1997).

A further variation for choosing control points is whether

or not the chosen points are stratified by angular position

relative to the prediction point (e.g., by taking the six

closest points in each of four quadrants).

Adjustments for elevation have been made using

specified lapse rates, typically a value, such as 6.0 or

6.5 8C/km (e.g., Running et al., 1987; Dodson and

Marks, 1997), sometimes monthly varying values (e.g.,

Liston and Elder, 2006). To address the significant

variations in lapse rates under different meteorological

conditions and in different seasons, Couralt and

Monestiez (1999) estimated daily lapse rates by

regression for a region in southern France, then sorted

these by synoptic-scale circulation patterns. However,

they found that sorting lapse rates by synoptic type had

only a marginal effect on prediction accuracy. Alter-

natively, lapse rates can be estimated from the observed

station data for each time interval, for example, by using

simple linear regression with elevation (Garen and

Marks, 2005). Multiple regression and thin-plate spline

models can explicitly include elevation effects within

the fitted model (Bolstad et al., 1998; Xia et al., 2001).

Thornton et al. (1997) used a weighted-linear regression

approach to estimate lapse rates based on temperature

differences between pairs of stations, with the weights

based on distances between the prediction point and

control points. Some studies adjusted temperatures to

sea level using a specified lapse rate prior to the

interpolation, then adjusted the predicted temperature to

the elevation of the prediction point (Dodson and

Marks, 1997; Couralt and Monestiez, 1999). Equiva-

lently, Thornton et al. (1997) adjusted the observed data

to the elevation of the prediction point prior to

interpolation. Garen and Marks (2005) applied kriging

to the residuals from a linear regression with elevation.

While previous studies have made significant

progress in developing and testing methods for spatial

interpolation of daily air temperature, there has been

relatively limited attention to comparing them. Dodson

and Marks (1997) and Couralt and Monestiez (1999)

compared different methods for elevation adjustment,

but did not vary the interpolation approach. Shen et al.

(2001) compared different equations for calculating

interpolation weights, but worked in an area of

relatively low relief such that elevation adjustments
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were not applied. Bolstad et al. (1998) compared three

fundamentally different approaches (regional lapse,

regional regression and kriging), while Xia et al. (2001)

compared six methods, ranging from a simple nearest-

neighbour with elevation adjustment to methods based

on thin plate splines and kriging. One of the most

comprehensive intercomparisons was reported by Jarvis

and Stuart (2001), who modelled daily temperatures

over England and Wales using trend surface analysis,

thin-plate splines and interpolation based on both

inverse-distance weighting and kriging.

In the context of weighted-average approaches, no

studies appear to have compared approaches that

combine different variations of the method for choosing

prediction points, the method for computing weights

and the method of adjusting for elevation. Furthermore,

many studies have been conducted in regions with a

relatively uniform station density and a reasonable

number of high-elevation stations (e.g., Dodson and

Marks, 1997; Thornton et al., 1997; Couralt and

Monestiez, 1999; Hasenauer et al., 2003; Garen and

Marks, 2005). However, many extensive mountainous

regions have sparse station coverage, especially at

higher elevations, and the ability to estimate daily

weather data over such regions is required for the

application of environmental simulation models, parti-

cularly in relation to pest outbreaks, such as the

mountain pine beetle infestation that is currently

spreading throughout western Canada.

The objective of this study is to test algorithms for

spatial interpolation of daily maximum and minimum

air temperature in British Columbia, Canada, an

extensive region with complex topography and highly

varying densities and elevational distribution of climate

stations. Reflecting the vast and in part remote area,

geostatistical interpolation algorithms based on linear

regression and weighted averaging using elevation as

the only guiding variable were used. In particular,

attention is paid to the effects of station density and
Table 1

Sources of surface climate data

Source Data set No. of stat

Environment Canada Canadian Climate CD West 1601 (BC)

21 (YT, NW

230 (AB)

Ministry of Forests

Protection Program

Fire Weather Station Network 283 (310)

Ministry of Water, Land

and Air Protection

Archived Automatic Snow

Pillow (ASP)

68

BC, British Columbia; YT, Yukon Territory; NWT, Northwest Territory; A
elevational distribution on the relative accuracy of the

12 methods.

2. Data sources

Station observations of daily maximum and mini-

mum temperatures (Tmax and Tmin) were obtained from

three different sources: Environment Canada’s climate

network (EC), The British Columbia Ministry of

Forests Fire Weather Station Network (FW) and the

British Columbia Ministry of Water, Land and Air

Protection’s Snow Pillow sites (SP) (Table 1). Stations

are distributed unevenly across BC, with lower density

towards the north (Fig. 1a). Many series are short: only

43 Environment Canada stations have a continuous

record of temperature and precipitation data (with less

than 5 years missing) covering the period from 1950 to

2003. The Fire Weather Network and the Snow Pillow

stations were established relatively recently. At the

same time, the EC network was reduced. This

reduction, together with the gaps and seasonally limited

observations of the two smaller datasets, results in an

effective decrease of climate observations in recent

years, despite the increasing number of stations

(Fig. 1b). A further problem is that most stations are

located at low elevations (Fig. 1c). The few high-

elevation stations are mainly the Snow Pillow stations.

Most Fire Weather Network stations and some EC

stations only operate seasonally.

3. Prediction algorithms

Twelve variations of models based on linear

regression and weighted-average interpolation are

applied. They include simple extrapolation with

elevation from the nearest climate station (NN), nine

variations of weighted-average approaches (employing

three approaches to calculate lapse rates, three

approaches for weight calculation and two methods
ions Time period Comments

Variable (longest since 1880)

T)

Since 1990s Summer data only

(winter not maintained,

no T below �20 8C)

Since late 1980s or early 1990s Station elevations are

1700 � 1000 m

B, Alberta.
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Fig. 1. Location of climate stations (a) and distribution of records with time (b) and elevation (c).
for station selection), linear regression (MLR) using

station coordinates as predictor variables and a method

combining multiple regression and weighted averaging.

Table 2 gives an overview of the 12 models. The
Table 2

Summary of model characteristics

Model

number

Model

abbreviation

Model Lapse

1 NN n/a Specifi

2 LWR-G Weighted average Comp

regres

3 CLWR-G Weighted average Comb

regres

4 SLR-G Weighted average Specifi

5 SLR-K Weighted average Specifi

6 SLR-KQ Weighted average Specifi

7 SLR-ID Weighted average Specifi

8 SLR-IDQ Weighted average Specifi

9 SLR-IDS Weighted average Specifi

10 SLR-IDSQ Weighted average Specifi

11 MLR Multiple linear regression Comp

12 GIDS Multiple regression + weighted average Comp
acronyms for the nine weighted-average approaches are

derived from the algorithms with SL for specified lapse

rate and LWR for lapse rate by weighted regression, ID

for inverse distance weighting (IDS for squared
rate Weight calculation Station search

ed n/a Nearest neighbour

uted by weighted

sion

Gaussian Filter Density-based

ination of weighted

sion and specified

Gaussian Filter Density-based

ed Gaussian filter Density-based

ed Ordinary kriging Density-based

ed Ordinary kriging Quadrant

ed Inverse distance Density-based

ed Inverse distance Quadrant

ed Inverse distance squared Density-based

ed Inverse distance squared Quadrant

uted by regression n/a Density-based

uted by regression Inverse distance squared Density-based
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weights), K for kriging, G for Gaussian-filter-based

weighting. Note that, although we refer to lapse rates

(which are positive for temperatures decreasing with

elevation), we represent the temperature adjustments

using temperature gradients (negative for temperatures

decreasing with elevation) in the descriptions below.

3.1. Model 1: nearest-neighbour with elevation

adjustment

In the nearest neighbour interpolation method (NN),

the station closest to the prediction point is used to

specify T0, the nearest known temperature (8C). The

temperature at the prediction point, Tp (8C), is estimated

as:

T p ¼ T0 þ lðh p � h0Þ (2)

where l is a specified temperature gradient (8C m�1), hp

the elevation of the prediction point (m) and h0 is the

elevation of the predictor station (m).

3.2. Models 2–10: weighted-average approaches

These models involve different combinations of

methods for: (a) adjusting for elevation, (b) calculating

weights and (c) choosing prediction points. The

combinations are summarized in Table 2.

Model 2 is based on descriptions of the DAYMET

algorithms in Thornton et al. (1997) and Hasenauer et al.

(2003). Because our implementation is likely not

identical to the DAYMET model, we refer to it as the

‘‘lapse rate by weighted regression with Gaussian filter’’

(LWR-G) approach. The LWR-G method uses an

iterative station density algorithm to determine a local

set of predictor stations for each given prediction point,

each with a weight that decreases with distance from the

prediction point. Temperature gradients are calculated by

summing the weighted contribution of the temperature

gradient computed from every possible predictor station

pair. The interpolation weights are assigned to all stations

in the database by using a truncated Gaussian filter. From

Thornton et al. (1997), this is given by:

wðrÞ ¼

0; r>R p

exp � r

R p

� �2

a

" #
� e�a; r � R p

8>><
>>: (3)

where wðrÞ is the weight associated with the radial

distance r from the prediction point p, Rp the truncation

distance from p and a is a dimensionless shape para-

meter. The truncation distance Rp is allowed to vary so
that it may be reduced in areas of high station density

and increased in areas of low station density. This is

done by specifying a desired number of observations N,

and using an iterative scheme to vary Rp such that the

actual number of observations used in the interpolation

converges towards this value of N. Following the trun-

cation distance adjustment, a final set of interpolation

weights is calculated using the new value of Rp; these

weights are then used in the temperature interpolations

as described below.

In the LWR-G model, Tp is interpolated using

information from all stations with non-zero interpolation

weights. A weighted least-squares regression is used to

determine the local temperature gradient. Each unique

pair of stations is assigned a regression weight equal to

the product of the interpolation weights of the two

stations in the pair. The regression model takes the form:

ðT1 � T2Þ ¼ b0 þ b1ðh1 � h2Þ þ e (4)

where subscripts 1 and 2 refer to the two stations in the

unique pair, b0 and b1 are coefficients to be estimated by

weighted regression and e is the prediction error. Once

the coefficients are calculated, Tp is computed as:

T p ¼
Pn

i¼1 wi½Ti þ b0 þ b1ðh p � hiÞ�Pn
i¼1 wi

(5)

where b0 and b1 are the estimated regression coefficients

and hp is the elevation of the prediction point and the

subscript i refers to the predictor stations.

Model 3 (CLWR-G) is a variation of the LWR-G

model, motivated by the fact that in regions of

mountainous terrain, there will often be prediction points

that are either above or below the elevation range of the

local weather station network. In order to prevent

extrapolations from predicting unrealistic temperatures

at high (or low) elevations, a third method, the constrained

LWR option, computes the temperature gradient using a

weighted average of the gradient computed by the LWR

approach (b1D) and a specified gradient (b1S) for points

that lie outside the elevation range of the control

points. This option computes the gradient as

b1 ¼ wDb1D þ wSb1S (6)

where the weights are computed as

wD ¼
ðhmax � hminÞ=ðh p � hminÞ; h p > hmax

ðhmax � hminÞ=ðhmax � h pÞ; h p < hmin

(
(7)

and

wS ¼ 1� wD (8)
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where hmax and hmin are the maximum and minimum

elevations of the predictor stations and hp is the eleva-

tion of the prediction point.

Model 4 (SLR-G) incorporates the same method for

selecting predictor points as used in models 2 and 3.

However, observed temperatures are first adjusted to sea

level using the specified monthly lapse rates prior to

application of Eq. (1), with the weights computed using

Eq. (3). The predicted temperature is then adjusted to

the elevation of the prediction point using the specified

lapse rate.

In models 5 and 6 (SLR-K and SLR-KQ),

temperatures are first adjusted to sea level using

specified monthly lapse rates prior to application of

Eq. (1). The weights are computed using ordinary

kriging. Following Garen and Marks (2005), a linear

variogram is used to avoid the problems in determining

the optimal semivariogram model for each prediction

point and each day. In a small number of cases, the

kriging solution yields negative weights; these were

dealt with using the approach described by Deutsch

(1996). In model 5 (SLR-K), control points are selected

using the density-based approach used in models 2 and

3. In model 6 (SLR-KQ), only up to six of the closest

points within each of four quadrants surrounding the

prediction point are used, subject to the constraint that

they lie within a specified truncation distance. If no

neighbouring points fell within the truncation distance,

only the nearest neighbour was used, following Shen

et al. (2001).

Models 7 and 8 (SLR-ID and SLR-IDQ) are similar

to models 5 and 6, except that the weights are computed

using the following equation, with c = 1:

wi ¼
ð1=diÞcPn
i¼1 ð1=diÞc

(9)

where di is the distance between the prediction point and

control point i and c is an exponent. Models 9 and 10

(SLR-IDS and SLR-IDSQ) are identical to models 7

and 8, except that the weights are computed using

inverse-distance squared, that is, with c = 2 in

Eq. (8).

3.3. Model 11: multiple linear regression approach

Model 11 (MLR) involves the fitting of a multiple

linear regression using longitude (Long), latitude (Lat)

and elevation (h) as predictor variables:

T̂ ¼ b0 þ b1Longþ b2Latþ b3h (10)
where T̂ is the fitted temperature, b0 the intercept and

b1–b3 are slope coefficients. Stations are selected using

the density-based algorithm.

3.4. Model 12: gradient-plus-inverse-distance-

squared (GIDS)

The GIDS model combines the multiple regression

and inverse-distance-squared approaches (Nalder and

Wein, 1998). It first involves fitting the multiple

regression model Eq. (10), then using the coefficients

b1–b3 to adjust the temperature at each control station to

the location of the prediction point. These adjusted

temperatures are then averaged using inverse-distance-

squared weights to calculate the predicted temperature.

The model can be expressed as follows:

T p ¼
�Xn

i¼1

�
1

di

�2��1

�
Xn

i¼1

�
½Ti þ b1ðLong p � LongiÞ

þ b2ðLat p � LatiÞ þ b3ðh p � hiÞ�
�

1

di

�2�
(11)

where the subscripts p and i refer to the prediction and

control points, respectively.

4. Model application

4.1. Estimation of specified lapse rates

Specified lapse rates were estimated on a monthly

basis by identifying pairs of low-elevation/high-eleva-

tion stations that were reasonably close (within a few

tens of km) and computing vertical temperature

gradients from them. The model lapse rates were then

chosen to follow the pattern shared by the majority of

the stations. Fig. 2 shows the average monthly lapse

rates and their standard deviations for Tmax and Tmin for

a selection of six station pairs located on the west coast,

in the Coast Mountains, on the Interior Plateau and in

the Columbia Mountains in eastern BC. The figure also

shows the representative monthly lapse rates chosen for

use in the interpolation models. Throughout the year,

gradients for Tmax (0.2 to �9 8C/1000 m) vary more

than those for Tmin (�0.9 to �6 8C/1000 m). Gradients

for Tmax are larger and more stable in summer than in

winter. The Tmax gradient for January for one of the

pairs shown is positive, indicating frequent inversions or

cold air ponding at the climate station in Quesnel. The

large standard deviation for this month and station
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Fig. 2. Mean monthly lapse rates of (a) Tmax and (b) Tmin and their standard deviations (c and d) at station pairs across BC.
provides further evidence of this occasional phenom-

enon. The seasonal distribution of Tmin lapse rates

shows a more complex pattern. Gradients increase in

absolute value in spring, become smaller in summer,

particularly in September, then increase again during

October and November before reaching their smallest

gradients from December to February. The coastal

station pair (Vancouver-Grouse Mountain) shows

generally smaller annual variations than the other

station pairs and has a different seasonal pattern. The

difference between the Tmax and Tmin lapse rates for

Vancouver-Grouse Mountain is also small compared to

the other locations. Particularly in summer, however,

day to day variations of lapse rates on the coast are

higher than elsewhere.

4.2. Model parameters

Some of the models have parameters that can be

adjusted. The models that use the density-based station

search require as input the number of iterations, the
initial truncation radius and the desired number of

stations N. The number of iterations generally showed

no significant performance improvement above 3 and

was therefore set to that value. The initial truncation

radius also showed no major influence and was set to

140 km. This radius was also used to set the boundaries

in the Quadrant search station selection.

Models using Gaussian filter weighting require the

input of a shape parameter a. Thornton et al. (1997)

optimized the best combination of the shape parameter

and the number of desired stations by creating a

response surface of the mean absolute error (MAE) of a

cross-validation for a range of shape parameter values

and desired number of stations (Thornton et al., 1997).

Similar to applications of the DAYMET algorithm

(Hasenauer et al., 2003), such a surface for BC also

shows a trough of lowest MAE values from lower

station numbers and lower shape parameters to higher

station numbers and higher shape parameters. The

interpolations for the best overall results were carried

out with a shape parameter of 3.5 and a desired station
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number of 30. This combination resulted in large

differences in the final truncation radii across BC, which

was found to vary from 46 to 862 km for 1965 and 43–

509 km for 2000. The largest radii occurred in areas of

lower station density, particularly in the north of BC.

Choosing a lower desired number of control points

would have resulted in smaller radii and a more uniform

model performance across BC but higher MAE.

4.3. Testing of interpolation algorithms

To assess the model performance we carried out a

cross-validation. For each day, each station was, in turn,

withheld from the set of control points and was

predicted by interpolating from the other stations. The

prediction error was aggregated over all stations and

was expressed as both mean absolute error (MAE) and

root mean squared error (RMSE). For two selected

years with differing data availability, 1965 and 2000,

error statistics for all 12 models were analysed in detail

concerning elevational, seasonal and spatial variations.

Then, year to year (1965–2000) variations in the error

statistics were assessed for five selected models: the

three models using a truncated Gaussian filter weighting

scheme but different lapse rate estimations (LWR-G,

CLWR-G and SLR-G), the multiple linear regression

(MLR) and the gradient-plus-inverse-distance-squared

(GIDS) model.

5. Results

5.1. Validation for 1965 and 2000

Table 3 summarizes the MAE and RMSE for all

models and for BC stations only. Stations in Alberta
Table 3

Mean absolute error (8C) aggregated for all BC stations for 1965 and 2000

No. Model MAE 2000 MAE 196

Tmax Tmin Tmax

1 NN 1.53 1.93 1.57

2 LWR-G 1.42 1.72 1.59

3 CLWR-G 1.40 1.71 1.57

4 SLR-G 1.35 1.64 1.47

5 SLR-K 1.27 1.63 1.31

6 SLR-KQ 1.28 1.64 1.35

7 SLR-ID 1.34 1.62 1.52

8 SLR-IDQ 1.29 1.60 1.40

9 SLR-IDS 1.29 1.61 1.39

10 SLR-IDSQ 1.28 1.62 1.36

11 MLR 1.34 1.62 1.50

12 GIDS 1.22 1.55 1.31
(AB) and the Yukon (YT) and Northwest Territories

(NWT) were used for the interpolation to reduce edge

effects. Values of MAE range from 1.22 to 1.99 while

RMSE varies from 1.83 to 2.83 depending on the year

and model. All models predicted Tmax more accurately

than Tmin. Validation errors are lower for the year 2000

than for 1965. The overall MAE for the models based on

specified lapse rates are similar with the exception of

the inverse distance (SLR-ID), which especially for

1965 Tmax does not perform as well. Among the models

that calculate lapse rates, GIDS performs best and in the

year 2000 shows the lowest MAEs of all models. The

other models based on calculated lapse rates perform

less well than the models using specified lapse rates.

These differences between the models overall MAE are

larger for the low-density year 1965. The nearest

neighbour model shows the poorest performance.

The validation errors generally increase with

elevation (Fig. 3). The highest MAE are found above

1500 m for 1965, when fewer high-elevation stations

were available. Errors for the LWR-G, MLR and

GIDS models are particularly high for 1965, because

the methods calculate inaccurate temperature gradi-

ents in the absence of high-elevation control points.

Better results are found for the year 2000, due to the

presence of the generally higher-elevation Snow

Pillow and Fire Weather stations. In fact, for the

highest elevation band in the year 2000, the MLR

model performs best among all models, closely

followed by GIDS, LWR-G and the CLWR-G model,

which all have an MAE of 0.2–0.5 8C lower than the

models based on specified lapse rates.

Validation errors also vary seasonally and they vary

similarly for all models (Fig. 4). Temperatures from

December to February are less well predicted than for
5 RMS 2000 RMS 1965

Tmin Tmax Tmin Tmax Tmin

1.99 2.26 2.78 2.37 2.83

1.92 2.06 2.40 2.30 2.69

1.89 1.98 2.37 2.26 2.61

1.76 1.91 2.25 2.10 2.42

1.66 1.85 2.30 1.91 2.29

1.72 1.87 2.33 2.02 2.45

1.77 1.91 2.24 2.22 2.47

1.73 1.86 2.23 2.06 2.45

1.69 1.87 2.27 2.05 2.36

1.72 1.88 2.30 2.04 2.45

1.81 1.93 2.24 2.11 2.52

1.68 1.83 2.19 1.92 2.39
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Fig. 3. Mean absolute error for different elevation bands for: (a) Tmax and (b) Tmin.
other months. The annual variation is stronger in 2000

than in 1965, which indicates that the seasonal

differences may in fact partly be due to the lower

relative number of stations available during winter 2000

than summer 2000. Although 1965 has fewer records

altogether they are all fairly complete, which contrasts

to the data record for 2000, where many stations have
Fig. 4. Mean absolute error by month for the yea
incomplete records as they operated only seasonally

(Fig. 1).

Although the mean absolute errors are not extreme,

individual days can have large errors. The largest

prediction errors occur for the lowest and highest

temperatures, which demonstrates that the models are

unable to predict the full temperature range (Fig. 5). All
r 2000 (left panels) and 1965 (right panels).
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Fig. 5. Median of the residuals (observed–predicted) of daily Tmax and

Tmin for the year 2000, aggregated within 5 8C intervals.

Fig. 6. Mean absolute error at each station for the validation of Tmax in

2000 for (a) the GIDS model and (b) the SLR-K model. Symbols are

scaled to MAE.
models systematically underestimate high and over-

estimate low temperatures.

For all models, large errors occur for individual

stations in the northern part of the province, where

station density is low, and on Vancouver Island and in

the Coast Mountains (Fig. 6). Although it is the model

with the best overall performance, the GIDS model

produced a large MAE of 9.21 8C for one particular

high-elevation station on Vancouver Island (Fig. 6a),

which is surrounded by only low elevation stations.

Here, strong temperature gradients between stations

located directly on the coast and stations located along

an inlet further inland, but only marginally higher in

elevation, resulted in excessive model-calculated lapse

rates. The same large error was found for all models that

calculate lapse rates (MLR, LWR-G). The model with

the constrained lapse rate and the models with specified
lapse rates also generally perform less well in this

region than elsewhere; however, their MAE’s for the

same station were considerably better.

5.2. Temporal variation of cross-validation errors

Cross-validation errors for all years from 1965 to

2000 for five selected models confirm the patterns found

for 1965 and 2000. The GIDS model performs best in all

years, followed by the model using the specified lapse

rate (SLR-G), the multiple linear regression (MLR) and

then the constrained and unconstrained lapse rate

weighted regression models (CLWR-G and LWR-G).

The ranking of the models by their annual error

statistics remains relatively unchanged with time.

However, annual MAEs for each model vary through

time. While the MAE for a particular model can vary by

0.2–0.3 8C from year to year, throughout the study

period overall performance differences between the

models narrow and all models generally improve with
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Fig. 7. Mean station density and annual mean cross-validation errors of five models for all stations above 1500 m.
time. Seasonal differences are also similar in all years,

with high MAE from December to January, in particular

for Tmin, and lower MAE in summer. While the highest

MAE for winter Tmin did not occur in the warmest years,

there is no general statistically significant relation

between seasonal temperature and model performance.

Illustrative, however, are the seasonal results for

highest elevation band >1500 m (Fig. 7). While most

models show a clear improvement with increasing

station density and elevation range within the dataset,

the cross-validation error of the only model based on

specified monthly lapse rates (SLR-G) remains relative

constant through time. Until around 1985, however, this

is the best model for high-elevation temperature

interpolation, with the exception of summer Tmax,

which in most years is better predicted by GIDS or

MLR. After 1985, consistent with the availability of

more high-elevation stations, the other models (which

all calculate lapse rates from surrounding stations)

perform similarly well or even better. With a substantial

drop in MAE of 2–4 8C depending on the model from

the early 1980s to the late 1990s, the improvement in

model performance is greatest for the cross-validation

of Tmin, particularly in winter.

6. Discussion

All of the models performed better in more recent

years due to the greater availability of data, especially
for higher elevations. Differences among model

performance were greatest for the highest elevation

band (>1500 m), almost certainly due to differences in

the ability of the different approaches to account for

vertical temperature gradients. The methods that

compute local lapse rates for each prediction point

(LWR-G, CLWR-G, MLR, GIDS) outperformed the

other methods for the highest stations in recent years.

However, LWR-G, MLR and GIDS, which depend

entirely on the locally calculated lapse rates, performed

substantially worse than the other models in 1965, even

the nearest neighbour approach.

The models employing the Gaussian filter differ

only in the way that lapse rates are calculated. Focusing

on the results for the highest elevation stations

(>1500 m), the model performance for 1965–1985

decreased from SLR-G to CLWR-G to LWR-G,

probably as a result of the lack of higher-elevation

stations, which would introduce greater error into the

calculation of lapse rates. This error would be greatest

for the LWR-G model. The performance difference

narrowed during the last 5–10 years of the record, and

finally in the year 2000 the LWR-G and CLWR-G

models performed similarly or better than the SLR-G

approach, likely due to the increased accuracy in

calculating local, time-varying lapse rates with higher-

elevation data. MLR and GIDS, which use the same

station selection approach but a regression model (with

inverse distance squared weighting in GIDS) show a
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similar pattern hence supporting the strong influence of

high-elevation stations. The regression-based

approaches, particularly GIDS, however, always per-

form better than all other approaches, which calculate

lapse rates. Event in the early years of the study

periodm GIDS outperformed other algorithms for the

interpolation of Tmax in winter.

Of the methods involving specified lapse rates, the

SLR-K, SLR-KQ and the SLR-IDSQ methods provided

the best performance in terms of both lower MAE and

reduced bias. Kriging did not provide a large improve-

ment over inverse-distance weighting, likely because

the assumed linear variogram is inappropriate. Quad-

rant searching slightly improved the performance of the

inverse-distance methods, probably because it results in

a more even distribution of control points and reduces

the potential for bias in the presence of regional trends.

The use of quadrant search with kriging did not perform

better than the density-based algorithm, possibly

because kriging inherently accounts for the arrange-

ment of stations.

Averaged over several years, lapse rates in BC

show a clear seasonal pattern, the relative variability

of which is consistent with seasonal gradients found in

other mountainous regions of the world (Rolland,

2003). The absolute lapse rates, however, vary

regionally and temporally, which presents a source

of error in methods that use a specified lapse rate,

especially for predicting the extreme temperatures. In

particular, winter temperatures can be influenced by

cold air drainage and ponding during cold periods.

These phenomena can invert vertical temperature

profiles and thus complicate the extrapolation of air

temperature to higher elevations from low-elevation

stations. The high variability of daily lapse rates

during winter (Fig. 2c and d) reflects temperature

inversions as well as rapidly changing circulation

patterns during winter in BC. Further research should

build on the work of Jarvis and Stuart (2001) and focus

on methods for temperature interpolation and extra-

polation that can account for differences in topo-

graphic influence under different seasons and synoptic

situations. A challenge will be to develop automated

methods that can be applied over large domains like

BC, where the surface climate response to synoptic-

scale weather systems can exhibit significant spatial

variability particularly during winter (Stahl et al.,

2006a). A further challenge will be to develop

approaches for distinguishing local-scale effects, such

as cold-air ponding at individual stations from

regional-scale air mass controls on vertical tempera-

ture gradients.
7. Conclusions

This study compared twelve methods for interpolat-

ing daily maximum and minimum temperatures over

British Columbia, Canada, a region with complex

topography and highly variable station density and

elevational distribution. The simplest method, which

uses the nearest station with an adjustment for elevation,

generally had the greatest errors. All models performed

better for years with greater station density, particularly

in relation to higher-elevation stations. Prediction errors

also depended on elevation and month. Methods that

compute local lapse rates from the control points

performed significantly more poorly for years for which

there were a smaller number of higher-elevation

stations, which introduced greater error into the

estimation of lapse rates. These methods should

therefore not be applied in the absence of sufficient

high-elevation data. Specified lapse rates, on the other

hand, cannot account for the large variability in daily

lapse rates in winter. The study illustrates that even if

further research makes progress in including effects of

topography and synoptic-scale weather systems on

temperature patterns at different spatial scales, from

local to regional, an appropriate observation network

that includes high-elevation stations is indispensable for

spatial interpolation of climate variables. This is of

particular interest as global warming so far has been

affecting the cold season most strongly, when high-

elevation temperatures can play an important role, for

example, in Mountain Pine Beetle mortality (Stahl

et al., 2006b) and the occurrence of mid-winter rain-on-

snow events.
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