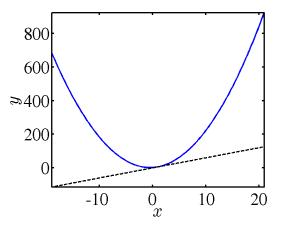
MATH104-106, Polynomial approximations

lda Karimfazli

University of British Columbia BC, Canada

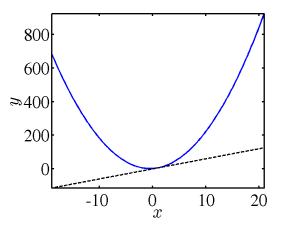
idak@math.ubc.ca

November 2015



$$y = 2x^2 + 2x + 1,$$

- 20 < $x - 1 < 20$

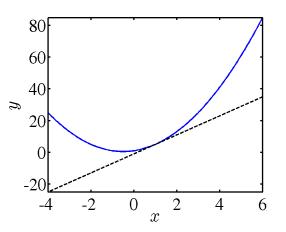


$$y = 2x^2 + 2x + 1,$$

- 20 < $x - 1 < 20$

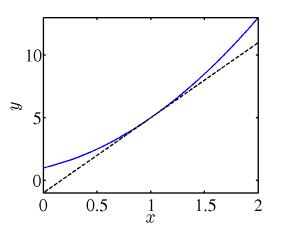
dashed line is the tangent line at x = 1

Let's zoom in around x = 1



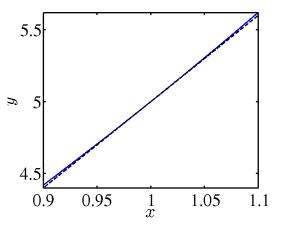
$$y = 2x^2 + 2x + 1,$$

- 5 < x - 1 < 5



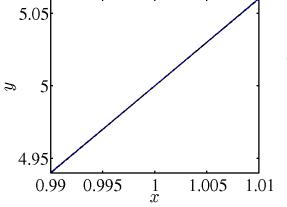
$$y = 2x^2 + 2x + 1,$$

 $-1 < x - 1 < 1$



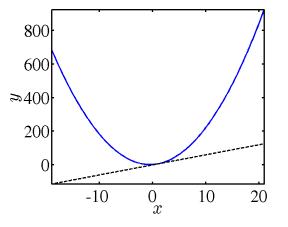
$$y = 2x^2 + 2x + 1,$$

- 0.1 < $x - 1 < 0.1$



$$y = 2x^2 + 2x + 1,$$

- 0.01 < x - 1 < 0.01



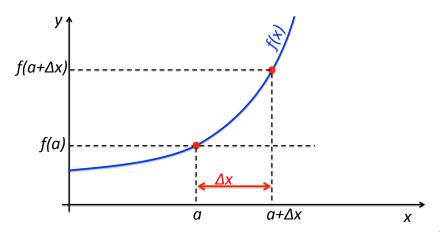
$$y = 2x^{2} + 2x + 1,$$

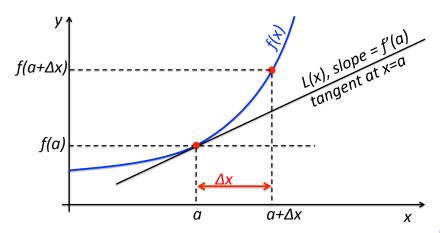
$$\frac{dy}{dx} = 4x + 2$$

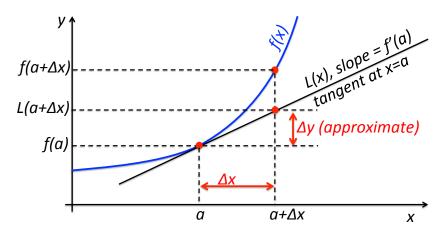
$$x = 1 \Rightarrow y = 5, y' = 6$$

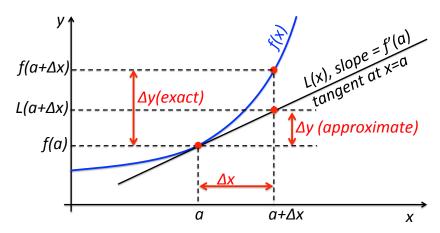
So the equation of the tangent line is:

$$y-5=6(x-1)$$









Relationship between Δx and Δy

Suppose f is differentiable on an interval I containing the point a. The change in the value of f between two point a and $a+\Delta x$ is approximately

$$\Delta y \approx f'(a) \, \Delta x$$

where $a + \Delta x$ is in I.

Note:

If f is concave up on I, using linear approximation of f at a we underestimate the value of the function; i.e. $L(a+\Delta x) < f(a+\Delta x)$. Alternatively, if f is concave down on I, using linear approximation of f at a we overestimate the value of the function; i.e. $L(a+\Delta x) > f(a+\Delta x)$.

$$y = 2x^2 + 2x + 1$$

$$y = x^2 + 4x$$

$$y' = \frac{dy}{dx} = 4x + 2$$

$$y' = \frac{dy}{dx} = 2x + 4$$

At x = 1:

$$y = 5$$

$$y = 5$$

$$y' = 6$$

$$y'=6$$

Linear approximation at x = 1:

$$L(x) = 5 + 6(x - 1)$$

$$L(x) = 5 + 6(x-1)$$

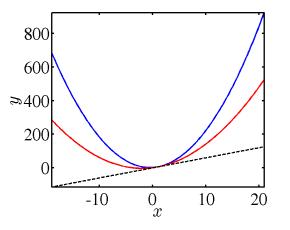
Question: For which function does L(1.1) give a more accurate estimate of y at x = 1.1?

a) $y = 2x^2 + 2x + 1$

b) $y = x^2 + 4x$

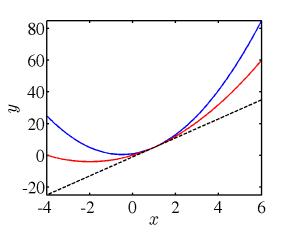
c) It depends!

d) I don't know!



$$y = 2x^{2} + 2x + 1,$$

 $y = x^{2} + 4x,$
 $-20 < x - 1 < 20$



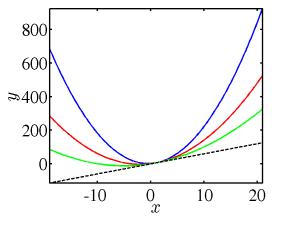
$$y = 2x^{2} + 2x + 1,$$

 $y = x^{2} + 4x,$
 $-5 < x - 1 < 5$

dashed line is the tangent line at x = 1

$$y''=4, \quad y''=2,$$

The function with the smaller |y''| gives a better estimate.

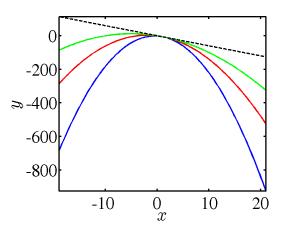


$$y = 2x^{2} + 2x + 1,$$

$$y = x^{2} + 4x,$$

$$y = \frac{1}{2}x^{2} + 5x - \frac{1}{2},$$

$$y'' = 4$$
, $y'' = 2$, $y'' = 1$



$$y = -2x^{2} - 2x - 1,$$

$$y = -x^{2} - 4x,$$

$$y = -\frac{1}{2}x^{2} - 5x + \frac{1}{2},$$

$$y'' = -4, \quad y'' = -2,$$

 $y'' = -1$

Quadratic approximation

$$p_2(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2$$

Exercise: Find the quadratic approximation of the following functions about x = 0:

- (x) = cos(x)
- $f(x) = x^2 + 3x + 1$

Taylor polynomials

Let f be a function with $f', f'', ..., f^{(n)}$ defined at x = a. The n^{th} -order Taylor polynomial for f with its center at x = a, denoted p_n , has the property that it matches f in value, slope and all derivatives up to the n^{th} derivative at a. The n^{th} -order Taylor polynomial centered at a is

$$p_n(x) = f(a) + f'(a)(x-1) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Remanider

Definition: Let P_n be the Taylor polynomial of order n for f. The remainder in using p_n to approximate f at point x is $R_n(x) = f(x) - p_n(x)$.

Note: Error = $|R_n(x)|$, Relative error = $\frac{|R_n(x)|}{|f(x)|}$

Theorem: Suppose there exists a number M such that $f''(c) \leq M$ for all c between a and x inclusive. The remainder in the 1^{st} order Taylor polynomial (i.e. linear approximation) for f centered at a satisfies

$$|R_1(x)| \leq M \frac{(x-a)^2}{2}$$

Note: $M\frac{(x-a)^2}{2}$ is our estimate of maximum error, *error bound* or the worst-case error.

Exercises

- Assuming that f(2) = 0.2, f'(2) = 0.3 and f''(2) = 0.5, estimate f(1.8) and f(2.1).

 Bonus: estimate f'(2.1).
- Use linear approximation to estimate the following quantities. Choose a value of *a* that produces a small error. Without using a calculator figure out if you have overestimated or underestimated the value of the function. Give the worst-case error.

$$a)\frac{1}{\sqrt{112}}$$
$$d)e^{0.1}$$

$$e)\sqrt{1.7}$$

$$c) \tan^{-1}(0.9)$$

Exercises

• Find the linear approximation of sin(x) about a = 0. How close should x be to a to ensure that error is less than 0.02?