Example 1:

Note, f^{\prime} exists everywhere $\Rightarrow f$ is continuous on the domain presented here
at $\left\{\begin{array}{l}x=1 \\ x=7\end{array}\right\} f^{\prime}$ changes sign from + to $\Rightarrow \begin{aligned} & x=1, x=7 \text { ak }\end{aligned}$ the locations of two local max. of.
at $x=3, f^{\prime}$ changer sign from - to $+\Rightarrow f$ has a local min at $x=3$

Example 2. Given the equation $x^{3} y^{2}+y^{3} \operatorname{Sin}(x y)=0$ find $\frac{d y}{d x}$?

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{3} y^{2}+y^{3} \operatorname{Sin}(x y)\right)=\frac{d}{d x}(0)=0 \\
& \frac{d}{d x}\left(x^{3} y^{2}\right)+\frac{d}{d x}\left(y^{3} \operatorname{Sin}(x y y)\right)=0
\end{aligned}
$$

product rule

$$
\begin{aligned}
& \frac{d\left(x^{3}\right)}{d x} * y^{2}+x^{3} \frac{d\left(y^{2}\right)}{d x}+\frac{d\left(y^{3}\right)}{d x} * \sin (x y)+y^{3} \frac{d(\operatorname{Sin}(x y))}{d x}=0 \\
& 3 x^{2} y^{2}+x^{3} \frac{d\left(y^{2}\right)}{d y} * \frac{d y}{d x}+\frac{d\left(y^{3}\right)}{d y} * \frac{d y}{d x} * \operatorname{Sin}(x y)+y^{3} \frac{d \operatorname{Sin}(u)}{d u} * \frac{d u}{d x}= \\
& 3 x^{2} y^{2}+x^{3} * 2 y * \frac{d y}{d x}+3 y^{2} * \frac{d y}{d x} * \operatorname{Sin}(x y)+y^{3} \operatorname{Cos}(u) \frac{d(x y)}{d x}=0 \\
& 3 x^{2} y^{2}+2 x^{3} y \frac{d y}{d x}+3 y^{2} \operatorname{Sin}(x y) \frac{d y}{d x}+y^{3} \operatorname{Cos}(x y)\left[\frac{d x}{d x} * y+x \frac{d y}{d x}\right]=0 \\
& 1 \\
& 3 x^{2} y^{2}+\left[2 x^{3} y+3 y^{2} \operatorname{Sin}(x y)\right] \frac{d y}{d x}+y^{3} \operatorname{Cos}(x y)\left(y+x \frac{d y}{d x}\right)=0 \\
& 3 x^{2} y^{2}+y^{4} \operatorname{Cos}(x y)=-\left[+2 x^{3} y+3 y^{2} \operatorname{Sin}(x y)+x y^{3} \operatorname{Cos}(x y)\right] \frac{d y}{d x} \\
& \frac{d y}{d x}=\frac{-\left(3 x^{2} y^{2}+y^{4} \operatorname{Cos}(x y)\right)}{2 x^{3} y+3 y^{2} \operatorname{Sin}(x y)+x y^{3} \operatorname{Cos}(x y)}
\end{aligned}
$$

-xample3: find all the critical points of the function $f(x)=x^{1 / 3}$ e Identify all the local min and max.

$$
\begin{aligned}
f(x) & =x^{+1 / 3} \cdot e^{-3 x} \\
\frac{d f}{d x} & =\frac{d}{d x}\left(x^{1 / 3} e^{-3 x}\right)=\frac{d}{d x}\left(x^{1 / 3}\right) * e^{-3 x}+x^{1 / 3} * \frac{d}{d x}\left(e^{-3 x}\right) \\
\frac{d f}{d x} & =\frac{1}{3} x^{\frac{1}{3}-1} * e^{-3 x}+x^{1 / 3} *(-3) * e^{-3 x} \\
& =e^{-3 x}\left(\frac{1}{3} x^{\frac{-2}{3}}-3 x^{\frac{1}{3}}\right) \\
& =e^{-3 x}\left(\frac{1}{3 x^{\frac{2}{3}}}-3 x^{\frac{1}{3}}\right) \\
& =e^{-3 x}\left(\frac{1-9 x}{3 x}\right)
\end{aligned}
$$

$f^{\prime}(x)=0 \Rightarrow \begin{cases}e^{-3 x}=0 & \text { does not have a solution iii } e^{-3 x}>0 \text { for all } x \in U \\ O R & \\ 1-9 x=0 \Rightarrow x=\frac{1}{9}\end{cases}$

$$
f^{\prime}(x) \quad D N E \Rightarrow \lambda=0
$$

Critical numbers: $x=0,1 / 9$ f does not have any local min

f is increasing on $\left(-\infty, \frac{1}{2}\right)$
f is decreasing on $\left(\frac{1}{9}, \infty\right)$

Hypotheses
Example 4: MVT: if $f(x)$ is continuous for $a \leqslant x \leqslant b$ and
differentiable for $a<x<b$, then there is at least one number, c, between a and b so that the tangent line or c is parallels to the secant line through the points $(a, f(a)),(b, f(b))$

Conclusion

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

f and f^{\prime} are contionews) differentiable for all $x \Rightarrow f$ and f^{\prime} are continuous for all x
) Define

$$
\begin{aligned}
& g(x)=f^{\prime}(x) \\
& g(2)=f^{\prime}(2)=3 \\
& g(5)=f^{\prime}(5)=0
\end{aligned}
$$

MF states that at least one number $2<c<5$ exists such that

$$
g^{\prime}(c)=\frac{g(5)-g(2)}{5-2}=\frac{0-3}{5-2}=-1
$$

Now notice that $g^{\prime}(x)=\frac{d g}{d x}=\frac{d}{d x}\left(f^{\prime}(x)\right)=f^{\prime \prime}(x)$
So $f^{\prime \prime}(c)=-1$ has at least one read solution with $2<c<\delta$.

Example 5:
r : volume of water in trough

$$
\begin{aligned}
& \frac{d V}{d t}=2 \frac{m^{3}}{\min } \\
& h=1 \mathrm{~m}
\end{aligned}
$$

Step 2: $\frac{d h}{d t}$

Step 3: equation that relates h and r

$$
V=\left(\frac{1}{2} h b\right) * L
$$

Do not plug any number unless you are 100% sure that it does not change wy time. If it changes wis time or you are unsure, USE A SYMBOL

Step 4: V, b and h change w time $\Rightarrow r(t), b(t), h(t)$
L is constant, $\frac{d l}{d t}=0$
\Rightarrow Can plug in the value of L
Step 5. diff with respect to time:

$$
\left.\frac{d V}{d t}=\frac{d}{d t}\left(\frac{1}{2} b h L\right)=\frac{L}{2} \frac{d}{d t} b h\right)=\frac{L}{2}\left(\frac{d b}{d t} \times h+b \frac{d h}{d t}\right)
$$

We are looking for $\frac{d h}{d L}$. We need to relate $\frac{d b}{1}$ to
$b, h \ldots$? Similar triangles: $\stackrel{A B C}{ }$ and $\stackrel{\rightharpoonup}{A D E} \Rightarrow \frac{h}{H}=\frac{b}{W}$
$\Rightarrow b=\frac{w}{H} h \quad$ W, H do not change w/ time

$$
\begin{aligned}
\rightarrow \frac{d b}{d t} & =\frac{d}{d t}\left(\frac{W}{H} h\right)=\frac{W}{H} \frac{d h}{d t} \\
\frac{d r}{d t} & =\frac{L}{2} *\left(\frac{W}{H} * \frac{d h}{d t}\right) * h+\frac{d h}{d t} *\left(\frac{W}{H} h\right) \quad \text { Solve for } \frac{d h}{d t} \\
\frac{d r}{d t} & =\frac{L}{2} *\left[\frac{W h}{H}+\frac{W h}{H}\right] \frac{d h}{d t} \\
\frac{d h}{d t} & =\frac{2}{L *\left[\frac{2 W h}{H}\right]} * \frac{d r}{d t}=\frac{2}{\frac{2 L W h}{H}} \frac{d t}{d t}=\frac{2 H}{2 L W h} \frac{d r}{d t}
\end{aligned}
$$

Step 6:

$$
\frac{d h}{d t}=\frac{3 m}{5 m * 4 m * 1 m} * 2 \frac{m^{3}}{m_{\text {in }}}=\frac{6}{20} \frac{m}{\min }=\frac{3}{10} \frac{m}{\mathrm{~min}}
$$

for example 6 , see the solution of quiz 2

Example: Find the local min and max of $f(x)=x \sqrt{x-x^{2}}$.
product rule \leqslant

$$
\begin{aligned}
& \frac{d f}{d x}=\frac{d}{d x}\left(x \sqrt{x-x^{2}}\right)=\frac{d x}{d x} * \sqrt{x-x^{2}}+x \frac{d}{d x}\left(\sqrt{x-x^{2}}\right) \\
& \frac{d f}{d x}=1 * \sqrt{x-x^{2}}+x \frac{d \sqrt{u}}{d u} * \frac{d u}{d x} \quad u=x-x^{2} \\
& \frac{d f}{d x} \\
& \begin{aligned}
& \frac{d f}{d x}=\sqrt{x-x^{2}}+x * \frac{1}{2 \sqrt{u}} * \frac{d}{d x}\left(x-x^{2}\right) \\
&=\frac{x}{2 \sqrt{x-x^{2}}} *(1-2 x) \\
&=\frac{\sqrt{x-x^{2}} * 2 \sqrt{x-x^{2}}}{2 \sqrt{x-x^{2}}}+\frac{x-2 x^{2}}{2 \sqrt{x-x^{2}}} \\
&=\frac{2\left(x-x^{2}\right)+x-2 x^{2}}{2 \sqrt{x-x^{2}}}=\frac{3 x-4 x^{2}}{2 \sqrt{x-x^{2}}} \\
& \frac{d f}{d x}=0 \Rightarrow 3 x-4 x^{2}=0 \Rightarrow x(3-4 x)=0 \Rightarrow\left\{\begin{array}{l}
x=0 \\
x=\frac{3}{4}
\end{array}\right. \\
& \frac{d f}{d x} \text { DNA } \Rightarrow \sqrt{x-x^{2}}=0 \Rightarrow x-x^{2}=0 \Rightarrow x(1-x)=0 \Rightarrow\left\{\begin{array}{l}
x=0 \\
x=1
\end{array}\right.
\end{aligned} . \begin{array}{l}
x=1
\end{array}
\end{aligned}
$$

for $x=0$ both the numerator and the denominator become zero. We need to check $\lim _{x \rightarrow 0} \frac{d f}{d x}$

$$
\lim _{x \rightarrow 0} \frac{d f}{d x}=\lim _{x \rightarrow 0} \frac{3 x-4 x^{2}}{2 \sqrt{x-x^{2}}}=\lim _{x \rightarrow 0} \frac{x(3-4 x)}{2 \sqrt{x(1-x)}}=\lim _{x \rightarrow 0} \frac{x(3-4 x)}{2 \sqrt{x} \sqrt{1-x}}=\lim _{x \rightarrow 0} \frac{\sqrt{x}(3-4 x}{2 \sqrt{1-x}}
$$

$$
\begin{aligned}
& \frac{d f}{d x}=0 \Rightarrow x=0, x=\frac{3}{4} \\
& \frac{d f}{d x} \text { DNE } \Rightarrow x=1
\end{aligned}
$$

a) $x=0,1, \frac{3}{4}$
(c) $x=\frac{3}{4}$
e) $x=1$
b) $x=0, \frac{3}{4}$
d) $x=0,1$
$x=0,1$ are end points...so $(0, f(0)$ and $(1, f(1))$ are not local extrema

Ida Karimfazli
No claw or office hours next week

Today: concavity, $2^{\text {nd }}$ derivative test

Graphically a function is cocave up (cu) if its graph is curved ny the opening upward. Similarly a function is concave down (CL if its graph opens downward.
$C U$ or CD?

Definition Let f be a differentiable.

* f is concave up at a if the graph of f is above the tangent line L to f for all x close to a (but not equal to a): $f(x)>L(x)=f(a)+f_{(a)(x-a)}^{\prime}$
* If is concave down at a if the graph of f is below the tangent line L to f for all x close to a (but not equa to a): $f(x)<L(x)$

The $2^{\text {nd }}$ derivative condition for concavity
a) if $f^{\prime \prime}(x)>0$ on an interval I, then $f^{\prime}(x)$ is increasing on I and f i concave up on I
b) if $f^{\prime \prime}(x)>0$ on an interval I, the $f^{\prime}(x)$ in decreasing on I and f; concave dawn on I.
D $0^{\prime \prime}$

Examples Discuss the following curves with respect to concavity and local min and max.
a)

$$
\begin{aligned}
& y=x^{2} \\
& y^{\prime}=2 x \\
& y^{\prime \prime}=2
\end{aligned}
$$

b)

$$
\begin{aligned}
& y=x^{3} \\
& y^{\prime}=3 x^{2} \\
& y^{\prime \prime}=6 x
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=-x^{4} \\
& y^{\prime}=-4 x^{3} \\
& y^{\prime \prime}=-12 x^{2}
\end{aligned}
$$

(4) Feb 12,2016

The second derivative test for extremes:
a) if $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f is concave 'down and has a local maximum at $x=c \quad\left(e . g y=-x^{2}\right)$
b) if $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, the f is concave up and has a local minimum at $x=c \quad\left(\right.$ e.g $\left.y=x^{2}\right)$
c) if $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$, then f may have a local maximum, a minimum or neither

$$
\begin{gathered}
\left(\text { egg } y=x^{4}, y=-x^{4}\right. \\
\left.y=x^{3}\right)
\end{gathered}
$$

Definition An inflection point is a point on the graph of a function where the concavity of the function changes, from concave up to down or from concave down to up.
e.g. Example on page $3 \Rightarrow\left\{\begin{array}{l}a) \\ b\end{array}\right.$ no inflection point $\left\{\begin{array}{l}\text { b) } \quad x=0 \text { is an inflection point } \\ \text { c) } \\ n_{0} \text { inflection point }\end{array}\right.$

Example: Find where the function $y=x^{4}-4 x^{3}$ is concave up and down. Find all the local m in and max. and

$$
\begin{aligned}
& y=x^{4}-4 x^{3} \\
& y^{\prime}=\frac{d y}{d x}=4 x^{3}-12 x^{2}=\left(x^{2}\right)(4 x-12) \\
& y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(4 x^{3}-12 x^{2}\right)=12 x^{2}-24 x=(12 x)(x-1) \\
& \begin{array}{c|c|c}
\\
\hline x^{2} & +y_{0}^{1}+1+ \\
\hline 4 x-2 & - & -\quad+1 \\
\hline y & -\phi-\phi+
\end{array}
\end{aligned}
$$

0	2	3		
y^{\prime}	1	1	1	1
$y^{\prime \prime}$	$+1+c$	0	+1	+1
y	\pm	\pm	\pm	1

(1). inflection point

