MATH110-001, Polynomial fit

Ida Karimfazli

University of British Columbia BC, Canada
idak@math.ubc.ca
Winter 2016

Linear fit

$$
\begin{aligned}
& y=2 x^{2}+2 x+1, \\
& -20<x-1<20
\end{aligned}
$$

dashed line is the tangent line at $x=1$

Linear fit

$$
\begin{aligned}
& y=2 x^{2}+2 x+1, \\
& -20<x-1<20
\end{aligned}
$$

dashed line is the tangent line at $x=1$

Let's zoom in around $x=1$

Linear fit

$$
\begin{gathered}
y=2 x^{2}+2 x+1 \\
-5<x-1<5
\end{gathered}
$$

dashed line is the tangent line at $x=1$

Linear fit

$$
\begin{gathered}
y=2 x^{2}+2 x+1 \\
-1<x-1<1
\end{gathered}
$$

dashed line is the tangent line at $x=1$

Linear fit

$$
\begin{aligned}
& y=2 x^{2}+2 x+1 \\
& -0.1<x-1<0.1
\end{aligned}
$$

dashed line is the tangent line at $x=1$

Linear fit

$$
\begin{aligned}
& y=2 x^{2}+2 x+1 \\
& -0.01<x-1<0.01
\end{aligned}
$$

dashed line is the tangent line at $x=1$

Linear fit

$$
\begin{aligned}
& y=2 x^{2}+2 x+1, \\
& \frac{d y}{d x}=4 x+2 \\
& x=1 \Rightarrow y=5, y^{\prime}=6
\end{aligned}
$$

So the equation of the tangent line is:
$y-5=6(x-1)$

Relationship between Δx and Δy

Linear approximation and concavity

Relationship between Δx and Δy
Suppose f is differentiable on an interval / containing the point a. The change in the value of f between two point a and $a+\Delta x$ is approximately

$$
\Delta y \approx f^{\prime}(a) \Delta x
$$

where $a+\Delta x$ is in l.
Note:
If f is concave up on I, using linear approximation of f at a we underestimate the value of the function; i.e. $L(a+\Delta x)<f(a+\Delta x)$. Alternatively, if f is concave down on I, using linear approximation of f at a we overestimate the value of the function; i.e. $L(a+\Delta x)>f(a+\Delta x)$.

Linear approximation and concavity

$y=2 x^{2}+2 x+1$
$y^{\prime}=\frac{d y}{d x}=4 x+2$

$$
\begin{aligned}
& y=x^{2}+4 x \\
& y^{\prime}=\frac{d y}{d x}=2 x+4
\end{aligned}
$$

At $x=1$:
$y=5$
$y=5$
$y^{\prime}=6$
$y^{\prime}=6$
Linear approximation at $x=1$:
$L(x)=5+6(x-1)$
$L(x)=5+6(x-1)$
Question: For which function does $L(1.1)$ give a more accurate estimate of y at $x=1.1$?
a) $y=2 x^{2}+2 x+1$
b) $y=x^{2}+4 x$
c) It depends!
d) I don't know!

Linear approximation and concavity

$$
\begin{aligned}
& y=2 x^{2}+2 x+1 \\
& y=x^{2}+4 x \\
& -20<x-1<20
\end{aligned}
$$

dashed line is the tangent line at $x=1$

Linear approximation and concavity

$$
\begin{aligned}
& y=2 x^{2}+2 x+1 \\
& y=x^{2}+4 x \\
& -5<x-1<5
\end{aligned}
$$

dashed line is the tangent line at $x=1$
$y^{\prime \prime}=4, \quad y^{\prime \prime}=2$,
The function with the smaller $\left|y^{\prime \prime}\right|$ gives a better estimate.

Linear approximation and concavity

$$
\begin{aligned}
& y=2 x^{2}+2 x+1, \\
& y=x^{2}+4 x, \\
& y=\frac{1}{2} x^{2}+5 x-\frac{1}{2},
\end{aligned}
$$

dashed line is the tangent line at $x=1$

$$
y^{\prime \prime}=4, \quad y^{\prime \prime}=2, \quad y^{\prime \prime}=1
$$

Linear approximation and concavity

$$
\begin{aligned}
& y=-2 x^{2}-2 x-1 \\
& y=-x^{2}-4 x
\end{aligned}
$$

$$
y=-\frac{1}{2} x^{2}-5 x+\frac{1}{2}
$$

dashed line is the tangent line at $x=1$
$y^{\prime \prime}=-4, \quad y^{\prime \prime}=-2$,
$y^{\prime \prime}=-1$

