Problem 1.

A boat is being pulled into a dock by a rope attached to the bow of the boat and passing through a pully on the dock that is $3 m$ higher than the bow of the boat. If the rope is pulled in at a rate of $1 \mathrm{~m} / \mathrm{s}$, how fast is the boat approaching the dock when it is 4 m from the dock?

Step 0. See the schematic below.

Step 1. $\frac{d L}{d t}=-1 m / s, \quad x=4 m, \quad H=3 m$
Step 2. $\frac{d x}{d t}=$?
Step 3. $x^{2}+H^{2}=L^{2}$
Step 4. x and L change with time $\Rightarrow x(t), L(t)$
H is not changing with time $\Rightarrow H$ is a constant and $\frac{d H}{d t}=0$.

Step 5.

$$
\begin{aligned}
& \frac{d}{d t}\left(x(t)^{2}+H^{2}\right)=\frac{d}{d t}\left(L(t)^{2}\right) \\
& \frac{d x^{2}}{d t}+\frac{d H^{2}}{d t}=\frac{d L^{2}}{d t} \\
& \frac{d x^{2}}{d x} \frac{d x}{d t}+0=\frac{d L^{2}}{d L} \frac{d L}{d t} \\
& 2 x \frac{d x}{d t}=2 L \frac{d L}{d t} \\
& \frac{d x}{d t}=\frac{L}{x} \frac{d L}{d t}
\end{aligned}
$$

Step 6.

$$
\begin{aligned}
& H=3 m, \quad x=4 m, \quad \frac{d L}{d t}=-1 m / s, \quad L=? \\
& L=\sqrt{x^{2}+H^{2}}=\sqrt{4^{2}+3^{2}}=5 \\
& \frac{d x}{d t}=\frac{5 m}{4 m} \times(-1) \mathrm{m} / \mathrm{s}=-\frac{5}{4} \mathrm{~m} / \mathrm{s}=-1.25 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

