Assignment 3 - Solution

Problem 1.

The graph of function f is shown. Sketch the graphs of f^{\prime} and $f^{\prime \prime}$.

$f(x)$

$f^{\prime}(x)$

Problem 2.

a. Sketch a possible graph of a function f that satisfies the following conditions and is differentiable for all x :
i. Domain of f is $0<x<12$
ii. f^{\prime} is increasing on $(0,3)$
iii. $f^{\prime \prime}<0$ on $(3,6)$
iv. f is concave up on $(6,9)$
v. f has an inflection point at $x=9$

a
b. On your graph, find and label the local minimums and maximums.

b.
c. Sketch a possible graph of a function f that satisfies the conditions given in part a and is differentiable for all x in its domain, except $x=9$ where f is not continuous and $\lim _{x \rightarrow 9^{+}} f^{\prime}=$ $\lim _{x \rightarrow 9^{-}} f^{\prime}$.

c.
d. Sketch a possible graph of a function f that satisfies the conditions given in part a and is differentiable for all x in its domain, except $x=9$ where f is continuous but not differentiable.

d.
e. Sketch a possible graph of a function f that satisfies the conditions given in part a and is differentiable for all x in its domain, except $x=9$ where f is not continuous but has a maximum and $\lim _{x \rightarrow 9^{+}} f^{\prime}=\lim _{x \rightarrow 9^{-}} f^{\prime}$.

e.
f. Sketch a possible graph of a function f that satisfies the conditions given in part a and is differentiable for all x in its domain, except $x=9$ where f is not continuous, $\lim _{x \rightarrow 9^{+}} f^{\prime}$ is not defined, but $\lim _{x \rightarrow 9^{-}} f^{\prime}$ is defined.

f.

Problem 3.

Show that if $f(x)$ is increasing and concave up on $[a, b]$, then $f((a+b) / 2)<\frac{f(a)+f(b)}{2}$. Hint: Use the mean value theorem on the function f on the intervals $(a,(a+b) / 2)$ and $((a+b) / 2, b)$.

Solution:

MVT on $(a,(a+b) / 2)$: a number $c_{1}, a<c<(a+b) / 2$ exists such that

$$
\begin{equation*}
f^{\prime}\left(c_{1}\right)=\frac{f((a+b) / 2)-f(a)}{(a+b) / 2-a}=\frac{f((a+b) / 2)-f(a)}{(b-a) / 2} \tag{1}
\end{equation*}
$$

MVT on $((a+b) / 2, b)$: a number $c_{2},(a+b) / 2<c_{2}<b$ exists such that

$$
\begin{equation*}
f^{\prime}\left(c_{2}\right)=\frac{f(b)-f((a+b) / 2)}{b-(a+b) / 2}=\frac{f(b)-f((a+b) / 2)}{(b-a) / 2} \tag{2}
\end{equation*}
$$

Since f is concave up, we know that $f^{\prime \prime}(x)>0$ on the interval (a, b). This means that $f^{\prime}(x)$ is increasing on this interval. $c_{2}>c_{1}$ thus implies $f^{\prime}\left(c_{2}\right)>f^{\prime}(c)$. Using this inequality together with equations (1) and (2) we find

$$
\frac{f(b)-f((a+b) / 2)}{(b-a) / 2}>\frac{f((a+b) / 2)-f(a)}{(b-a) / 2}
$$

Notice that $b>a$ and thus $(b-a) / 2>0$. We can therefore multiply both sides of the above inequality by $(a-b) / 2)$:

$$
\begin{aligned}
f(b)-f((a+b) / 2) & >f((a+b) / 2)-f(a) \\
f(b)+f(a) & >2 f((a+b) / 2) \\
\frac{f(b)+f(a)}{2} & >f((a+b) / 2)
\end{aligned}
$$

add $f((a+b) / 2)+f(a)$ to both sides divide both sides by 2

Figure 1: Illustrative examples for problem 3.

