Week 2 - examples

Sept. 22 \& 24, 2015

Example 1. Continuity

Find the points where $f(x)$ is not continuous.

$$
f(x)=\left\{\begin{array}{lc}
\frac{x^{2}+1}{x^{2}-2 x-3} & x \leq 1 \\
\frac{|x-3|}{2 x-6}(2-x) & 1<x<3 \\
\frac{1}{2} & x=3 \\
\frac{\exp (x-3)}{x^{2}-20} & 3<x
\end{array}\right.
$$

Note: $\exp (x-3)$ is another notation for e^{x-3}; i.e. $\exp (x-3)=e^{x-3}$.
Solution: When given a function with different definitions on different intervals, we should

- verify continuity on each interval,
- check continuity at the endpoints of the intervals.

So here, we first check continuity on $(-\infty, 1)$:

$$
x \leq 1 \Rightarrow f(x)=\frac{x^{2}+1}{x^{2}-2 x-3}
$$

Here f is a rational function; i.e. both the numerator and denominator of f are polynomials. We know that rational functions are continuous for all x in their domain. That is for all x where the denominator is not zero. So we need to find the roots of the denominator:

$$
x^{2}-2 x-3=0 \Rightarrow x=3, x=-1
$$

Now what we need to be careful about is that we started with the assumption that $x \leq 1$; $x=3$ is not in the domain we are considering right now. So we've found that on the interval $x<1, f$ is continuous everywhere except at $x=-1$.

Now we have to check continuity at $x=1$. To do this, we need to show:

$$
\lim _{x \rightarrow 1} f(x)=f(1)
$$

This is equivalent to

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=f(1)
$$

Now the easier step is perhaps to find $f(1)$:

$$
f(1)=\left(\frac{x^{2}+1}{x^{2}-2 x-3}\right)_{x=1}=\frac{1+1}{1-2-3}=\frac{2}{-4}=-\frac{1}{2}
$$

Next we find $\lim _{x \rightarrow 1^{+}} f(x)$; i.e. the limit of $f(x)$ as x approaches 1 and $x>1$. Looking at the definition of $f(x)$ we find that when x approaches 1 and $x>1$

$$
f(x)=\frac{|x-3|}{2 x-6}(2-x)
$$

Therefore,

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{|x-3|}{2 x-6}(2-x)
$$

Now I have to be careful about the absolute function: $|x-3|$.

Reminder:

$$
|a|= \begin{cases}a & a \geq 0 \\ -a & a<0\end{cases}
$$

Now since $x \rightarrow 1^{+}$, we know that $(x-3) \rightarrow-2^{+}$. Therefore, when $x \rightarrow 1^{+}$, we have $|x-3|=-(x-3)=-x+3$.

We can now evaluate the right-hand limit:

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{|x-3|}{2 x-6}(2-x)=\lim _{x \rightarrow 1^{+}} \frac{(-x+3)(2-x)}{2 x-6}
$$

We're taking the limit of a rational function. After making sure that the denominator is not zero at $x=1$, we can evaluate the limit by substitution:

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{(-x+3)(2-x)}{2 x-6}=\frac{2 \times(1)}{2-6}=-\frac{2}{4}=-\frac{1}{2}
$$

So far we have

$$
\lim _{x \rightarrow 1^{+}} f(x)=f(1)=-\frac{1}{2}
$$

The last step of verifying continuity at $x=1$ is to find $\lim _{x \rightarrow 1^{-}} f(x)$; i.e. the limit of $f(x)$ as x approaches 1 and $x<1$. Now looking back at definition of $f(x)$, we find that when $x \rightarrow 1^{-}$

$$
f(x)=\frac{x^{2}+1}{x^{2}-2 x-3}
$$

Again, this is a rational function and it is continuous everywhere in its domain. Since the denominator is not zero at $x=1$, the limit can be evaluated by substitution:

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x^{2}+1}{x^{2}-2 x-3}=\frac{1+1}{1-2-3}=\frac{2}{-4}=-\frac{1}{2}
$$

So we have shown that

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=f(1)=-\frac{1}{2}
$$

Therefore $f(x)$ is continuous at $x=1$
Next, we should examine continuity on $1<x<3$. When $1<x<3$ we have

$$
f(x)=\frac{|x-3|}{2 x-6}(2-x)
$$

Again we have to be careful about the absolute function: $|x-3|$. Since $x<3$, we know that $x-3<0$. Therefore, $|x-3|=-(x-3)=-x+3$. So we have

$$
f(x)=\frac{(-x+3)(2-x)}{2 x-6}
$$

Now we have a rational function. Rational functions are continuous everywhere in their domain. Thus we find the points where the denominator becomes zero:

$$
2 x-6=0 \Rightarrow x=3
$$

Since we're interested in $1<x<3$, we can therefore conclude that $f(x)$ is continuous on this interval.

Next we examine continuity at $x=3$. For $f(x)$ to be continuous at $x=3$ we need

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{-}} f(x)=f(3)
$$

Based on the definition of the function we have $f(3)=1 / 2$. So we need to find the left-hand and right-hand limits at $x=3$.

Notice that considering the left-hand limit, x is approaching 3 and $x<3$. Therefore,

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{2 x-6}(2-x)
$$

Once again, we need to be careful about the absolute function: $|x-3|$. We note that since $x \rightarrow 3^{-}$we have

$$
x<3 \rightarrow x-3<0 \Rightarrow|x-3|=-(x-3)=-x+3 .
$$

Going back to the left-hand limit we have

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{(-x+3)(2-x)}{2 x-6}
$$

Again, we're taking the limit of a rational function and therefore this function is continuous everywhere in its domain. However, we know that the denominator is 0 at $x=3$ and so $x=3$ is not in the domain of this rational function. Note that the numerator is also 0 at $x=3$. So we need to factor and simplify to find the limit:

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{(-x+3)(2-x)}{2 x-6}=\lim _{x \rightarrow 3^{-}} \frac{-1 \times(x-3)(2-x)}{2 \times(x-3)}=\lim _{x \rightarrow 3^{-}} \frac{-1 \times(2-x)}{2}=\frac{1}{2}
$$

Finally, we should evaluate the right-hand limit; that is as x approaches 3 and $x>3$. So we have

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \frac{\exp (x-3)}{x^{2}-20}
$$

We know that both numerator and denominator have a right-hand limit when $x \rightarrow 3^{+}$:

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \exp (x-3)=\exp (3-3)=1 \\
& \lim _{x \rightarrow 3^{+}}\left(x^{2}-20\right)=9-20=-11
\end{aligned}
$$

Therefore,

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \frac{\exp (x-3)}{x^{2}-20}=\frac{\lim _{x \rightarrow 3^{+}} \exp (x-3)}{\lim _{x \rightarrow 3^{+}}\left(x^{2}-20\right)}=-\frac{1}{11}
$$

So we have found that

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} f(x)=f(3)=\frac{1}{2} \\
& \lim _{x \rightarrow 3^{+}} f(x)=-\frac{1}{11}
\end{aligned}
$$

Therefore $f(x)$ is continuous from the left at $x=3$. But it is not continuous from the right. So $f(x)$ is not continuous at $x=3$.

Finally, we consider the interval $3<x$. Here we have

$$
f(x)=\frac{\exp (x-3)}{x^{2}-20}
$$

Now we know that exponential functions are continuous everywhere in their domain. Similarly, the denominator is a polynomial and is continuous everywhere. So $f(x)$ is continuous where the denominator is not zero. Therefore, We need to find the roots of the denominator:

$$
x^{2}-20=0 \Rightarrow x=-\sqrt{20}, x=\sqrt{20}
$$

Notice that we have assumed $3<x$. Also, although I may not have a calculator to find $\sqrt{20}$, I can see that since $9<20$, indeed $3<\sqrt{20}$. Therefore, $f(x)$ is not continuous at $x=\sqrt{20}$.
the graph of function $f(x)$ is provided in Fig. 1. Can you find the points where the function is not differentiable?

Figure 1: Graph of $f(x)$ on $-2<x<5$.

Example 2. Tangent lines and derivatives

Given $f(x)=x^{3}-6 x^{2}+\pi$,
a. Find all the points where the tangent line is horizontal and give the equation of the tangent line(s).
b. Find the point(s) where tangent line has slope -12 and give the equation of the tangent line.

Solution: To find the slope of the tangent line at any point in the domain of a function, we should evaluate the derivative of f at that point; i.e. if m is the slope of the tangent line at $x=a$, we have $m=f^{\prime}(a)$. So let's find $f^{\prime}(x)$:

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x}\left(x^{3}-6 x^{2}+\pi\right)=\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}\left(6 x^{2}\right)+\frac{d}{d x}(\pi)=3 x^{2}-6 \times 2 x+0=3 x^{2}-12 x \\
& f^{\prime}(x)=3 x^{2}-12 x
\end{aligned}
$$

Alternatively, we could have found the derivative function using the deifinition of the first detivative:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow h} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{3(x+h)^{3}-6(x+h)^{2}+\pi-\left(x^{3}-6 x^{2}+\pi\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-6\left(x^{2}+2 x h+h^{2}\right)+\pi-\left(x^{3}-6 x^{2}+\pi\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-12 x h-6 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}-12 x-6 h\right) \\
& =3 x^{2}-12 x
\end{aligned}
$$

So at the point $x=a$ the slope of the tangent line is $f^{\prime}(a)=3 a^{2}-12 a$.
I also could have solved for the slope of the tangent line (that is the value of the derivative function or the instantaneous rate of change of f) at $x=a$:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{x^{3}-6 x^{2}+\pi-\left(a^{3}-6 a^{2}+\pi\right)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x^{3}-a^{3}-6 x^{2}+6 a^{2}+\pi-\pi}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\left(x^{3}-a^{3}\right)-6\left(x^{2}-a^{2}\right)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x-a)\left(x^{2}+a x+a^{2}\right)-6(x-a)(x+a)}{x-a} \\
& =\lim _{x \rightarrow a}\left(x^{2}+a x+a^{2}\right)-6(x+a) \\
& =a^{2}+a^{2}+a^{2}-6(2 a) \\
& =3 a^{2}-12 a
\end{aligned}
$$

Now for part (a) we are looking for points where the tangent line is horizontal, i.e. the slope is 0 .

$$
3 a^{2}-12 a=0 \Rightarrow a(3 a-12)=0 \Rightarrow a=0, a=\frac{12}{3}=4
$$

We have found the slope of the tangent lines. We need to find a point on the line: $(a, f(a))$.

$$
\begin{aligned}
& a=0 \Rightarrow f(0)=\pi \\
& a=4 \Rightarrow f(4)=4^{3}-6 \times 4^{2}+\pi=64-96+\pi=-32+\pi
\end{aligned}
$$

Now the equation of horizontal lines is given by $y=f(a)$; i.e. there are two points where the tangent line is horizontal:

$$
\begin{aligned}
& x=0, \text { euqation of tangent line: } y=\pi \\
& x=4, \text { euqation of tangent line: } y=-32+\pi
\end{aligned}
$$

For part (b) we should look for poitns where the slope of the tangent line is -12 . That is $f^{\prime}(a)=5$

$$
\begin{aligned}
& 3 a^{2}-12 a=-12 \Rightarrow a^{2}-4 a+4=0 \Rightarrow a=\frac{2 \pm \sqrt{2^{2}-4 \times 1}}{1}=2 \\
& f(2)=2^{3}-6 \times 2^{2}+\pi=8-24+\pi=-16+\pi
\end{aligned}
$$

So with the slope of the line (that is -12) and a point on it (that is $(2,-16+\pi)$), we can write the equation of the tangent line:

$$
\begin{aligned}
& y-f(a)=f^{\prime}(a)(x-a) \\
& y-(-16+\pi)=-12(x-2) \\
& y=-12 x+24-16+\pi=-12 x+8+\pi
\end{aligned}
$$

The tangent line at $x=2$ has the the slope -12 . The equation of the tangent line at $x=2$ is $y=-12 x+8+\pi$.

