Problem 1.

Find all the ctirical points of the function

$$
f(x)= \begin{cases}2 x^{3}-3 x^{2}-12 x & x \leq 0 \\ e^{-11 x}(1-x)-1 & 0<x\end{cases}
$$

Solution:

- $x \leq 0$

$$
\frac{d f}{d x}=\frac{d}{d x}\left(2 x^{3}-3 x^{2}-12 x\right)=6 x^{2}-6 x-12=6\left(x^{2}-x-2\right)
$$

Here $f(x)$ is defined by a polynomial; so the derivative exists everywhere. We need to find the points where $f^{\prime}(x)=0$.
$6\left(x^{2}-x-2\right)=0 \Rightarrow x^{2}-x-2=\frac{0}{6} \Rightarrow x=\frac{1 \pm \sqrt{1+8}}{2}=\frac{1 \pm 3}{2} \Rightarrow x=-1$ or $x=2$
$x=-1$ is a critical number. Note that we have assumed $x \leq 0$. So $x=2$ is not an acceptable solution here.
We will need to check continuity and differentiability at $x=0$.

- $0<x$
$\frac{d f}{d x}=-11 e^{-11 x}(1-x)-e^{-11 x}=e^{-11 x}(11 x-12)$
$f^{\prime}=e^{-11 x}(11 x-12)$ is defined everywhere on $(0, \infty)$. So we need to find the points where $f^{\prime}(x)=0$
$f^{\prime}(x)=0 \Rightarrow\left\{\begin{array}{l}e^{-11 x}=0 \text { This does not have a solution since for all } 0<x, e^{-11 x}>0 \\ \text { OR } \\ 11 x-12=0 \Rightarrow x=\frac{12}{11}\end{array}\right.$
Note that $x=\frac{12}{11}$ is in the interval $(0, \infty)$. So $x=\frac{12}{11}$ is a critical number.
We can now check continuity and differentiability at $x=0$.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =0 \\
\lim _{x \rightarrow 0^{+}} f(x) & =e^{0}(1-0)-1=1-1=0 \\
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{+}} f(x)=f(0)=0
\end{aligned}
$$

So f is continuous at $x=0$. What about differentiability?

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f^{\prime}(x) & =\lim _{x \rightarrow 0^{-}}\left(6 x^{2}-6 x-12\right)=-12 \\
\lim _{x \rightarrow 0^{+}} f^{\prime}(x) & =\lim _{x \rightarrow 0^{+}} e^{-11 x}(11 x-12)=-12
\end{aligned}
$$

So $f(x)$ is continuous and differentiable at $x=0$. Therefore, $x=0$ is not a critical number.

Problem 2.

Show that the function $f(x)=3^{x-2}-2(x+1)^{2}+18$ has at least one critical point. Since you don't have a calculator, a table of the function values is provided below. Note: you do not need to find the critical point.

x	0	1	2	3	4	5	6	7	8	9	10
$f(x)$	16.1	10.3	1	-11	-23	-27	1	133	585	2005	6337

Solution: Note that $f(2)=f(6)=1$.
$f(x)$ is the addition of an exponential function, 3^{x-2}, and a polynomial function, $-2(x+$ $1)^{2}+18$. Both exponential functions and polynomials are differentiable for all real numbers x. So the function is continuous and differentiable on [2, 6]. Therefore, using Rolle's Theorem we know there is at least one number $c, 2<c<6$ so that

$$
f^{\prime}(c)=\frac{f(6)-f(2)}{6-2}=\frac{1-1}{4}=0
$$

So $f^{\prime}(x)=0$ has at least one solution in the interval $(2,6)$. So f has at least one critical point on that interval.

