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y
(R 7Y |
A t
L(a+AX)} - |2 ylexact) [/ 1 <%
IAy (approximate)
f (67) """""""" pooneeeees e
SUYERR
a a+lx X

Ida Karimfazli 11/2015



Linear approximation
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Relationship between Ax and Ay

Relationship between Ax and Ay

Suppose f is differentiable on an interval / containing the point a. The
change in the value of f between two point a and a + Ax is
approximately

where a + Ax is in /.

Note:

If f is concave up on /, using linear approximation of f at a we
underestimate the value of the function; i.e. L(a+ Ax) < f(a+ Ax).
Alternatively, if f is concave down on /, using linear approximation of
f at a we overestimate the value of the function; i.e.

L(a+ Ax) > f(a+ Ax).
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Linear approximation and concavity

y=2x>+2x+1 y = x% + 4x
y’:;ji:4x—|—2 y’—jﬁ—Zx%—ll
At x =1:

y=>5 y=>5

y' =6 y' =6

Linear approximation at x = 1:

L(x) =5+6(x —1) L(x) =546(x — 1)

Question: For which function does L(1.1) give a more accurate
estimate of y at x = 1.17

a)y=2x>+2x+1 b) y = x2 + 4x

c) It depends! d) I don't know!
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Higher—order polynomial approximations
°

Quadratic approximation

f''(a)
2!

pa(x) = f(a) + f'(a)(x — a) + (x —a)?

Exercise: Find the quadratic approximation of the following functions
about x = 0:

Q f(x) = sin(x)

Q f(x) = cos(x)
Q f(x)=x>+3x+1

Ida Karimfazli 11/2015



Higher—order polynomial approximations
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Taylor polynomials

Let f be a function with ', f’, ..., f(") defined at x = a. The n"—order
Taylor polynomial for f with its center at x = a, denoted p,, has the
property that it matches f in value, slope and all derivatives up to the
nt" derivative at a. The n'"—order Taylor polynomial centered at a is

pul) = F(@) + £k~ 1)+ 32— 2+ - ap
+t f(n:,!(a) (x — a)"
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Higher—order polynomial approximations
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Remanider

Definition: Let P, be the Taylor polynomial of order n for f. The
remainder in using p, to approximate f at point x is
Ro(x) = F(x) — pa(x). )
Note: Error = |R,(x)|, Relative error = [Ra(x)|
|£(x)]

Theorem: Suppose there exists a number M such that f"/(c) < M for
all ¢ between a and x inclusive. The remainder in the 1°* order Taylor
polynomial (i.e. linear approximation) for f centered at a satisfies

(x —a)?

Ri)| < MU

2
X —a) . ) )
Note: Mi( > ) is our estimate of maximum error, error bound or

the worst-case error.
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Higher—order polynomial approximations
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Exercises

@ Assuming that f(2) = 0.2, f/(2) = 0.3 and f"/(2) = 0.5, estimate
f(1.8) and f(2.1).
Bonus: estimate f'(2.1).

@ Use linear approximation to estimate the following quantities.
Choose a value of a that produces a small error. Without using a
calculator figure out if you have overestimated or underestimated
the value of the function. Give the worst-case error.

b)In(.95) c)tan=1(0.9)
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Higher—order polynomial approximations
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Exercises

@ Find the linear approximation of sin(x) about a = 0. How close
should x be to a to ensure that error is less than 0.027
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