## Week 1 - an example on limits Sept. 17, 2015

## Example 1.

Examine  $\lim_{x \to 0} \sin\left(\frac{1}{x}\right)$ 

**Solution:** Notice that  $f(x) = \sin(1/x)$  is not defined at x = 0. Does this mean that the limit does not exist? Let's graph  $f(x) = \sin(1/x)$  to see how it changes around x = 0



Figure 1: -5 < x < 5

It is not quite obvious in figure 1 what is happening around x = 0. Let's zoom in to take a closer look ...



Figure 2

| Differential calculus | MATH104   |
|-----------------------|-----------|
| Ida Karimfazli        | Fall 2015 |

Notice in figure 2 that as we zoom closer to x = 0 the function f(x) oscillates progressively faster. Alternatively, think about how many times this function crosses y = 0 between x = 0 and x = 1:

$$\sin(1/x) = 0$$
  

$$\Rightarrow 1/x = k\pi, \quad k = 1, 2, 3, \dots$$
  

$$\Rightarrow x = \frac{1}{k\pi}$$

So we have

$$\sin(1/x) = 0$$
 if  $\left(x = \frac{1}{k\pi} \text{ and } k \in N\right)$ 

Notice that for  $k \ge 1$  we have  $1/(k\pi) < 1$ ; i.e. there are infinitely many points between x = 0 and x = 1 where  $\sin(1/x) = 0$ . So f(x) continuously oscillates and does not approach a certain limit. So  $\lim_{x\to 0} f(x)$  does not exist. Indeed the left-hand and right-hand limits don't exist either.