MATH110-001, L'Hopital's rule

Ida Karimfazli

University of British Columbia
BC, Canada
idak@math.ubc.ca
Feb. 2016

limit as $x \rightarrow 0$

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=?
$$

limit as $x \rightarrow 0$

$f(x)=\sin (x)$
$g(x)=x$

limit as $x \rightarrow 0$

$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=?$
$f(x)=\sin (x)$
$g(x)=x$
$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$

limit as $x \rightarrow 0$

$\lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}}=?$

limit as $x \rightarrow 0$

$\lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}}=$?
$f(x)=\sin (x)$
$g(x)=x^{2}$

limit as $x \rightarrow 0$

$\lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}}=$?
$f(x)=\sin (x)$
$g(x)=x^{2}$
$\lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}}= \pm \infty$

limit as $x \rightarrow 0$

Question: $\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{x^{2}}$ is \ldots and $\lim _{x \rightarrow 0^{-}} \frac{\sin (x)}{x^{2}}$ is \ldots.

- $+\infty,+\infty$
- $+\infty,-\infty$
- $-\infty,-\infty$
- $-\infty,+\infty$

limit as $x \rightarrow 0$

$\lim _{x \rightarrow 0} \frac{x^{3}}{1-\cos (x)}=?$

limit as $x \rightarrow 0$

$$
\lim _{x \rightarrow 0} \frac{x^{3}}{1-\cos (x)}=?
$$

$$
f(x)=x .^{3}
$$

$$
g(x)=1-\cos (x)
$$

limit as $x \rightarrow 0$

$\lim _{x \rightarrow 0} \frac{x^{3}}{1-\cos (x)}=?$

$$
\begin{aligned}
& f(x)=x .^{3} \\
& g(x)=1-\cos (x)
\end{aligned}
$$

limit as $x \rightarrow 0$

$\lim _{x \rightarrow 0} \frac{x^{3}}{1-\cos (x)}=$?

$$
\begin{aligned}
& f(x)=x^{3} \\
& g(x)=1-\cos (x)
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{x^{3}}{1-\cos (x)}=0
$$

limit as $x \rightarrow 0$

$\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \stackrel{?}{=} \frac{0}{0}$
$\lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}} \stackrel{?}{=} \frac{0}{0}$
$\lim _{x \rightarrow 0} \frac{x^{3}}{1-\cos (x)} \stackrel{?}{=} \frac{0}{0}$

limit as $x \rightarrow 0$

$\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \stackrel{?}{=} \frac{0}{0}$
$\lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}} \stackrel{?}{=} \frac{0}{0}$
$\lim _{x \rightarrow 0} \frac{x^{3}}{1-\cos (x)} \stackrel{?}{=} \frac{0}{0}$
$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$
$\lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}}= \pm \infty$
$\lim _{x \rightarrow 0} \frac{x^{3}}{1-\cos (x)}=0$

limit as $x \rightarrow 0$

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \stackrel{?}{=} \frac{0}{0} & \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1 \\
\lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}} \stackrel{?}{=} \frac{0}{0} & \lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}}= \pm \infty \\
\lim _{x \rightarrow 0} \frac{x^{3}}{1-\cos (x)} \stackrel{?}{=} \frac{0}{0} & \lim _{x \rightarrow 0} \frac{x^{3}}{1-\cos (x)}=0
\end{array}
$$

" $0 / 0$ " is called an indeterminate form because knowing that $f(x)$ approaches 0 and $g(x)$ approaches 0 is not enough to determine the limit of $f(x) / g(x)$, even if it has a limit.

L'Hopital's rule

If $f(x)$ and $g(x)$ are differentiable on an interval I which contains the points $x=a, g^{\prime}(x) \neq 0$ on $/$ except possibly at a and

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0} \quad \text { or } \quad \frac{\infty}{\infty}
$$

then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

provided the limit on the right exists. Note that a can represent a finite number or " ∞ ".

limit as $x \rightarrow \infty$

x^{5}
 $\lim \frac{x^{5}}{e^{x}}=?$
 $x \rightarrow \infty$
 e^{x}

\qquad

limit as $x \rightarrow \infty$

$\lim _{x \rightarrow \infty} \frac{x^{5}}{e^{x}}=?$
$f(x)=x^{5}$
$g(x)=e^{x}$

limit as $x \rightarrow \infty$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{5}}{e^{x}}=? \\
& f(x)=x^{5} \\
& g(x)=e^{x}
\end{aligned}
$$

limit as $x \rightarrow \infty$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{5}}{e^{x}}=? \\
& f(x)=x^{5} \\
& g(x)=e^{x} \\
& \lim _{x \rightarrow \infty} \frac{x^{5}}{e^{x}}=0
\end{aligned}
$$

limit as $x \rightarrow \infty$

$\lim _{x \rightarrow \infty} \frac{x}{\ln (x)}=?$

limit as $x \rightarrow \infty$

$\lim _{x \rightarrow \infty} \frac{x}{\ln (x)}=?$

$$
\begin{aligned}
& f(x)=x \\
& g(x)=\ln (x)
\end{aligned}
$$

limit as $x \rightarrow \infty$

$\lim _{x \rightarrow \infty} \frac{x}{\ln (x)}=$?

$$
\begin{aligned}
& f(x)=x \\
& g(x)=\ln (x)
\end{aligned}
$$

$\lim _{x \rightarrow \infty} \frac{x}{\ln (x)}=\infty$

More exercises

$\lim _{x \rightarrow 0} \frac{\sin (4 x)}{\sin (x)}=?$
$\lim _{x \rightarrow 0} \frac{\sin (x)-x}{\cos (x)+x^{2} / 2-1}=?$
$\lim _{x \rightarrow \infty} \frac{e^{x^{2}}+x}{e^{4 x}-x^{2}+2}=?$
$\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin (x)}\right)=?$

$$
\lim _{x \rightarrow \infty} \frac{x \ln (x)}{x^{2}+1}=?
$$

$$
\lim _{x \rightarrow-\infty} \frac{x^{3}+2 x}{3 x^{3}-5 x^{2}+1}=?
$$

$$
\lim _{x \rightarrow \infty} \frac{e^{x}+x^{5}}{x^{6}+3}=?
$$

More exercises

- Find $\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}$ assuming that $n>0$.
- Find $\lim _{x \rightarrow-\infty} \frac{x^{n}}{e^{x}}$ assuming that $n>0$.
- Find $\lim _{x \rightarrow \infty} \frac{x^{n}}{\ln (x)}$ assuming that $n>0$.
- Find $\lim _{x \rightarrow \infty} \frac{5 x^{n}+2}{3 x^{m}+1}$ assuming that $n>m>0$.
- Find $\lim _{x \rightarrow-\infty} \frac{5 x^{n}+2}{3 x^{m}+1}$ assuming that $n>m>0$.
- Find $\lim _{x \rightarrow \infty} \frac{5 x^{n}+2}{3 x^{m}+1}$ assuming that $m>n>0$.
- Find $\lim _{x \rightarrow \infty} \frac{5 x^{n}+2}{3 x^{m}+1}$ assuming that $m=n>0$.

More exercises

- Find $\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+b_{m-2} x^{m-2}+\cdots+b_{1} x+b_{0}}$ assuming that $n>m>0$ and that $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ and $b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}$ are constant numbers.
- Find $\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+b_{m-2} x^{m-2}+\cdots+b_{1} x+b_{0}}$ assuming that $m>n>0$ and that $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ and $b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}$ are constant numbers.
- Find $\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+b_{m-2} x^{m-2}+\cdots+b_{1} x+b_{0}}$ assuming that $m=n>0$ and that $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ and $b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}$ are constant numbers.

