Week 6 - Review session
 Feb. 10, 2016

Reminder

Midterm today at 6pm in CHEM B150.
Be there 10-15 minutes earlier.
What we have learned so far:

- implicit differentiation
- related rates
- critical points
- MVT
- first derivative test

Example 1.

Assuming that Fig. 1 shows a graph of the derivative of a function f, which statement is true?

Figure 1
a. f has a local min at $x=3$ and two local max at $x=1$ and $x=7$.
b. f has a local min at $x=2$ and a local max at $x=5$.
c. f has two local min at $x=1$ and $x=7$ and a local max at $x=3$.
d. One can't find the local extrema of f using Fog. 1 as a graph of f^{\prime}.
e. None of the above!

Example 2.

Given the equation $x^{3} y^{2}+y^{3} \sin (x y)=0$ find $\frac{d y}{d x}$.

Example 3.

Find all the critical numbers of $f(x)=x^{1 / 3} e^{-3 x}$. Find the local minimum and maximum values of $f(x)$ if they exist. Identify the intervals where the function is increasing.

Example 4.

Assuming that f and f^{\prime} are differentiable for all $-\infty<x<\infty$ and that $f^{\prime}(2)=3, f^{\prime}(5)=0$ show that $f^{\prime \prime}(c)=-1$ has at least one real solution.

Example 5.

Suppose you fill a 5 m -long trough with water at a rate of $2 \mathrm{~m}^{3} /$ minute. If the cross-section of the trough is in the shape of an isosceles triangle that is $4 m$ wide at the top and $3 m$ high, how fast is the height of the water in the trough increasing when the water is 1 m deep?

Example 6.

Find all the critical points of the function

$$
f(x)= \begin{cases}2 x^{3}-3 x^{2}-12 x & x \leq 0 \\ e^{-11 x}(1-x)-1 & 0<x\end{cases}
$$

