Week 12 - On Taylor polynomials
 Dec. 1 \& 3, 2015

True/false questions

a. Only even powers of x appear in the Taylor polynomilas for $f(x)=e^{-2 x}$ centered at $a=0$.
b. Let $f(x)=x^{5}-1$. The Taylor polynomial for f of order 10 centered at 0 is itself.
c. Only even powers of x appear in the $n^{t h}$-order Taylor polynomial for $f(x)=\sqrt{1+x^{2}}$
d. Suppose $f^{\prime \prime}$ is continuous on an interval that contains a, where f has an inflection point at a. Then the second order Taylor polynomial for f at a is linear.
e. Let $f(x)=x^{3}-2 x+1$. The Taylor polynomial for f of order 3 centered at 2 is itself.

Notes on odd and even functions

- If $f(-x)=f(x)$, then f is an even function.
- If $f(-x)=-f(x)$, then f is an odd function.

Note:

$$
f(-x)=-f(x) \Rightarrow f(-0)=-f(0) \Rightarrow f(-0)+f(0)=0 \Rightarrow 2 f(0)=0 \Rightarrow f(0)=0
$$

So when $f(x)$ is an odd function and $x=0$ is in its domain, $f(0)=0$.

- If $f(x)$ is an even function, then $f^{\prime}(x)$ is an odd function.

Here's why:

$$
\begin{aligned}
& f \text { is even } \Rightarrow f(x)=f(-x) \Rightarrow \frac{d}{d x}(f(x))=\frac{d}{d x}(f(-x)) \\
& \text { use chain rule } \Rightarrow f^{\prime}(x)=-f^{\prime}(-x) \Rightarrow f^{\prime}(x) \text { is an odd function }
\end{aligned}
$$

- If $f(x)$ is an odd function, then $f^{\prime}(x)$ is an even function.

Here's why:

$$
\begin{aligned}
& f \text { is odd } \Rightarrow f(x)=-f(-x) \Rightarrow \frac{d}{d x}(f(x))=\frac{d}{d x}(-f(-x)) \\
& \text { use chain rule } \Rightarrow f^{\prime}(x)=-\left(-1 \times f^{\prime}(-x)\right)=f^{\prime}(-x) \Rightarrow f^{\prime}(x) \text { is an even function }
\end{aligned}
$$

Note:
If f is even $\Rightarrow f^{\prime}$ is odd $\Rightarrow f^{\prime \prime}$ is even $\Rightarrow f^{\prime \prime \prime}$ is odd $\Rightarrow f^{(4)}$ is even $\Rightarrow \ldots$
If f is odd $\Rightarrow f^{\prime}$ is even $\Rightarrow f^{\prime \prime}$ is odd $\Rightarrow f^{\prime \prime \prime}$ is even $\Rightarrow f^{(4)}$ is odd $\Rightarrow \ldots$

