Week 5 - The power rule
 Oct. 13 \& 15, 2015

We know that if n is a nonnegative integer then $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$

- Find $\frac{d}{d x}\left(x^{m}\right)$ given that m is a negative integer.

Solution: We can use the quotient rule. Let's assume that $m=-n$ where n is a positive integer, then we have

$$
\begin{aligned}
\frac{d}{d x}\left(x^{m}\right) & =\frac{d}{d x}\left(x^{-n}\right)=\frac{d}{d x}\left(\frac{1}{x^{n}}\right)=\frac{\frac{d(1)}{d x} x^{n}-\frac{d x^{n}}{d x}(1)}{\left(x^{n}\right)^{2}}=\frac{0 \times x^{n}-n x^{n-1} \times 1}{x^{2 n}} \\
& =\frac{-n x^{n-1}}{x^{2 n}}=-n x^{n-1-2 n}=-n x^{-n-1}=m x^{m-1}
\end{aligned}
$$

So we have found that $\frac{d}{d x}\left(x^{m}\right)=m x^{m-1}$ when m is a negative integer.

- Find $\frac{d}{d x}\left(x^{m / n}\right)$ given that m and n are integers.

Solution: So far we know that $\frac{d}{d x}\left(x^{m}\right)=m x^{m-1}$ where $m \neq 0$ is an integer. Let's see if we can use this to find $\frac{d}{d x}\left(x^{m / n}\right)$.
$f(x)=x^{m / n}, \quad$ raise both sides to the power n
$f(x)^{n}=x^{m}, \quad$ differentiate with respect to x
$\frac{d}{d x}\left(f(x)^{n}\right)=\frac{d x^{m}}{d x}, \quad$ use the chain rule
$n f(x)^{n-1} \frac{d f}{d x}=m x^{m-1}, \quad$ isolate $d f / d x$
$\frac{d f}{d x}=\frac{m}{n} \frac{x^{m-1}}{f(x)^{n-1}}, \quad \quad$ plug the definition of $f(x)$
$\frac{d f}{d x}=\frac{m}{n} \frac{x^{m-1}}{\left(x^{m / n}\right)^{n-1}}, \quad$ simplify!
$\frac{d f}{d x}=\frac{m}{n} x^{\left(m-1-\frac{m(n-1)}{n}\right)}=\frac{m}{n} x^{\frac{m n-n-m n+m}{n}}=\frac{m}{n} x^{\frac{m n-n-m n+m}{n}}=\frac{m}{n} x^{(m / n)-1}$
So we have shown that $\frac{d}{d x}\left(x^{m / n}\right)=\frac{m}{n} x^{m / n-1}$

- Assuming that $\frac{d}{d x} \ln x=\frac{1}{x}$, show that for all real values of $n \neq 0$ we have $\frac{d}{d x}\left(x^{n}\right)=$ $n x^{n-1}$.

Solution:

$$
\begin{array}{ll}
f(x)=x^{n}, & \text { take the natural logarithm of the equ } \\
\Rightarrow \ln (f(x))=\ln \left(x^{n}\right)=n \ln (x), & \text { take the derivative with respect to } x \\
\Rightarrow \frac{d}{d x}(\ln (f(x)))=\frac{d}{d x}(n \ln (x)), & \text { use the chain rule } \\
\Rightarrow \frac{1}{f(x)} \frac{d f}{d x}=\frac{n}{x}, & \text { isolate } d f / d x \\
\Rightarrow \frac{d f}{d x}=\frac{n f(x)}{x}, & \text { plug the definition of } f(x) \\
\Rightarrow \frac{d f}{d x}=\frac{n x^{n}}{x}=n x^{n-1} &
\end{array}
$$

So we have shown that for all real numbers $n \neq 0, \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$.

