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Abstract

How has COVID-19 affected the Amazon rainforest? Using an event study design

and a difference-in-differences approach, we find that COVID-19 increased deforesta-

tion by 35% across the Peruvian Amazon during the first year of the pandemic. This

increased CO2 emissions by more than 17 million tons, representing a social cost equiv-

alent to 3 times the national budget for forest management. The main mechanism be-

hind these outcomes is the reduction in monitoring efforts, combined with an increase

in illegal activities related to coca production and mining.
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1 Introduction

Reducing deforestation has the potential to mitigate around one-third of global human-

caused carbon emissions (cite ipcc report). Deforestation is most prevalent in developing

countries’ tropical forests (cite qje y are pp), however, its effects will be felt globally through

climate change and biodiversity loss. Therefore, understanding the factors facilitating defor-

estation is crucial to curb its effects.

This paper examines the effect of the COVID-19 pandemic on Amazon deforestation,

using data from Peru. The main contribution of the paper is to provide insights into how a

developing country’s capacity for environmental monitoring and enforcement was constrained

by the pandemic, and how these constraints damaged environmental outcomes such as forest

conservation. We provide new evidence of the impact of COVID-19 on deforestation and

shed light on the underlying mechanisms driving the estimated causal impact.

Peru is an ideal context for such a study....

To do so, we build a district-level panel dataset with information about annual deforesta-

tion covering the period 2015-2020. Our outcome variable is derived from high-resolution

Landsat satellite images, corrected to remove potential forest-cover confusions (e.g. plan-

tations) and false positives as a consequence of prediction errors. We first exploit the time

variation in deforestation before and after the pandemic in an event study design as our

baseline specification. Next, we complement this approach with a difference-in-difference

design that exploits the inter-district variation in COVID-19 cases and deaths.

The empirical analysis yields several significant findings. First, we observe a substantial

increase in deforestation during the COVID-19 pandemic. Compared to pre-pandemic levels,

deforestation in Peru rose by approximately 35%, resulting in a national forest loss of 54

thousand hectares. This finding holds true across various identification strategies, providing

robust evidence of the impact.
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Second, this surge in deforestation carries significant costs. In 2020 alone, COVID-19-

induced deforestation led to emissions exceeding 17 million tCO2 − eq at the national level.

This amounts to an additional social cost of US$131.38 million, three times the budget

allocated for forest management in Peru in 2019.

Third, we document a potential mechanism that explains the pandemic’s impact on

deforestation, namely a decrease in forest monitoring efforts coupled with an increase in

illegal deforestation activities. Investments in forest monitoring declined in 2020 at both

national and regional levels. Moreover, we observe a spike in illegal activities related to

coca leaf production and mining during the same period. Our analysis of heterogeneous

effects reveals that districts engaged in coca production or characterized by informal or

illegal mining experienced exacerbated levels of deforestation. Intriguingly, while illegal

deforestation increased, legal logging activities actually decreased in 2020.

This study contributes to the literature on COVID-19 and environmental outcomes. Pre-

vious studies have analyzed the pandemic’s impacts on air quality (Brodeur et al., 2021, Dang

and Trinh, 2021, Silver et al., 2020), wildlife (Madhok and Gulati, 2022), and environmental

regulation (Vale et al., 2021). Regarding the impacts of COVID-19 on deforestation, most

studies trace potential impacts based on theoretical models (Wunder et al., 2021) or descrip-

tive analysis (Brancalion et al., 2020, Lopez-Feldman et al., n.d.). The closest in spirit to

our study is Saavedra (2020). It uses a difference-in-difference approach to study the effect

of national-level lockdowns on deforestation using 70 countries, and it finds no statistically

significant effects overall. However, the outcome variable in this study (“vegetation cover

change alerts” instead of deforestation) is prone to measurement error that may be attenu-

ating the statistical significance. Moreover, the outcome was measured between January 1,

2019 and July 12, 2020. This disregards a great part of the dry season in the Amazon region

(usually between June and November) when slash-and-burn practices are intensified, given

the higher prevalence of environmental conditions favoring the flammability of fallen forests
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(Aragao et al., 2008).

The rest of the paper is organized as follows. Section 2 describes the background. Section

3 describes the data and the empirical approach. Section 4 presents the main results, robust-

ness checks, and heterogeneous effects. Section 5 presents a discussion about the mechanisms

and the social cost of deforestation. Section 6 concludes.

2 Background

We use the context of Peru, one of the countries hardest hit by COVID-19 (Higa et al., 2022)

and one with the largest extension of tropical forests (Keenan et al., 2015). Peru holds one

of the highest COVID-19 mortality rates worldwide, even above countries such as Brazil and

India. As of July 2021, there were 2 million COVID-19 cases and more than 600 COVID-19-

related deaths per 100,000 inhabitants. Peru implemented stay-at-home orders and social

distancing at the start of the pandemic in March 2020. Similar to other countries, the scope of

the social restrictions has fluctuated in response to demands to open the economy and based

on the number of COVID-19 cases. On the other hand, more than half of Peru’s territory

(53%) is covered by rainforests. However, on average, more than 128 thousand hectares

were annually deforested nationwide between 2001 and 2019, which is equivalent to losing

more than 20 soccer fields every hour. Forests in Peru are threatened by activities related

to commercial agriculture, gold mining, coca production, and cattle ranching, among others

(Finer and Novoa, 2017, Piotrowski, 2019). Figure 1 displays the location of rainforests in

the territory.

In Peru, the Law of Forestry and Wildlife (FWL) constitutes the main policy oriented to

guarantee the sustainable provision of the benefits generated by the forests. In the last two

decades, two FWLs have been introduced in the country. The first one was enacted in 2000

and started to be enforced in 2001. Nevertheless, its numerous reforms were found to be
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Figure 1: Forest cover in Peru, 2020

Source: MINAM, 2022

insufficient to effectively halt deforestation across the country (Sears and Pinedo-Vasquez,

2011). As a consequence, a second FWL was introduced in 2011 and enforced since 2015,

after a long process of consultation with several groups, including indigenous communities

and other stakeholders involved in the forestry sector (e.g., mestizo farmers and small- and

medium-sized companies). One of the main reforms introduced by the new law was the

creation of SERFOR (Forestry and Wildlife National Service) as the national ruling agency

of the forestry sector, which operates jointly with regional forestry authorities. This has

boosted the country’s capacity to regulate forestry activities across the territory and track

forest-related faults. Given the institutional landmark that the SERFOR creation represents

in terms of the country’s capacity for monitoring deforestation, we focus our analysis on the

period after the new FWL, that is from 2015 onwards.
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3 Data and Methods

This paper explores the effects of COVID-19 on deforestation. We rely on the official annual

forest cover loss data collected by the Ministry of Environment in Peru, which has been

available since 2001 (MINAM, 2022). This data is derived from interpreting high-resolution

(30m) Landsat satellite images that are corrected to remove potential forest-cover confusions

(e.g., plantations) and false positives as a consequence of prediction errors. The information

is available only for the 400 districts with tropical forest coverage, about 20% of the 1896

districts in the country. Figure 2, Panel (a), displays the number of deforested hectares by

year and highlights that 2020 was the year with the largest deforestation on record. On the

other hand, we use COVID-19 data collected by the Ministry of Health in Peru (MINSA,

2022). This data contains information about the number of COVID-19 cases and deaths

caused by COVID-19 in each district in the country. A description of the main variables

used in the analysis and summary statistics are provided in Tables B.1 and B.2, respectively,

in the Appendix.

Baseline approach Figure 2, Panel (b), shows a positive correlation between the number

of COVID-19 cases and the deforestation in each district, indicating a possible effect of the

pandemic on deforestation. To study this potential effect, we use an event study and estimate

the following model:

yit =
1∑

Q=0
βQDQ + γi + ϵit (1)

where the unit of observation is district i in year t. yit represents the deforestation

outcome variable. DQ is an indicator variable that equals one when the year is 2020 and

zero otherwise. The omitted category is the pre-pandemic year 2019. γi includes district

fixed effects. Standard errors are clustered at the district level. Our identification strategy

exploits time variation across years: we compare changes in deforestation before (2019) and

6



Figure 2: Deforestation and COVID-19

(a) Annual country-level deforestation, 2001-2021

(b) Correlation between COVID-19 and deforestation

Notes: Panel (a) depicts the annual deforestation (’000 ha) from 2001-2021.
Panel (b) depicts a binscatter with deforestation (ha) on the vertical axis and
COVID-19 infections (in logs) on the horizontal axis. Information comes from
MINAM (2022), MINSA (2022).
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after (2020) the pandemic. We also conduct robustness checks by extending the pre-pandemic

period to 2015-2019.

Difference-in-Difference design We complement our baseline regression using a difference-

in-difference approach. Specifically, we estimate the following model using our panel of

districts:

yit = aftert + COVID-19i + β(COVID-19i ∗ aftert) + ϵit (2)

where the unit of observation is district i in year t. yit is the deforestation outcome variable.

aftert is a dummy variable that equals one if the period corresponds to 2020 or zero if the

period encompasses the years 2015-2019. COVID-19i is our treatment indicator variable

that equals one if the district had COVID-19 cases above the national median in 2020 (i.e.,

28 cases). Hence, we exploit the district-level variation in exposure to COVID-19 to identify

the effects of the pandemic on deforestation.

4 Results

Table 1 shows our main results. Column 1 presents estimates from our event study in Equa-

tion 1. Columns 2 and 3 present difference-in-difference (DiD) estimates from Equation 2.

Our main results suggest that deforestation in Peru increased significantly due to the

pandemic. The average deforestation per district increased by approximately 35% in 2020

compared to pre-pandemic levels. This corresponds to an additional reduction in forest cover

of 54 thousand hectares at the national level, which is equivalent to the surface of more than

77 thousand soccer fields. We can identify the combined effect of shocks associated with

COVID-19 on deforestation, but we cannot single out a particular policy. Reverse causality

is less worrisome in our context given the evidence that forest loss does not affect the incidence

of respiratory diseases (Berazneva and Byker, 2017).
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Table 1: Main results

Dependent variable: Deforestation (ha)
(1) (2) (3)

Year 2020 137.12***
(17.589)

DiD 153.54*** 140.11***
(35.68) (31.62)

Design Event study DiD DiD
District-specific time trends No No Yes

Pre-pandemic period 2019 2015-2019 2015-2019

Mean outcome 371.1 390.1 390.1
(pre-pandemic)

N 800 2,394 2,394
R-squared 0.966 0.04 0.04

Notes: Estimated standard errors, reported in parentheses, are clustered at the dis-
trict level. Significance at the one, five, and ten percent levels is indicated by ***,
**, and *, respectively. See Table B.3 in the Appendix for similar results using our
event study design but expanding the pre-pandemic period to 2015-2019, and using
our difference-in-difference approach but restricting the pre-pandemic period to 2019.

Identification concerns Results in Column (1) may be biased under the presence of

unobserved time-varying confounders. For example, we cannot disentangle annual trends or

other non-COVID-19 related shocks in Equation 1. To attenuate this concern, in Column

(3), we complement our baseline approach with a difference-in-difference design that controls

for district-specific time trends. The stability of our outcome variable before the pandemic

also helps mitigate the concern (see Panel (b) in Fig 3).

There may be some identification concerns regarding our DiD complementary approach.

First, it relies on the assumption that the treatment and control groups have a common

trend over time in deforestation. Figure 3 presents evidence that both groups may have been

experiencing similar trends in the outcome variable prior to treatment. Panel (a) depicts the

estimates from an event study that assesses whether there are differences in deforestation

between treated and control districts every year. A district is treated if the number of
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COVID-19 cases (in 2020) in their jurisdiction was above the national median. Circles

represent point estimates from regressing deforestation on dummy variables corresponding

to the interaction between the year and treatment dummies, controlling for year and district-

fixed effects. The omitted category is the year 2019. Vertical lines show 95 percent confidence

intervals, calculated using standard errors clustered at the district level. Except for 2020, the

differences in deforestation between the treatment and control groups are not statistically

significant at a five percent level of significance. Likewise, Panel (b) provides more graphical

evidence of parallel trends over time. We also use recent developments to test violations of

parallel trends, following Rambachan and Roth (2023). We find that our result is robust to

allowing for violations of post-treatment parallel trends up to 1.5x as big as the maximum

violation in the pre-treatment period (see Figure A.3 in the Appendix).

Second, our treatment may be correlated with unobserved events that differently affected

the treatment and control groups. To address this concern, we include district-specific time

trends to allow the treatment and control districts to follow different trends (see Column (3)

in Table 1). Finally, the composition of the treatment and control groups may have changed

between the pre-treatment and post-treatment periods. Given that our unit of observation is

a district, it is unlikely that its composition and characteristics changed dramatically before

vs. after the pandemic. However, in order to mitigate this potential concern, we combine

our difference-in-difference design with propensity score matching (PSM).

Additional robustness checks Table 2 shows that our main results are robust across

different specifications. Column (1) displays estimated coefficients from Equation 2 after re-

stricting the sample to districts with forests that covered 20% or more of their territories in

2015. We use this threshold to avoid potential biases by including districts with substantially

different environmental features in the sample. Results suggest that the higher the cover-

age percentage in the district, the higher the magnitude of the effect. To address concerns
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Figure 3: Evidence of parallel trends

(a) Event study

(b) Average deforestation 2015-2020

Notes: Panel (a) depicts the estimates from an event study that assesses
whether there are differences in deforestation between treated and control
districts every year. Panel (b) depicts the average deforestation for treated
and control districts during 2015-2020. A district is treated if the number of
COVID-19 cases (in 2020) in their jurisdiction was above the median in the
country.
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regarding measurement error in our treatment variable, in Column (2), we use COVID-19

deaths instead of COVID-19 infection cases as an alternative measurement of our treatment.

Here, a district is treated if it registered deaths due to COVID-19. Columns (4) and (5)

display the results from applying the difference-in-difference approach to samples matched

by their corresponding propensity score. Columns (4) and (5) use COVID-19 infection cases

and deaths as the measures of treatment, respectively. We construct control groups based

on the conditional probability of districts to be assigned to the treated group, given proxies

for biophysical, geographical, and socioeconomic drivers that could exert some influences on

deforestation (Busch and Ferretti-Gallon, 2017). We find larger coefficients than those in

Table 1 as potential confounders are controlled. We use information from 2019 or earlier on

district-level total surface area (IGN, 2022); river area, road number, and distance to the

capital city (MTC, 2022); altitude (ECLAC, 2022); slopes (Farr et al., 2007); forest cover

(MINAM, 2022); population density (ECLAC, 2022); and human development index scores

(ECLAC, 2022). Post-matching covariate balance shows that the procedure achieves impor-

tant bias reductions in the resulting samples (see Figure A.1 in the appendix).

Heterogeneous effects We also explore the heterogeneous effects of COVID-19 on defor-

estation based on the incidence of coca production, illegal or informal mining, and protected

areas in the districts. We focus our analysis on coca production and mining due to their noto-

rious potential to trigger short-term land use changes across the Peruvian Amazon (Swenson

et al., 2011, Young, 1996). We also analyze the role of protected areas because this is the

most frequent policy applied to deter deforestation processes in the country. Instead of be-

ing a single command-and-control instrument, it encompasses a wide range of governance

regimes with different levels of national agencies participation. One-quarter of the Peruvian

Amazon region is under some protected area regime (SERNANP, 2022). Aside from these
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Table 2: Robustness Checks

Dependent variable: Deforestation (ha)
(1) (2) (3) (4)

DiD 193.93*** 149.50***
(46.64) (27.77)

DiD-PSM 171.44* 220.43***
(91.60) (44.84)

Measure of COVID-19 Cases Death Cases Death

N 1,728 2,394 1,710 1,705
R-squared 0.05 0.04 0.04 0.06

Notes: All regressions control for district fixed-effects and consider the years 2015-
2019 as the pre-pandemic period. Estimated standard errors, reported in parenthe-
ses, are clustered at the district level. Significance at the one, five, and ten percent
levels is indicated by ***, **, and *, respectively.

two drivers, commercial agriculture and cattle ranching have also been identified as relevant

deforestation drivers across the Peruvian Amazon. However, both these activities follow

complex dynamics that delay by several years the transition from forests to temporary land

uses (Armas et al., 2009). Therefore, they are less likely to play a role in the impact of the

pandemic on deforestation.

Table 3 displays our results. We find that deforestation is exacerbated in districts with

coca production, or with informal or illegal mining. On the other hand, the presence of

protected areas mitigated the effects of deforestation in the district, with increasing efficacy

as the areas under protection get larger. This result is in line with previous findings that

highlight the role of decentralized management models of protected areas in successfully

mitigating deforestation (Schleicher et al., 2017). Our outcome variable is the annual rate of

forest change between 2020 and 2019. Given that deforestation was higher in 2020 compared

to 2019, the annual rate of forest change is a negative number. To ease the interpretation of
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Table 3: Heterogeneous effects

Dependent variable:
Annual rate of forest change, 2019-2020

(1) (2)
Year 2020 2.19*** 2.17***

(0.21) (0.21)
Mining 0.17* 0.18*

(0.09) (0.09)
Coca 0.21** 0.19*

(0.10) (0.10)
Protected areas -0.34*** -0.44***

(0.08) (0.08)

N 394 394
R-squared 0.53 0.54

Notes: Estimated standard errors, reported in parentheses, are clus-
tered at the district level. Significance at the one, five, and ten percent
levels is indicated by ***, **, and *, respectively. Regressions include
other district characteristics such as population density, river area, al-
titude, number of roads, distance to the capital city, and slope (see
Table B.4 in the Appendix).

results, we multiply the estimated rate by −1. We then regress our modified outcome variable

on dummy variables that capture whether the year is 2020, whether coca production was

recorded in the district in 2017 (using data from UNODC (2017)), and on whether there was

illegal or informal mining activity in the district (using data provided by MINAM (2016)).

All the regressions control for the average district slope, the total district area, and the

extension of rivers and national roads. Columns (1) and (2) present the estimates from

the regression. The only difference between the columns is the treatment of the variable

protected areas. It equals one if there are protected areas in the district in Column (1),

while in Column (2) it equals one if protected areas represent 10% or more of the territory

in the district. We made this differentiation to assess the extensive margin and the intensity

of the protected areas policy in mitigating the COVID-19 deforestation effects.
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In summary, we identify the weakened institutional capacity of the country to conduct

monitoring and enforcement activities as a mechanism through which COVID-19 emergence

enabled an increase in deforestation. This institutional weakening led to an exacerbation of

illegal and informal activities driving forest loss.

5 Discussion

5.1 CO2 emissions and social cost

We estimate the impact of the deforestation caused by the pandemic in terms of carbon (CO)

emissions and the corresponding social costs. We use the following equation to calculate the

released tonnes of equivalent CO:

tCO2-eq = (Def2020 × n × E) ∗ 3.67 (3)

Where tonnes of tCO2-eq are estimated using the increase in deforestation observed in

2020 (Def2020) and captured by our estimates from Equation 1 (Column 1 of Table 1). We

multiplied this by the number of districts in our data (n = 400), and by a parameter repre-

senting a fixed amount of tonnes of CO released per deforested hectare (E = 84.54 tCO/ha)

that was previously estimated by the Ministry of the Environment in Peru, considering the

different types of forest in the country (Malaga et al., 2014). This is then transformed to

tCO2-eq by multiplying by 3.67 (i.e., the factor to transform carbon to carbon dioxide).

Our result shows that COVID-19 could have contributed to the release of 12.7 to 21.3

million tCO2-eq in 2020. Using the social cost of carbon of 7.72 USD/tCO2-eq estimated

for Peru (MEF, 2021), we calculate the associated economic losses to be around USD 98.2

million and 164.5 million (see Table B.5 in the Appendix). This cost represents almost three

times the national annual budget allocated to forest protection in the country.
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5.2 Mechanisms

A potential mechanism explaining the impact of the pandemic on deforestation is a decrease

in forest monitoring efforts, paired with an increase in illegal deforestation activities. Fig-

ure 4 shows that the investment in activities related to forest monitoring between 2019 and

2020, at the national and regional levels, experienced a reduction of 13 and 37 percent-

age points, respectively. We interpret this as evidence that monitoring activities may have

decreased, making it more difficult to detect illegal activities in forested areas in the Amazon.

Figure 4: Budget expenditures (%) in forest monitoring, 2017-2021

Notes: Figure depicts the budget expenditures (%) at the national and
regional level for activities related to forest monitoring by the end of
each year, from 2017 to 2021.
Source: MEF (2022)

Illegal coca production and illegal mining are also related to higher deforestation during

the pandemic. Results from the heterogeneity section show that deforestation was exacer-

bated in districts with coca production or with informal or illegal mining. In addition, Panel

(a) in Figure 5 shows that illegal coca production reached a peak in 2020, possibly caused by
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the reduction of eradication efforts during the pandemic, as shown in Panel (b). Likewise,

journalistic reports (e.g., Vera (2020)) attest to the intensification of artisanal mining in

highly forested areas in 2020.

The variation in our deforestation outcome seems to be driven by illegal deforestation.

Our outcome accounts for both legal (concession logging, agriculture, etc.) and illegal de-

forestation (mining, coca). However, legal logging activities decreased in 2020, as shown in

Figure 6, which displays information regarding round wood production in the last decade.

This suggests that our findings are mostly linked to deforestation related to the illegal ac-

tivities described earlier.

The economic crisis generated by the pandemic offers two additional mechanisms: (i)

the trade-off between livelihoods and the forests, and (ii) migration. The economic crisis

and the lack of employment could have led to people clearing more forests. Individuals

participating in forest-clearing activities could have intensified their efforts (intensive margin)

or individuals could have switched from other activities to clearing forests (extensive margin).

However, there is evidence that tropical forests have a key role in rural contexts in providing

wild food (fish, bushmeat, fruits, etc.) to the community (Van Vliet et al., 2017). Moreover,

we observe that deforestation and a food vulnerability index are negatively correlated (see

Figure A.2 in the Appendix). Overall, although this could have explained some of the

deforestation, it would be unlikely to explain the huge increase we observe. In terms of

migration, the economic downturn pushed migrants located in cities to move back to their

home rural areas. This increase in population could have put pressure on forests through

residents’ participation in economic activities driving deforestation. Fort et al. (2021) explore

this hypothesis and find a weak correlation (0.086) between deforestation in 2019-2020 and

the number of people returning to their cities of origin due to the pandemic. While this

figure considers only returning migrants and not all migrants, due to a lack of data we

cannot explore further this channel.
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Figure 5: Coca production and eradication

(a) Legal and illegal coca production, 2010-2020

(b) Hectares of Coca produced and eradicated, 2017-2021

Notes: Panel (a) depicts the production of coca leaves in metric tonnes for legal
and illegal markets. Panel (b) depicts the hectares of coca leaves produced and
eradicated. Data is from DEVIDA (2022).
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Figure 6: Roundwood production, 2010-2020

Notes: This figure depicts the roundwood production for 2010-2021
recorded by the national government.
Source: SINIA, 2022

6 Concluding remarks

Forests provide multiple ecosystem services at both individual and societal levels. They

promote soil health, good water quality, and biological diversity, all while providing a vital

carbon sink. Forest conservation and sustainable forest management are crucial to engage

global threats such as climate change and biodiversity loss.

However, this paper provides evidence that COVID-19 increased deforestation in the

Amazon. This surge in deforestation might have had a considerable negative net impact

on Peru’s climate commitments. Our findings also unveil the role that illegal and informal

activities, such as coca leaf production and mining, have had on tropical forest loss during

the COVID-19 pandemic in the country, and highlight the importance of protected areas

in significantly mitigating the deforestation triggered by the pandemic across the Peruvian

Amazon.
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Further research should be done to better understand the role of governance regimes in

preventing forest loss during the COVID-19 pandemic, and to evaluate the consequences of

the pandemic on biodiversity loss due to the increase in deforestation.
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APPENDIX

A Additional figures

Figure A.1: Balance plot - COVID-19 Cases

Notes: Sample balance before (left panel) and after (right panel) ap-
plying the propensity score matching procedure, using COVID-19 cases
number per district as treatment variable (1 = above the country me-
dian).
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Figure A.2: Deforestation and Food Vulnerabiltiy Index

Notes: Figure depicts a binscatter with deforestation (ha) in the vertical
axis and food vulnerability index in the horizontal axis. Both are for
the year 2018.
Source: CEPLAN, 2022, MINAM, 2022
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Figure A.3: Sensitivity analysis of violations of parallel trends

Notes: Figure depicts a sensitivity analysis of post-treatment violations
of parallel trends. It displays in red the confidence interval for the es-
timated coefficient associated with the year 2020 in the original event
study in Figure 3. It displays in blue robust confidence intervals that
allow for post-treatment violation of parallel trends to be no more than
some constant (e.g. 0.2, 0.4, etc.) larger than the maximum violation
of parallel trends in the pre-treatment period.
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B Additional tables

Table B.1: Variables description and data sources

Variable Description Availability Data Source
Panel A. Forest
Deforestation Forest cover reduction (hectares) in districts 2015-2020 MINAM, 2022

Panel B. Covid
Cases Number of people that tested positive to COVID-19 per district 2020 MINSA, 2022
Deaths Number of people that died due to COVID-19 per district 2020 MINSA, 2022

Panel C. District characteristics
Coca Hectares of coca leaf production per district 2017 COVIDA, 2017
Mining Districts with presence of illegal or informal mining 2016 MINAM, 2016
ANP Districts with presence of a Natural Protected Area 2017 SERNAP, 2017
Roads Number of national roads in the district 2017 MTC, 2022
Rivers River’s area in the district (km2) 2017 MTC, 2022
Population Population in the district 2017 & 2020 CEPLAN, 2020
Area District’s area (km2) 2019 CEPLAN, 2020
HDI Human development index 2015 & 2019 CEPLAN, 2020
Slope Average slope of district 2007 Farr et al, 2007
Altitud Average altitude of district (masl) 2020 CEPLAN, 2022

Notes: Table displays the description, availability, and source for the main variables. All variables are at the annual level.
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Table B.2: Summary statistics by treated and control districts

Treated districts Control districts
(1) (2)

Panel A. Forest
Deforestation 555.61 96.26

(875.58) (333.92)
Panel B. Covid
Cases 503.26 8.88

(1045.34) (7.38)
Deaths 32.99 2.6

(99.03) (14.62)
Panel C. District characteristics
Coca 540.58 323.64

(842.53) (647.61)
Mining 0.15 0.04

(0.36) (0.20)
ANP 0.17 0.06

(4.69) (0.24)
Roads 1.38 1.06

(0.38) (2.44)
Rivers 32.21 5.6

(63.54) (17.82)
Population (2020) 18796.32 3970.17

(25626.16) (6892.91)
Area 2732.18 956.52

(4259.16) (2330.02)
HDI (2019) 0.39 0.34

(0.10) (0.08)
Indigenous populations 2370.08 939.14

(3923.48) (2033.48)

Observations 257 142
Notes: Table displays summary statistics of the main variables. Column (1) shows the

mean values for districts with COVID-19 cases above the median. Column (2) shows the
mean values for districts with COVID-19 cases below the median. In Panel A, deforestation
corresponds to 2015.
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Table B.3: Main results with different periods

Dependent variable: Deforestation (ha)
(1) (2)

Year 2020 118.1***
(22.284)

DiD 176.54***
(27.76)

Design Event study Difference-in-Difference

Pre-pandemic period 2015-2019 2019

N 800 798
R-squared 0.940 0.18

Notes: Estimated standard errors, reported in parentheses, are clustered
at the district level. Significance at the one, five and ten percent levels is
indicated by ***, ** and *, respectively. Column (1) and Column(2) present
the results of estimating Equation 1 and Equation 2, respectively.
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Table B.4: Heterogeneous effects with all regressors

Dependent variable:
Annual rate of forest change, 2019-2020

(1) (2)
Year 2020 2.19*** 2.17***

(0.21) (0.21)
Mining 0.17* 0.18*

(0.09) (0.09)
Coca 0.21** 0.19*

(0.10) (0.10)
Protected areas -0.34*** -0.44***

(0.08) (0.08)
Population density -0.00 -0.00

(0.00) (0.00)
River area (m2) -0.00*** -0.00***

(0.00) (0.00)
Altitud (m) -0.00*** -0.00***

(0.00) (0.00)
Number of vias -0.01 -0.01

(0.01) (0.01)
Distance to Lima -0.00*** -0.00***

(0.00) (0.00)
Slope -0.02*** -0.03***

(0.01) (0.01)

N 394 394
R-squared 0.53 0.54

Notes: Estimated standard errors, reported in parentheses, are clustered
at the district level. Significance at the one, five, and ten percent levels is
indicated by ***, **, and *, respectively.

32



Table B.5: CO2 emission and economic loss

tCO2(millions) Economic loss (millions USD)
Lower bound 12.7 98.25
Average 17 131.38
Upper bound 21.3 164.53

Notes: Table displays the estimates of tCO2-eq and economic losses (million
USD) caused by the deforestation originated by COVID-19. We use the es-
timate from column 1 of Table 1, as well as the confidence interval to obtain
the lower and upper bound.
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