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ABSTRACT

This paper uses a competitive stochastic storage model to generate a set of spot and futures

prices for corn with a commonly observed seasonal pattern and an endogenous risk premium

paid by short hedgers. The main objective is to clarify the hedging and speculation implications

of the dual definitions of backwardation and contango, one referring to the difference between

the futures price and expected future spot price, and thus a focus on risk premium, and the sec-

ond referring to the difference between the futures price the current spot price, and thus a focus

on the slope of the forward curve. The implications of the two definitions of backwardation and

contango are related but due to the presence of storage costs and convenience yield the cause

and effect are asymmetric. It is shown that a positive risk premium (normal backwardation) may

result in a downward sloping forward curve (backwardation) but a downward sloping forward

curve does not directly affect the risk premium. This paper also examines roll yield for institu-

tion investors who passively hold long futures contracts. The goal is to clarify an incorrect claim

by hedging professionals that negative (positive) roll yields in a contango (backwardated) mar-

ket result in a financial loss (gain) for investors. The paper concludes with a discussion about

pricing inefficiency and the emergence of a contango market in times of unexpected excess

inventory.
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1 Introduction

In the analysis of commodity futures markets the concepts of backwardation and contango are

important. There currently exists two definitions, and the distinction between these dual defin-

tions is rather subtle. Indeed, the original definition relates to the difference between the fu-

tures price the expected future spot price, and the subsequent definition relates to the difference

between the futures price and the current spot price. The expected future spot price is non-

observable and so it is not possible to confirm the presence of backwardation and contango with

the original definition, whereas it is straight forward to identify backwardation and contango

with the subsequent definition. It is likely for this reason that outside of the academic literature

(e.g., financial news reports) the subsequent definition of backwardation and contango is used

almost exclusively.

The purpose of this paper is to construct a model which clearly shows the economic distinc-

tion between the two definitions of backwardation and contango. The analysis begins by noting

that the original definition of backwardation is equivalent to Keynesian normal backwardation,

and the risk premium that short hedgers are expected to pay to long speculators. Similarly, the

original definition of contango implies a risk premium that long hedgers pay to short specula-

tors. The subsequent definition of backwardation and contango pertain to the term structure of

futures prices (i.e., the forward curve). Backwardation is said to be present at a particular point

in time if the forward curve slopes down. With a negative slope, the spot price is above the

price of a short-term futures contract, and and the spreads between futures prices are negative.

Contango is said to be present in the opposite case where the forward curve has a positive slope.

Distinguishing between the dual definitions of backwardation and contango requires show-

ing how each definition is linked to the expected profits of hedgers and speculators. The analysis

shows that the expected gross profits for a short hedger are positively related to the slope of the

1



forward curve and negatively related to the size of the risk premium.1. Thus, expected gross

profits for the short hedger may be positive because the market is in contango (subsequent def-

inition) but reduced in size because of the presence of backwardation (original definition). The

analysis also shows that the original definition of backwardation and contango are determinants

of the net expected profits of speculators whereas there is no direct connection between specula-

tor profits and the subsequent definition of backwardation and contango. This last result appears

to contradict the general belief by hedging professionals that passive long investments in com-

modity futures earn positive (negative) returns due to a positive (negative) roll yield when the

slope of the forward curve is negative (positive). The final part of this analysis shows that with

the subsequent definition, indeed the roll yield is positive (negative) in a contango (backwar-

dated) market but roll yield determines gross returns and not net returns for the passive long

speculator.

The analysis of backwardation and contango takes place within an eight-quarter commodity

market model with harvest occurring in Q1 and Q5. Spot prices are determined by consumption

and storage decisions, which depend on stock levels, storage costs and convenience yield. The

analysis begins after the realization of the Q1 harvest with traders making storage decisions after

observing the forecast of the Q5 harvest. In Q2 the forecast of the Q5 harvest is updated, and this

update causes the Q2 price and the expected values of the Q3 to Q8 prices to change in response

to the change in storage decisions by traders. Traders who own stock use a futures contract

which expires in Q3 to hedge against the Q1 to Q2 price change. The short hedge reduces but

does not eliminate price risk. The size of the reduction combined with the hedger’s level of risk

aversion determines the risk premium the hedger is willing to pay and thus the level of normal

backwardation. The model is calibrated to the U.S. corn market with the simplifying assumption

of zero transportation costs between markets (or, equivalently, a single market location).

The next section provides a brief review of the relevant literature. In Section 3 the model

is built and calibrated. In Section 4 the model is used to highlight the dual definitions of back-

wardation and contango. This includes showing that the shape of the forward curve can lead

to incorrect conclusions about expected profits for hedgers and speculators, and how the recent

1See Whalen [2018] for a discussion about how the forward curve is used in the marketing of hogs.
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surge in institutional investment in commodity futures potentially shifted the long run market

outcome from a positive to a negative risk premium. The analysis in Section 5 examines the is-

sue of rollover yield for the passive long investor. Concluding comments are provided in Section

6.

Before proceeding note that in order to avoid use of the rather awkward terms "original" and

"subsequent" definitions of backwardation and contango the following conventional is adopted.

When referring to the original definition and the presence of a risk premium the terms "normal

backwardation" and "normal contango" will be used. When referring to the subsequent defi-

nition and the slope of the forward curve, the terms "backwardation" and "contango" will be

used.

2 Literature Review

Carter [2012] explains that for a typical agricultural commodity, the spot price is expected to

rise over time during the months following harvest, peak in the months leading up to harvest,

and then fall throughout the harvest period (see his Figure 3.3). In the no-bias case, where the

futures price is a measure of the expected value of the future spot price, it follows that the set

of futures prices with different maturities (i.e., the forward curve) will have a similar shape. For

example, with an August - September harvest, at a given point in time the following pricing

relationship is expected:

FMay > FJuly > FSeptember < FDecember < FMarch

The September to May period is referred to as a normal carrying charge period, and the May to

September period is referred to as an inverted market period. There are often deviations from

this particular pattern of futures prices, and Carter [2012] provides some explanations for these

deviations.

A common way to explain the above pricing pattern is with storage costs and convenience

yield [Working, 1948, 1949, Brennan, 1958, Telser, 1958]. The details of this theory are pro-

vided in the next section but for now it is sufficient to note that in the absence of a stock out,
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arbitrage ensures that the price spread between adjacent futures prices (e.g., December and

March) is equal to the net marginal carrying charge. This net cost is the difference between the

marginal cost of storage and a marginal convenience yield, which is the non-cash benefit that

those which handle the physical commodity implicitly obtain from having stocks on hand. As

the stocks decline over time the net carrying charge decreases and turns negative just prior to

the next harvest. This systematic change in the net carrying charge gives rise to the positive and

negative slope portions of the forward curve, as was described above.

Carter [2012] also describes how a shortage of long speculators who are willing to contract

with short hedgers may cause the futures price to fall below the expected future spot price. This

price gap is an implicit mechanism for short hedgers to pay a risk premium to long specula-

tors. Keynes [1930] was the first to recognize this possibility, and he called the process of short

speculators paying risk premium to long speculators normal backwardation. The theory of nor-

mal backwardation was worked out in greater detail by Johnson [1960] and Stoll [1979]. Hicks

[1939] pointed out that the excess demand for contracts by long hedgers can result in a contango

market, in which case the current futures price is above the expected value of the future spot

price, and the risk premium flows from long hedgers to short speculators. The combined theo-

ries of normal backwardation and contango are sometimes referred to as the hedging pressure

theory of commodity futures.

The hedging pressure theory of commodity futures was eventually incorporated into a more

comprehensive capital asset pricing model (CAPM) framework. Here the risk premium emerges

endogenously because it depends on the degree of systematic risk of the futures price within a

well-diversified portfolio (i.e., the beta). There is a large empirical literature both within agricul-

tural economics and general finance on estimating beta values and the corresponding risk pre-

mium for commodity futures (e.g., Dusak [1973], Carter, Rausser, and Schmitz [1983], Fama

and French [1987], Dewally, Ederington, and Fernando [2013], Hambur and Stenner [2016]).

The results are generally highly varied across studies. For example, Dusak [1973] estimated

betas for wheat, corn and soybeans in the range of 0.05 to 0.1. By including commodities in the

market porfolio and allowing the net position of speculators to vary over the crop year, Carter

et al. [1983] show that Dusak’s re-estimated betas are in the range of 0.6 to 0.9. A more gen-
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eral conclusion from this literature is that risk premiums are difficult to detect in short-term

contracts, and they vary considerably by commodity in long-term contracts.

Despite the lack of evidence of a significant risk premium in agricultural and non-agricultural

commodity futures, there has been since the early 2000s strong interest by institutional investors

in these instruments. Indeed, Basu and Gavin [2011] noted that investment in commodity index

funds grew from approximately $20 billion in 2002 to approximately $250 billion in 2008. No

doubt much of this investment was driven by the spectacular growth in commodity prices over

the 2004 to 2008 period [Irwin and Sanders, 2011]. With long-only passive investment in com-

modity index funds the concept of roll yield, and connection between roll yield and the slope of

the forward curve is currently emphasized by investment professionals. Indeed, this connection

has resulted in the term "super contango" being used to describe a market with a very steep for-

ward curve, something which is particularly relevant for the crude oil futures market. [Brusstar

and Norland, 2015, Salzman, 2020].

Gorton and Rouwenhorst [2006] explicitly discuss the dual use of the terms backwardation

and contango. For example, they point out that commodities can be in contango (a positive

slope for the forward curve) but at the same time have normal backwardation. Agricultural

economists generally refer to spreads in futures prices rather than the forward curve, and likely

for this reason the terms backwardation and contango (subsequent definition) are seldom used.

In the finance literature, the risk premium interpretation of backwardation and contango was in

widespread use in the 1970s and 1980s [Grauer and Litzenberger, 1979, Stoll, 1979, Paroush

and Wolf, 1989] but in more recent years this interpretation is less common, likely because of

the large empirical literature which demonstrates that risk premiums in commodity futures are

either non existent or comparatively small. The forward curve interpretation of backwardation

and contango likely started in the literature which focused on crude oil futures (e.g., Gabillon

[1991]). It appears that the subsequent definitions of backwardation and contango are now rou-

tinely used in papers which focus on the term structure of futures prices (i.e., the forward curve)

and are not interested in the existence of risk premium [Routledge, Seppi, and Spatt, 2000,

Pindyck, 2001].
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3 Model

This section is divided into four subsections. The first subsection sets out the assumptions and

highlights the theory of storage, as originally developed by Brennan [1958]. Section 2.2 is used

to derive the set of equations which govern consumption, storage and prices over time. Of

particular importance is the density function which governs the change in the spot price from

from Q1 to Q2 in response to the release of an updated forecast of the Q5 harvest. In Section 2.3

futures trading and hedging is incorporated into the model. It is here that hedging pressure is

featured in preparation for the analysis of normal backwardation and normal contango. Section

2 concludes by calibrating the model to the U.S. corn market and presenting simulation results.

3.1 Storage Supply and Demand

The single-location market operates for eight quarters, beginning immediately after harvest in

the fall quarter of year 1. Demand is constant over time and so the role of speculators in Q1

through Q4 is to estimate the size of the year 2 harvest, which takes place at the beginning of

Q5. Updated forecasts about the size of H5 arrive in the market at the beginning of Q2, Q3 and

Q4. The updated information results in a revised set of consumption and storage decisions, and

this revision causes the current price and the density functions which govern the set of futures

prices to change. Initial stocks are assumed to be sufficiently large to ensure that the year 1

market does not stock out in the event of an unusually high forecast for H5. After harvest is

realized in Q5, prices remain constant until the market terminates at the end of Q8.

Supply consists of a set of competitive farmers producing a homogeneous commodity and

selling this commodity in a competitive cash/spot market. Inverse demand in quarter t is given

by Pt = a− bXt where Pt is the market price and Xt is the level of consumption. Let St denote

the level of stocks at the end of quarter t. This variable is endogenous in the model except for

S0, which is the exogenous level of stocks which are carried into year 1 and combined with year

1 harvest in Q1, and S8, which is the level of carry out stocks at the end of Q8. Of particular

importance is S4 because this is a measure of the stocks which are carried out of Q4 in year 1

and combined with year 2 harvest in Q5.
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The merchants’ marginal cost of storing the commodity from one quarter to the next consists

of a physical storage cost and an opportunity cost of the capital that is tied up in the inventory.

The combined marginal cost of storage is given by the increasing function kt = k0 +k1St.2 This

specification ensures that the marginal storage cost is highest in the fall quarter when stocks are

at a maximum, and gradually decline as the marketing year progresses. Merchants also receive a

convenience yield from owning the stocks rather than having to purchase stocks on short notice.3

Let ct = c0 − c1St denote the marginal convenience yield for quarter t. This function decreases

with higher stocks because the marginal transaction cost associated with external procurement

is assumed to be highest (lowest) when stocks are lowest (highest). Combined storage cost and

convenience yield is referred to as the carrying cost. Following [Brennan, 1958] letmt = kt−ct
denote the marginal carrying cost for quarter t.

Competition between merchants ensures that the expected compensation for supplying stor-

age, E{Pt+1} − Pt, is equal to the net cost of carry, mt, provided that stocks are positive (i.e.,

no stock out). Substituting in the expressions for kt and ct, the supply of storage equation can

be written as

E{Pt+1} − Pt = m0 +m1St (1)

where m0 = k0− c0 and m1 = k1 + c1. Equation 1 can be interpreted as the intertemporal LOP.

Brennan [1958] defines the demand for storage by first noting that quarter t consumption,

Xt, can be written as Xt = St−1 +Ht − St where Ht is the level of harvest in quarter t. Inverse

demand in quarter t can therefore be expressed as Pt = a− b(St−1 +Ht− St), and the demand

for storage function is

Pt+1 − Pt = [a− b(St +Ht+1 − St+1)]− [a− b(St−1 +Ht − St)] (2)

Equation (2) shows that Pt+1 − Pt is a decreasing function of St and thus represents a demand

for storage. Brennan [1958] explains that higher stocks carried out of quarter t implies a higher
2Later in the analysis it is shown that the equilibrium price is a linear function of St. Thus, the opportunity cost

of capital which is proportional to the commodity’s price is assumed to be embedded in the K0 and K1 parameters.
3A standard explanation of convenience yield is that by having stocks on hand a merchant can fill unexpected

sales orders or create sales opportunities that would otherwise not be possible due to the high transaction costs

associated with short-notice spot market transactions.
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value for Pt since less is available for consumption in quarter t, and lower Pt+1 since more is

available for consumption in quarter t+ 1.

Figure 1 shows the supply and demand for storage for the U.S. corn market. The equations

which underlie Figure 1 are derived in the Appendix and the calibration details are provided

below. When stocks are high in Q1, the marginal cost of storage is relatively high and the

marginal convenience yield is relatively low. The demand for storage is therefore shifted far

to the right, and the price increase between Q1 and Q2 is relatively large. The lower level of

stocks in Q2 lowers the marginal cost of storage and raises the marginal convenience yield. The

resulting inward shift of the demand for storage implies that the price increase between Q2 and

Q3 is less than the price increase between Q1 and Q2. For Q3 the marginal convenience yield

exceeds the marginal cost of storage, in which case the price change between Q3 and Q4 is

negative rather than positive (this is not shown in Figure 1). For Q4 the gap between marginal

convenience yield and marginal cost of storage is larger and so the price decrease from Q4 to

Q5 is larger than the price decrease from Q3 to Q4. With the arrival of new stocks in Q5, the

marginal storage cost surges up, the marginal convenience yield rapidly drops and once again

price begins to increase. The full pricing pattern is illustrated in greater detail below.

Figure 1: Q1 and Q2 Simulated Supply and Demand for Storage
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3.2 Spot Prices

Rather than using equation (2) explicitly to solve for the set of equilibrium prices, the analysis

returns to the core equations. Specifically:

Pt+1 − Pt = m0 +m1St (3)

Pt = a− bXt (4)

St = St−1 +Ht −Xt where Ht = 0 for t = 2, 3, 4, 6, 7, 8 (5)

Equation (3) is the supply of storage, equation (4) is quarterly demand for the commodity and

equation (5) is the equation of motion, which ensures that ending stocks must equal beginning

stocks plus harvest minus consumption. Initial stocks are at level S0, and stocks at the end of

Q8 are restricted to equal the predetermined level S̄8.

In the Appendix it shown that the equilibrium Q1 spot price and the expected values of the

Q2 and Q3 spot prices as of Q1 can be expressed as linear functions of the known Q1 forecast

of the year 2 harvest.4 The random value for the Q2 spot price given the updated forecast can be

expressed as a linear function of the known Q1 forecast and the random Q2 forecast. Similarly,

the expected Q3 price given the updated forecast can be expressed as a linear function of the

known Q1 forecast and the random Q2 forecast. The corresponding equations can be expressed

as

P 1
1 (H1

5 ) = δ1
0 + δ1

1H
1
5 and P̄ 1

2 (H1
5 ) = δ2

0 + δ2
1H

1
5 and P̄ 1

3 (H1
5 ) = δ3

0 + δ3
1H

1
5

P̃ 2
2 (H1

5 , H̃
2
5 ) = δ̄2

0 + δ̄2
2H

1
5 + δ̄2

1H̃
2
5

P̄ 2
3 (H1

5 , H̃
2
5 ) = δ̄3

0 + δ̄3
2H

1
5 + δ̄3

1H̃
2
5

(6)

For the P variables in equation (6) the superscript 1 implies that the random Q2 forecast is not

yet available and the superscript 2 implies that it is available. Similarly, a tilde (∼) implies that

P is random, and a bar (-) implies an expected value. Note that the time-dependent δ parameters

are functions of the individual parameters which define the model.
4The implicit assumption is the forecasted value of the year 2 harvest is not expected to change over time.
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3.3 Futures Prices and Hedging

Assume that in both Q1 and Q2 a futures contract which calls for delivery in Q3 trades in a

competitive market (i.e., a Q3 contract). A futures price is said to be unbiased if its current value

is equal to the expected value of the spot price when the underlying contract expires. The Q1

price of a Q3 contract can be therefore be expressed as F1,3(H1
5 ) = P̄3(H1

5 )− π1 where a zero,

positive or negative value for π1 implies a zero, downward and upward bias, respectively. Later

in the analysis a value of π1 is specified as a function the level of hedging pressure. Immediately

after the revised forecast of H5 is received in Q2 the price of the Q3 futures contract is updated.

The futures price that will emerge in Q2 is given by F̃2,3(H1
5 , H̃

2
5 ) = P̄ 2

3 (H1
5 , H̃

2
5 )− π2.

Of interest is the random change in the spot price and futures price given the updated H5

forecast in Q2. Using the previous equations together with the expressions from equation (6),

this pair of random changes can be expressed as

P̃ 2
2 (H1

5 , H̃
2
5 )− P 1

1 (H1
5 ) = δ̄2

0 − δ1
0 + (δ̄2

2 − δ1
1)H1

5 + δ̄2
1H̃

2
5

F̃2,3(H1
5 , H̃

2
5 )− F1,3(H1

5 ) = δ̄3
0 − δ3

0 + (δ̄3
2 − δ3

1)H1
5 + δ̄3

1H̃
2
5

(7)

As is shown below, the distributions for this pair of price changes can be plotted if values are

assigned to the various parameters and if a density function is specified for the forecast update

variable, H̃2
5 .

Merchants who store the commodity between Q1 and Q2 or who combine a Q1 forward

sale with a Q2 deferred purchase incur price risk due to the random changes in the spot price.

Merchants who store the commodity use a short hedge, which means taking a short futures

position in Q1 and offsetting this position in Q2. Merchants who forward sell the commodity in

Q1 and purchase the commodity in Q2 to fulfill their delivery obligation use a long hedge. In

this case the merchant takes a long futures position in Q1 and offsets this position in Q2. The

profits for both the short and long hedge depend on how the basis changes between Q1 and Q2.

To see this note that the basis, which is defined as the spot price minus the futures price, can be

expressed as B1 = P 1
1 (H1

5 )− F1,3(H1
5 ) for Q1, and B̃2 = P̃ 1

2 (H1
5 , H̃

2
5 )− F̃2,3(H1

5 , H̃
2
5 ) for Q2.
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The expression for the change in the basis from Q1 to Q2 can be rearranged and written as the

change in the spot price minus the change in the futures price:

∆̃B = P̃ 1
2 (H1

5 , H̃
2
5 )− P1(H1

5 )− [F̃2,3(H̃2
5 )− F1,3(H1

5 )] (8)

Equation (8) makes it clear that the gross profits of the short hedger (i.e., before subtracting

carrying costs) is equal to the change in the basis. With some additional rearranging it can

be shown that the gross profits of the long hedger are equal to −∆̃B. Hedging profits for both

types of hedgers are stochastic because the quarter when the hedge is lifted (i.e., Q2) is different

than the quarter when the futures contract expires (i.e., Q3). Equation (8) is consistent with the

standard textbook claim that hedging substitutes basis risk for price risk.

The linearity of the model implies that the variance in the distribution of the change in the

spot price between Q1 and Q2 does not depend on the consumption and storage decisions. The

same is true for the variance in the distribution of the change in the basis between Q1 and Q2.

Consequently, the reduction in price risk that results from a short or long hedge, and the risk

premium that merchants are willing to pay to substitute basis risk for price risk via the hedge,

take on fixed values.

The net position of short and long hedgers determines the net position of speculators. Re-

gardless of whether these speculators are net long or net short, they require compensation for

accepting the risk that is associated with their futures position. Later in the analysis the demand

for futures positions by speculators is generalized by accounting for the diversification benefits.

With the current assumption, if the number of short hedgers is greater than the number of long

hedgers then speculators are net long, and hedging pressure causes the futures price to be bid

below the expected spot price by the amount π > 0. In the opposite case where hedgers are not

long the futurs price is bid above the expected spot price by the amount π < 0.

3.4 Calibration for Simulations

In this section, the pricing model is calibrated to approximately represent the U.S. corn market.

Annual USDA data from the Feed Grains Database reveals that the average production and

ending stocks for corn for the most recent five years (2015 - 2019) was 14.278 and 2.097 billion
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bushels, respectively.5 As well, the average price received by farmers over this time period was

$3.51/bushel. Assume that the size of the year 1 harvest, H1, and the Q1 forecast of the year 2

harvest, H1
5 , both are equal to 14.278. Initial Q1 stocks, S0, is set equal to 2.097, and Q8 carry

out stocks, S8, is set equal to 2.0.6

The remaining parameters to specify are those which define the marginal cost of storage and

the marginal convenience yield. Estimates of the cost of storage exist but there are no reliable

estimates of convenience yield. As an alternative, the m0 and m1 parameters of the cost of carry

function are chosen to match as close as possible the average quarterly price spreads, which are

estimated using historical data.

The parameter values are shown in Table 1. This set of values results in a simulated demand

elasticity (calculated with average Q1 expected prices and quantities) equal to -0.19, which

is similar to the -0.2 estimate that was reported by Moschini, Lapan, and Kim [2017]. These

parameter values, together with the various equations in the Appendix, are sufficient to solve

for P1 and the set of expected prices for Q2 through Q8. In Figure 2 a chart of the simulated

prices for Q1 through Q4 has been overlain on a chart of the 1980 - 2019 average quarterly

prices received by farmers. Each price in the historic data series has been scaled up by a fixed

percentage to ensure that the yearly average of the average quarterly prices received by farmers

is equal to the yearly average of the simulated prices. Figure 2 demonstrates that the pricing

model is well structured because the correspondence between the set of actual and simulated

prices is close.

Figure 3 shows the full set of prices assuming both an upward and downward revision of the

H5 forecast at the beginning of Q2. Specifically, the left columns in the triplet are the initial Q1

through Q8 expected prices. The middle (right) columns represent the Q2 through Q8 expected

prices assuming that the forecast for the year 2 harvest is decreased (increased) by 5 percent

at the beginning of Q2. The relatively large price response to a 5 percent plus or minus change

5See https://www.ers.usda.gov/data-products/feed-grains-database/.
6The value chosen for S8 is not important in the analysis because adjustments in the demand intercept and S8

have approximately the same impact on the set of prices.
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Table 1: Parameters for Base Case Simulation Model

Parameter Value Parameter/Elasticity Value

a (inv. demand intercept) 21.35 H1 (Year 1 harvest) 14.28

b (inv. demand slope) 5.0 H1
5 (Q1 forecast of Year 2 harvest) 14.28

m0 (carry cost intercept) -0.22 S0 (Q1 carry in stocks) 2.097

m1 (carry cost slope) 0.03 S8 (Q8 carry out stocks) 2.0

Figure 2: Quarterly Corn Prices: Actual (1980-2018 avg.) versus Simulated.

in the expected size of the year 2 harvest can be attributed to the highly inelastic demand.7

When analyzing Figure 3 keep in mind the theory of storage costs and convenience yield as a

determinant of the shape of the pricing pattern over time.

Figure 3 illustrates the risk facing a merchant who stores the commodity between Q1 and

Q2, and a speculator who holds a zero bias (π = 0) futures contract between Q1 and Q2. For the

merchant, the cash price of the commodity will increase from P1 to PH
2 , and for the speculator

the futures price will increase from F1,3 to FH
2,3 if the forecast for H5 is revised downward.

Conversely, both sets of prices will decrease if the forecast is revised upward.

7The price response would be much lower if the model incorporated an export market with a relatively elastic

demand.
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Figure 3: Simulated Corn Prices with Alternative H5 Forecasts.

It is also useful to examine the price risk as reflected by the distributions for the various

pricing outcomes. Assume that H̃2
5 is drawn from a four parameter beta distribution with mean

H1
5 and support [HLow

5 , HHigh
5 ]. For the simulations assume that HLow

5 is 5 percent below H1
5

and HHigh
5 is 8.5 percent above H1

5 . Futher assume that the p and q parameters of the beta

distribution are equal to 2 and 3.42, respectively (these values ensure the mean value of the

forecast revision is zero).8 Figure 4 shows the density function for the difference between the Q2

and Q1 spot price and futures price, once again assuming π = 0. The shape of the distributions

are roughly the same but the mean values are different. This is expected because the spot price

is expected to increase by an amount equal to the Q1 marginal carrying charge, whereas the

futures price is expected to remain constant over time.

8The assumed shape of the beta distribution are not important for the general results. The values were chosen

to ensure that the corresponding diagrams effectively highlight the key results.
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Figure 4: Simulated Density for Q1 to Q2 Change in Spot and Futures Prices

4 Backwardation and Contango

This section is divided into three subsections. In the first subsection the relationship between

expected hedging profits and the slope of the forward curve when there is no price bias is made

explicit. This relationship connects expected hedging profits with the forward curve measures

of backwardation and contango. In the second subsection it is shown that the forward curve

in two markets can appear identical, even though there is strong normal backwardation in one

market but not in the other market. This is important because it means that the visual properties

of the forward curve alone cannot be used to make statements about either expected hedging

profits or expected profits for speculators.9 In the third subsection the potential transition of a

market from normal backwardation to normal contango due to strong growth in institutional

investment is examined.
9A similar claim can be made regarding normal contango. This feature is not emphasized because normal

contango is not commonly discussed in the agricultural economics literature.
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4.1 Forward Curve and Expected Hedging Profits

Recall from the previous section the gross profits for a short hedger (i.e., profits before deducting

carrying costs) are measured by the change in the basis between when the hedge is initiated

and when it is lifted. To see the relationship between the change in the basis and the slope

of the forward curve, pass the expectations operator through equation (8) to obtain E1{∆̃B} =

E1{P̃ 2
2 (H1

5 , H̃
2
5 )}−P1(H1

5 )−[E1{F̃2,3(H1
5 , H̃

2
5 )}−F1,3(H1

5 )]. The expression in square brackets

is equal to the Q1 to Q2 pricing bias, π. Moreover, E1{P̃ 1
2 (H1

5 , H̃
2
5 )} is equal the Q1 price of

a Q2 futures contract assuming that such a contract exists. If a futures contract also existed in

Q1 then arbitrage ensures that the value of the Q1 contract at the point of expiry is equal to P 1
1 .

This means that the expression for the expected change in basis can be rewritten as

E1{∆̃B} = F1,2(H1
5 )− F1,1(H1

5 )− π (9)

If there is no price bias from hedging pressure (i.e., π = 0) then equation (9) shows that

expected gross profits for the short hedger is equal to the spread in the Q1 and Q2 futures

prices. This spread is a measure of the slope of the forward curve between Q1 and Q2. Thus,

in the absence of a price bias, the expected gross profits for the short hedger is equal to the Q1

slope of the forward curve.

The dashed line in Figure 5 is the forward curve for the first five quarters of the simulated

corn market with the assumption of zero price bias (i.e., π = 0) and a futures contract which

expires in each of the five quarters. Notice that the first segment of the curve is upward sloping

due to relatively large stocks and thus a positive carrying charge. In this contango section of

the forward curve, expected gross profits for the short (long) hedger are positive (negative). The

second section of the forward curve is downward sloping due to a high convenience yield and

thus a negative carrying charge (i.e., the market is inverted). In this backwardated section of the

forward curve, expected gross profits for the short (long) hedger are negative (positive). This

connection between the slope of the forward curve and expected gross profits for the hedger is

seldom emphasized in the agricultural economics literature.

At this point it is worth emphasizing that a positive slope for the forward curve (i.e., con-

tango) or a negative slope of the forward curve (i.e., backwardation) has no impact on the ex-
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Figure 5: Forward Curve Definition of Backwardation and Contango

pected profits of the speculator. Figure 5 was constructed with the assumption of zero price bias

and as such the expected profits from taking a long or short futures position are equal to zero.

This outcome is consistent with Figure 3, which shows that the mean of the distribution of the

change in the futures price between Q1 and Q2 is zero. This outcome has important implications

for the last section of this paper, which examines the roll yield for institutional investors.

4.2 Normal Backwardation

In this section the implications of normal backwardation are highlighted. To achieve a sharp

focus, assume there is no convenience yield and the marginal cost of storage is constant at

level m per quarter. This assumption means that the spot price is expected to rise by a constant

amount m over time. Normal backwardation implies that short hedging pressure results in a

futures price which is biased downward (i.e., π > 0). It is reasonable to assume that the level

of bias increases for contracts with a longer time to expiry because the longer a merchant holds

unpriced inventory the greater the variance in the distribution of the eventual selling price for

the commodity. For the simulations below assume that π = βnγ where n is the number of

quarters until the contract expires and γ > 1.
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Table 2 shows for Q1 through Q5 the futures price minus the current spot price (i.e., the

negative of the basis) at different points in time and for contracts with different maturities. The

columns of Table 2 contain the data for the forward curves, the first being the most important

because it reflects the forward curve for Q1. Notice that the normal backwardation price bias is

largest for the Q5 contract and steadily decreases for contracts with a shorter maturity. The rows

of Table 2 show how the price spread for a particular contract changes over time. For example,

the last row shows how the gap between the futures price and spot price decreases over the

five quarters. Table 2 makes it clear that normal backwardation, as measured by π = βnγ ,

affects both the shape of the forward curve and the time path for the price of a particular futures

contract.

Table 2: Expected Futures Price Spreads with Normal Backwardation

Current Quarter

Expiry Q1 Q2 Q3 Q4 Q5

Q1 0 na na na na

Q2 m− β(1)γ 0 na na na

Q3 2m− β(2)γ m− β(1)γ 0 na na

Q4 3m− β(3)γ 2m− β(2)γ m− β(1)γ 0 na

Q5 4m− β(4)γ 3m− β(3)γ 2m− β(2)γ m− β(1)γ 0

It is important to note that Table 2 is consistent with the underlying no arbitrage restrictions.

A riskless portfolio can be constructed because arbitrage ensures convergence of the spot and fu-

tures prices – for the case at hand this implies F̃3,3 = P̃3.10 Suppose the commodity is purchased

in Q1 and sold in Q3, and this long position is hedged with a short Q3 futures contract. Zero

joint profits for this portfolio, including the cost of storing the commodity, can be expressed as

P̃3 − P1 + F1,3 − F̃3,3 − 2m = 0. Using F̃3,3 = P̃3, this equation reduces to F1,3 = P1 + 2m. It

10If these conditions did not hold then the commodity could be purchased in the spot market and immediately

delivered against the short futures contract for a profit, or the commodity could be borrowed, immediately sold in

the spot market and the loan immediately repaid by taking delivery of the commodity using a long futures contract.
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can now be seen that normal backwardation, which results in F1,3 ≤ P1 + 2m, does not violate

the no-arbitrage condition.

Figure 6 shows the simulated expected time paths for the spot price and for the Q2 through

Q5 futures contracts, achieved by setting m0 = 0.2, β = 0.1 and γ = 1.1. The strong backwar-

dation is revealed by the relatively steep expected pricing paths for the various futures contracts.

In each of the first four quarters the slope of the forward curve is given by the vertical distance

between the expected pricing paths. The slope of the Q1 forward curve as measured by the

price spreads is approximately constant at $0.10/bu. Notice that the forward curves become

slighly steeper as time progresses toward Q4. Figure 6 shows that despite the strong normal

backwardation, the market is in a state of contango.

Figure 6: Futures Prices with Contango and Normal Backwardation

Figure 7 is similar to Figure 6 except in this case there is no backwardation (achieved by

setting β = 0) and the linear storage costs are weaker (achieved by setting m0 = 0.1). The lack

of backwardation is revealed by the flat time paths for the expected price of the various futures

contracts. Notice that in Q1 the slope of the forward curve as measure by the vertical distance
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between the pricing paths is constant and equal to 0.1. Thus, the slope of the Q1 forward curve

in Figure 7 is very similar to the slope of the Q1 forward curve in Figure 6, despite the fact that

there is no normal backwardation in the former and strong normal backwardation in the latter.

This comparison reveals that the slope of the forward curve cannot be used to make inference

about how the price of a particular futures contract is expected to change over time.

Figure 7: Futures Prices with Linear Storage Costs

The comparison of Figures 6 and 7 leads to an important conclusion. Expected gross hedging

profits only depend on the slope of the forward curve and not whether the slope emerges because

of a combination of high marginal storage costs and strong backwardation, or low marginal

storage costs and no backwardation. In contrast, profits for a speculator are not precisely defined

by the slope of the forward curve. Indeed, the slope of the forward curves in Figures 6 and 7 are

approximately equal but in the first case the long speculator expects relatively large profits and

in the second case zero profits.
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4.3 Normal Contango

In the previous section the presence of normal backwardation or normal contango depended on

the direction of the hedging pressure (i.e., whether hedgers are net short or net long). The com-

modity price spikes in the mid 2000s and the simultaneous surge in investment in commodity

futures by index and hedge funds induced economists to consider an alternative pathway for

the futures price to be bid away from the expected future spot price. Hamilton and Wu [2014,

2015] and Vercammen and Doroudian [2014] constructed models where the passive demand for

long futures by institutional investors raised the equilibrium futures price above the expected

future spot price (i.e., normal contango). A simplified version of the Hamilton and Wu model

is combined with the model used in this paper to show how the recent growth in demand for

long agricultural commodity futures by institutional investors potentially changed the long run

market outcome from normal backwardation to normal contango.

In the simplest version of the Hamilton and Wu [2014, 2015] model institutional investors

have a perfectly inelastic demand for long futures positions at levelNI , and their futures position

is continually rolled forward through time as existing contracts expire and new contracts become

available. Hamilton and Wu focus on the arbitrageurs who take short positions to facilitate the

rolling long positions of the institutional investors. This current analysis differs from Hamilton

and Wu in that the net short position of hedgers are added to the demand for short positions by

arbitrageurs before determining the market equilibrium.

Recall from the analysis above that short hedgers face a fixed reduction in the variability of

profits when converting price risk to basis risk through hedging. Assuming a fixed risk premium

at level RPH , the demand for contracts by short hedgers is perfectly elastic at level RPH for the

NH ≡ S1 units of the commodity which are hedged in Q1. Prior to the surge in demand for long

contracts by institutional investors, assume that NI < NH , which implies that arbitrageurs have

a net long futures position. After the surge in demand, assume that NI > NH , which implies

that arbitrageurs have a net short futures position.

In addition to taking a long or short position in the futures market in Q1, arbitrageurs invest

in a well diversified bundle of financial assets which return in Q2 a random cash flow R̃ with
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mean R̄. LetW denote the Q2 return to the arbitrageurs’ portfolio as a whole. Equation 7 shows

that the change in the futures price between Q1 and Q2 is a linear function of H̃2
5 , which is the

random update in the forecast of the year 2 harvest. It follows from Equation 7 that the expected

value of the change in the futures price is the price bias variable, π. As well, the variance in

the change in the futures price is given by σ2
F = (δ̄3

1)2V ar(H̃2
5 ). Let COV (H̃2

5 , R̃) denote

the covariance between the forecast update and the returns from the arbitrageur’s diversified

portfolio. The arbitrageur is assumed to maximize a mean-variance utility function of the form

U = E(W )− λV ar(W ). With the above assumptions, this function can be written as

U = NAπ + R̄− [λN2
Aσ

2
F + σ2

R + 2NAδ̄
3
1COV (H̃2

5 , R̃)] (10)

Within equation (10) the variable NA takes on a negative (positive) value if the arbitrageur is

net long (short).

The first order condition for choosing NA to maximize U can be expressed as

π = 2λδ̄3
1COV (H̃2

5 , R̃) + 2λσ2
FNA (11)

In the simple case where COV (H̃2
5 , R̃) = 0 equation (11) shows that the arbitrageur requires

the futures price to be below the expected spot price (i.e., π > 0) in order to take a long

futures position (i.e., NA > 0) and opposite for a short futures position. A positive value for

COV (H̃2
5 , R̃) strengthens this result and a negative value potentially reverses it. This is expected

because a large negative value for COV (H̃2
5 , R̃) implies strong diversification benefits from

holding the futures contract and thus a willingness to pay rather than requiring compensation to

accept the futures price risk. In real world applications it is unlikely that COV (H̃2
5 , R̃) is large

enough to switch the positive relationship between NA and π in equation (11).

Figure 9 shows how the surge in institutional investors taking passive long positions has

potentially converted agricultural markets from normal backwardation to normal contango. The

dashed schedule shows the perfectly elastic demand for short contracts by hedgers up to level

NH , which corresponds to the level of inventory to be hedged. The right panel shows that prior

to the surge in demand for long contracts, arbitrageurs faced a perfectly inelastic demand for

long contracts at level NH −NI . Using the π = 2λσ2
FNA supply function, which is the upward
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sloping schedule in Figure 8, it can be seen that prior to the surge in demand by institutional

investors, the equilibrium value of π is positive, and thus the outcome is normal backwardation.

After the surge in demand, the combined demand by hedgers and institutional investors has

switched from net short to net long (see the left panel in Figure 8). Facing a net demand for

short contracts, the risk premium charged by arbitrageurs implies a negative value for π and

thus a normal contango outcome.

Figure 8: Transition to Normal Contango with Surge in Institutional Positions

It may seem unrealistic to model the passive long investors as tolerating an expected loss

on their hedge fund investment. In real world markets futures prices have occasionally trended

up over extended periods of time due to unanticipated growth in demand (e.g., 2004 to 2007).

Investors with naive expectations may well be attracted to investing in a commodity hedge or

index fund in the presence of normal contango if the past returns have been sizeable.
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5 Rollover Yield

Professional market analysts often note that investors who passively roll over long positions in

commodity futures should expect negative rollover yield in a contango market and a positive

rollover yield in a backwardated market. The following examples support this observation.

"And the contango structure in most commodity futures markets means that long futures

positions are being rolled forward at a loss... (In a contango market, short futures positions

can be rolled forward at a profit, while long futures positions incur a loss every time they are

extended)." (Kemp 2015)

"Why Investors Should Be Wary of Contango...After contango literally ate half of his re-

turns, Alex no longer ignores the shape of the futures curve." (Cardwell, 2017)

"If the oil market structure shifts into contango, an industry term for when spot prices are

trading below contracts for future delivery, then an ETF might have to sell its contracts at the

lower price, then buy the next month’s contract at a higher price just to maintain its holdings."

(Sheppard, 2020)

"Contango tends to cause losses for investors in commodity ETFs that use futures contracts,

but these losses can be avoided by buying ETFs that hold actual commodities." (Chen, 2020)

In general, these statements about negative (positive) profits for a passive long speculator in

a contango (backwardated) market are not accurate. It is true that the roll yield is negative (posi-

tive) in a contango (backwardated) market. However, to make a statement about financial return,

the roll yield must be adjusted to account for the cost of carrying the physical commodity, in-

cluding observable storage costs and non-observable convenience yield. Moreover, the positive

or negative roll yield has nothing to do with the fact that expiring contracts are rolled into new

contracts, generally at a higher or lower price. This concern about the incorrect interpretation of

the roll yield has been acknowledged by Main et al. (2015) and Bessembinder (2018). However,

the issue is not likely familiar to most agricultural economists and thus warrants repeating in

this paper.

The roll yield is defined as the difference between the profit or loss on a futures contract

and the change in the underlying spot price. If an investor could purchase the commodity, store
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it at zero cost and receive zero convenience yield, then the roll yield would reflect the increase

in net profit holding a futures contract rather than investing in the physical commodity. In this

case, holding a futures contract in a contango (backwardated) market rather than holding the

spot commodity would result in financial loss (gain). Because storage costs and convenience

yield are not considered in the calculation of roll yield, this measure should be interpreted as a

gross gain or loss. It is generally not possible to convert the roll yield to a net financial return

because storage costs and convenience yield cannot be measured.

Figure 9 shows the calculated roll yield for the first five quarters of the simulated market.

The assumption of normal price expectations implies that futures prices are expected to remain

constant over time and as such expected profits are zero for all futures contracts. Between Q1

and Q2 the market is in contango and the spot price is expected to increase by $0.163/bu. In

this case the calculated roll yield is given by RY1,2 = 0 − 0.163 = −0.163 dollars per bushel.

Similarly, the roll yield is equal to -$0.056 between Q2 and Q3. The intertemporal LOP implies

that the marginal carrying cost is equal to $0.163/bu between Q1 and Q2, and $0.056 between

Q2 and Q3. Thus, the expected roll yield is equal to the negative of the marginal carrying cost.

As previously noted, ignoring this carrying cost when calculating the return on investing in a

rolling long futures position gives rise to incorrect conclusions about the profitability of the

futures contract. This is particularly true in the crude oil market where oil gluts typically cause

steep forward curves due to high storage costs.

The right side of 9 shows why the roll yield is positive in a backwardated market. For

example, the roll yield between Q3 and Q4 can be expressed as RY3,4 = 0− (−0.051) = 0.051

dollars per bushel. Similarly, the roll yield between Q4 and Q5 is equal to $0.159/bu. It is

easy to see why some investors believe that the positive roll yield in a backwardated market

implies positive investment profits from holding a futures contract relative to investing in the

physical commodity. Indeed, it seems obvious that breaking even on the futures contract rather

than facing a declining spot price is a profitable strategy, at least in relative terms. What these

investors are failing to realize is that by holding a futures contract rather than investing in the

physical commodity the convenience yield is lost. After this lost convenience yield is accounted
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Figure 9: Roll Overs with a Positive Carrying Charge and Normal Price Expectations

for, the net profitability of holding the futures contract and holding the physical commodity are

the same, at least for the case at hand.

It is unfortunate that the term roll yield was used to define the performance of a futures

contract relative to the change in the spot price. As shown in the quotes above, commodity

market professionals sometimes mistakenly attribute the negative roll yield in a contango market

to the price difference for the futures contract on the day of the roll over. With reference to

Figure 9 the argument goes that closing out the long futures position for the expiring Q2 contract

at price F2,2 and rolling into a new contract at price F2,3 generates a loss because the investor is

forced to sell low and buy high. In actual fact, the size and sign of the price spreads within a set

of futures contracts do not affect expected profits. All that matters is the difference between the

futures price when the rollover position is complete versus initiated.
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6 Discussion and Conclusions

The main goal of this paper was to critically examine the dual definitions of backwardation

and contango in the context of commodity futures markets. The paper began by noting that

by outward appearance the two definitions are very similar. Indeed, (normal) backwardation

and (normal) contango, is concerned with the difference between the current futures price and

the expected spot price, whereas backwardation and contango is concerned with the differ-

ence between the current futures price and the current spot price. Viewed differently, normal

backwardation/contango is about the expected time path of the futures price whereas backwar-

dation/contango is about the slope of the forward curve (i.e., term structure) at a given point

in time. Normal backwardation (contango) decreases (increases) the slope of the forward curve

and in that sense the degree of backwardation/contango depends on the level of normal back-

wardation/contango. However, the reverse is not true because backwardation/contango is not

necessary nor sufficient for the presence of normal backwardation/contango. This asymmetry

in cause and effect can be attributed to the marginal carrying cost, which is the net contribution

of storage costs and convenience yield.

In the world of professional investing and hedging the concept of normal backwardation/contango

is seldom discussed. This is not surprising because the level of normal backwardation/contango

cannot be observed, and empirical estimates of the magnitude of the phenomena are gener-

ally small and inconsistent across time periods and different commodities. Instead, the degree

of backwardation and contango as measured by the slope of the forward curve is commonly

identified as a major determinant of roll yield, and roll yield is typically equated with financial

return. As was demonstrated in this paper, if normal backwardation/contango is absent, then the

slope of the forward curve is a good measure of the expected gross returns to a short hedger and

it has no impact on the expected profits for both active speculators and institutional investors.

In this paper roll yield was shown to be a measure of the gross return rather than net return

from investing in a futures contract rather than holding the physical commodity. By ignoring

storage costs and convenience yield, and equating the gross return of holding a futures contract
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with net financial return, investing professionals are incorrectly critical of the actual financial

performance of holding a commodity futures contract.

Due to space constraints, this paper was unable to formally examine backwardation and

contango in the context of short term pricing disequilibrium and market inefficiencies. Beck

[1994] and others have pointed out that a gap between the futures price and the expected future

spot price (i.e., a futures price bias) may be due to either a risk premium caused by normal

backwardation/contango or a market inefficiency. Using a cointegration framework to distin-

guish between the two effects, Beck [1994] concluded that market inefficiency explains futures

price biases for most commodities but not all of the time. Similarly, McKenzie and Holt [2002]

concluded that the futures markets for the major agricultural commodities are unbiased in the

long run but they do exhibit short-run inefficiencies and pricing biases.11

Pricing inefficiency has potentially important implications for backwardation and contango

through the physical delivery mechanism for settling a commodity futures contract. For exam-

ple, with the onset of the COVID-19 pandemic, a rapid build up of oil inventories and a severe

shortage of oil storage capacity caused expiring May, 2020 crude oil futures to trade at a neg-

ative price [Hansen, 2020]. More generally, according to Saefong [2020] there was very little

spread between the prices of the May through October futures contracts up until the onset of the

pandemic but the spreads rapidly increased and the market experienced steep (super) contango

when the pandemic arrived in mid March of 2020. Saefong [2020] attributes the super contango

to traders’ uncertainty about the short to medium term availability of oil storage capacity.

The idea that information asymmetries and bottlenecks cause pricing inefficiencies is much

more appealing than the alternative hypothesis that traders make irrational decisions and/or fail

to recognize arbitrage opportunities. Indeed, it is well known from the spatial pricing integra-

tion literature that capacity constraints in transportation networks typically reduce the level of

spatial pricing integration [Birge, Chan, Pavlin, and Zhu, 2020]. Based on this line of reason-

ing, constraints in the U.S. grain storage and transportation network is likely to occasionally

create a strong contango, similar to that observed in the futures market for crude oil. To see

11An anonymous referee identified this literature and indicated its relevance for this current study of backwar-

dation and contango.
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how this may work, monthly data on the spread between the USDA spot price for corn at the

Gulf Coast and St. Louis was collected for the period January, 2004 to January, 2020.12 After

confirming stationarity, the price spread was regressed on an index of the price of barge ser-

vices between St. Louis and the Gulf Coast, with the error term specified as a seasonal ARIMA

[SARIMA(1,0,1,12)].

The price spread regression revealed a strong association between the spread in spot prices

between the U.S. midwest and the U.S. Gulf Coast and the cost of transporting the corn be-

tween these two locations. Despite strong seasonality in the price of barge services, the monthly

seasonal lag in the error term was also statistically significant. Moreover, the fitted values re-

vealed that the price spread follows the usual seasonal pattern (i.e., relatively large in the months

following harvest and relatively small in the months leading up to harvest). This pair of results

suggest that barge capacity is being rationed in the post harvest period because the price of barge

services is not clearing the market. The near-contract futures price for corn closely follows the

St. Louis spot price because St. Louis is a designated futures contract delivery location. Con-

sequently, asymmetric information concerning barge availability in the short to medium term is

likely to cause the slope of the forward curve and the corresponding strength of the underlying

contango to vary over time and occasionally surge, similar to that which has been described in

the market for crude oil.

In the early agricultural economics literature on commodity futures, the goal was to model

the cyclical nature of annual crop production, uncertain harvest volumes, seasonal convenience

yield and the risk premium for farmers and small scale grain merchants and processors. Begin-

ning in the mid 2000s agricultural economists have largely shifted their focus to the so-called

commodification of food, which can be attributed to relatively large inflows of capital from

institutional investors in agricultural commodity index funds, and the strengthening of the link-

age between energy and food markets due to the large volume of corn currently being used to

produce ethanol. As a result of this shift in focus it is likely that the alternative definition of

backwardation and contango, which currently enjoys widespread use among investment profes-

12The data and empirical results will eventually be available in an on-line supplement.
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sionals and in general finance, will gradually become mainstream in agricultural economics as

well.

30



References

Basu, Parantap and William T. Gavin 2011. What explains the growth in commodity deriva-

tives? Review 93(Jan), 37–48.

Beck, Stacie E. 1994. Cointegration and market efficiency in commodities futures markets.

Applied Economics 26(3), 249–257.

Birge, John R., Timothy Chan, Michael Pavlin, and Ian Yihang Zhu 2020. Spa-

tial price integration in commodity markets with capacitated transportation net-

works (february 26, 2020). Available at SSRN: https://ssrn.com/abstract=3544530 or

http://dx.doi.org/10.2139/ssrn.3544530.

Brennan, Michael J. 1958. The supply of storage. The American Economic Review 48(1),

50–72.

Brusstar, Dan and Erik Norland 2015. Super-contango and the bottom in oil prices. Report,

Chicago Mercantile Exchange (CME).

Carter, Colin 2012. Futures and Options Markets, An Introduction. Rebel Text.

Carter, Colin, Gordon Rausser, and Andrew Schmitz 1983, 02. Efficient asset portfolios and the

theory of normal backwardation. Journal of Political Economy 91, 319–31.

Dewally, Michael, Louis H. Ederington, and Chitru S. Fernando 2013, 01. Determinants of

Trader Profits in Commodity Futures Markets. The Review of Financial Studies 26(10),

2648–2683.

Dusak, Katherine 1973. Futures trading and investor returns: An investigation of commodity

market risk premiums. Journal of Political Economy 81(6), 1387–1406.

Fama, Eugene F. and Kenneth R. French 1987. Commodity futures prices: Some evidence on

forecast power, premiums, and the theory of storage. The Journal of Business 60(1), 55–73.

31



Gabillon, Jacques 1991. The term structures of oil futures prices. Available at https:

//www.oxfordenergy.org/wpcms/wp-content/uploads/2010/11/

WPM17-TheTermStructureofOilFuturesPrices-JGabillon-1991.pdf

(2020/07/18).

Gorton, Gary and K. Geert Rouwenhorst 2006. Facts and fantasies about commodity futures.

Financial Analysts Journal 62(2), 47–68.

Grauer, Frederick L. A. and Robert H. Litzenberger 1979. The pricing of commodity futures

contracts, nominal bonds and other risky assets under commodity price uncertainty. The

Journal of Finance 34(1), 69–83.

Hambur, Jonathan and Nick Stenner 2016. The term structure of commodity risk premiums

and the role of hedging. Available at https://www.rba.gov.au/publications/

bulletin/2016/mar/7.html (2019/06/20).

Hamilton, James D. and Jing Cynthia Wu 2014. Risk premia in crude oil futures prices. Journal

of International Money and Finance 42, 9 – 37. Understanding International Commodity

Price Fluctuations.

Hamilton, James D. and Jing Cynthia Wu 2015. Effects of index-fund investing on commodity

futures prices. International Economic Review 56(1), 187–205.

Hansen, Sarah 2020. Here is what negative oil prices really mean.

Hicks, J.R. 1939. Value and Capital: An Inquiry into Some Fundamental Principles of Eco-

nomic Theory. Oxford: Clarendon Press.

Irwin, Scott H. and Dwight R. Sanders 2011. Index funds, financialization, and commodity

futures markets. Applied Economic Perspectives and Policy 33(1), 1–31.

Johnson, Leland L. 1960. The theory of hedging and speculation in commodity futures. The

Review of Economic Studies 27(3), 139–151.

32

https://www.oxfordenergy.org/wpcms/wp-content/uploads/2010/11/WPM17-TheTermStructureofOilFuturesPrices-JGabillon-1991.pdf
https://www.oxfordenergy.org/wpcms/wp-content/uploads/2010/11/WPM17-TheTermStructureofOilFuturesPrices-JGabillon-1991.pdf
https://www.oxfordenergy.org/wpcms/wp-content/uploads/2010/11/WPM17-TheTermStructureofOilFuturesPrices-JGabillon-1991.pdf
https://www.rba.gov.au/publications/bulletin/2016/mar/7.html
https://www.rba.gov.au/publications/bulletin/2016/mar/7.html


Keynes, John Maynard, 1883-1946 1930. A treatise on money / John Maynard Keynes. Macmil-

lan.

McKenzie, Andrew M. and Matthew T. Holt 2002. Market efficiency in agricultural futures

markets. Applied Economics 34(12), 1519–1532.

Moschini, GianCarlo, Harvey Lapan, and Hyunseok Kim 2017, 09. The Renewable Fuel Stan-

dard in Competitive Equilibrium: Market and Welfare Effects. American Journal of Agricul-

tural Economics 99(5), 1117–1142.

Paroush, Jacob and Avner Wolf 1989. Production and hedging decisions in the presence of basis

risk. Journal of Futures Markets 9(6), 547 – 563.

Pindyck, Robert S. 2001. The dynamics of commodity spot and futures markets: A primer. The

Energy Journal 22(3), 1–29.

Routledge, Bryan R., Duane J. Seppi, and Chester S. Spatt 2000. Equilibrium forward curves

for commodities. The Journal of Finance 55(3), 1297–1338.

Saefong, Myra 2020. Oil market in super contango underlines storage fears as coronavirus

destroys crude demand.

Salzman, Avi 2020. The oil market is changing its tune. so long, super contango.

Stoll, Hans R. 1979. Commodity futures and spot price determination and hedging in capital

market equilibrium. The Journal of Financial and Quantitative Analysis 14(4), 873–894.

Telser, Lester G. 1958. Futures trading and the storage of cotton and wheat. Journal of Political

Economy 66(3), 233–255.

Vercammen, J. and A. Doroudian 2014, 03. Portfolio Speculation and Commodity Price Volatil-

ity in a Stochastic Storage Model. American Journal of Agricultural Economics 96(2), 517–

532.

33



Whalen, Chip 2018, April. Understanding the Cash Market and Futures Curve. National Hog

Farmer April 30.

Working, Holbrook 1948. Theory of the inverse carrying charge in futures markets. Journal of

Farm Economics 30(1), 1–28.

Working, Holbrook 1949. The theory of price of storage. The American Economic Review 39(6),

1254–1262.

34



Appendix

A Derivation of Conditional Demand for Storage

Equation (2) is the dynamic demand for storage equation. The goal is to derive a conditional

quarterly demand for storage of the form Pt+1−Pt = At+BtSt−1+CtSt for t ∈ {1, ..., 7}where

At, Bt and Ct are time dependent groups of parameters, and the implicit assumption is that

storage in quarters beyond t is along the equilibrium path. With this specification, At +BtSt−1

is the intercept of the demand for storage in quarter t conditioned on stocks brought into quarter

t as measured by St−1, and Ct is the slope. To derive expressions for At, Bt and Ct it is useful

to first establish the following dynamic variable definitions.

ηt =

 b
m1+2b−bηt+1

if t = 1, ..., 6

0 if t = 7

λt =


−(m0−bλt+1)+bHt

m1+2b−bηt+1
if t = 1, 5

−(m0−bλt+1)
m1+2b−bηt+1

if t = 2, 3, 6

λt =


−(m0−bλt+1)−bHt

m1+2b−bηt+1
if t = 4

0 if t = 7

In Q7, with zero harvest in Q7 and Q8, and zero stocks carried out of Q8, the demand for

storage as given by equation (2) can be expressed as P8 − P7 = a − b(S7 + 0 − 0) − (a −

b(S6 + 0 − S7)). This equation reduces to P8 − P7 = bS6 − 2bS7. Thus, A7 = 0, B7 = b and

C7 = −2b. Now combine the Q7 demand for storage, P8−P7 = bS6−2bS7, with the Q7 supply

of storage, P8 − P7 = m0 + m1S7 to obtain S7 = λ7 + η7S6 where the expressions for λ7 and

η7 have been defined above. This equation, which shows the optimal level of storage in quarter

7 as a function of the level of stocks which were brought into quarter 7, can now be substituted

for S7 in the Q6 demand for storage equation as given by (2). The resulting equation reduces to

P7 − P6 = bλ7 + bS5 − (2b − bη7)S6. Thus, A6 = bλ7, B6 = b and C6 = −(2b − bη7). The

above procedure can be repeated for t = 5, 4, 3, 2, 1 while accounting for the positive levels of
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harvest in Q1 and Q5. The result is Bt = b for t = 1, ..., 7 and the following set of expressions

for At and Bt:

Ct =

 −(2b− bηt+1) if t = 1, ..., 6

−2b if t = 7

At =

 bλt+1 + bHt if t = 1, 5

bλt+1 if t = 2, 3, 6

At =

 bλt+1 − bHt+1 if t = 4

0 if t = 7

B Solution for Main Model

This section of the Appendix consists of two subsections. In the first subsection the model

is solved conditional on the Q1 forecast of the H5 variable. The last subsection presents the

solution conditional on the Q2 forecast of the H5 variable.

B.1 Results Conditioned on Q1 Forecast

To simplify the notation let Z = m0/b and m = m1/b respectively denote the intercept and

slope of the carrying cost function, each normalized by the slope of the inverse demand sched-

ule. Equations (3), (4) and (5) from the text are repeated for convenience.

Pt+1 − Pt = m0 +m1St (B.1)

Pt = a− bXt (B.2)

St = St−1 +Ht −Xt with Ht = 0 for t = 2, 3, 4, 6, 7, 8 (B.3)

Equation (B.1) with t ∈ {1, 2, 3} and equations (B.2) and (B.3) with t ∈ {1, 2, 3, 4} are a

system of 11 equations with twelve unknown variables: X1...X4, S1...S4 and P1...P4. If X1 is
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treated as known parameter then the system can be solved. Of particular interest is the solution

value for consumption, Xt = ωt0 + ωt1X1 for t ∈ {2, 3, 4}, and the solution value for stocks,

St = γt0 +γt1X1 for t ∈ {1, 2, 3, 4}. The recursive expressions for the set of ω and γ coefficients

are displayed in Table 3 below.

The conditional solution for Q5 through Q8 can be obtained in a similar fashion. Equa-

tions (B.1) and (B.3) with t ∈ {5, 6, 7}, and equation (B.2) with t ∈ {5, 6, 7, 8} are a system

of 10 equations with twelve unknown variables: X5...X8, S5...S8 and P5...P8. The boundary

condition, S8 = S̄8, provides one additional equation. If X5 is treated as a known parame-

ter then the system can be solved. Of particular interest is the solution value for consump-

tion, Xt = ωt0 + ωt1X5 + ω5
2(S4 + H5) for t ∈ {6, 7, 8}, and the solution value for stocks,

St = γt0 + γt1X5 + γt2(S4 + H5) for t ∈ {5, 6, 7, 8}. In this equation the boundary condition,

S4 + H5 is kept explicit because S4 is a variable.13. The recursive expressions for the set of ω

and γ coefficients are displayed in Table 3 below.

Table 3: Coefficients for X and S

Consumption (Xt) Stocks (St)

ωt0 ωt1 ωt2 γt0 γt1 γt2

Q1 na na na S0 +H1 -1 0

Q2 −Z −m(S0 +H1) 1 +m 0 γ1
0 − ω2

0 −(1 + ω2
1) 0

Q3 ω2
0 − Z −mγ2

0 ω2
1 −mγ2

1 0 γ2
0 − ω3

0 γ2
1 − ω3

1 0

Q4 ω3
0 − Z −mγ3

0 ω3
1 −mγ3

1 0 γ3
0 − ω4

0 γ3
1 − ω4

1 0

Q5 na na na 0 -1 1

Q6 −Z −mγ5
0 1−mγ5

1 −mγ5
2 γ5

0 − ω6
0 γ5

1 − ω6
1 γ5

2 − ω6
2

Q7 ω6
0 − Z −mγ6

0 ω6
1 −mγ6

1 ω6
2 −mγ6

2 γ6
0 − ω7

0 γ6
1 − ω7

1 γ6
2 − ω7

2

Q8 ω7
0 − Z −mγ7

0 ω7
1 −mγ7

1 ω7
2 −mγ7

2 γ7
0 − ω8

0 γ7
1 − ω8

1 γ7
2 − ω8

2

13In Q1 the S0 +H1 boundary condition is suppressed because S0 and H1 are both parameters

37



The next step is to solve for the equilibrium values of X1 and E1(X5). The expectations

operator on X5 indicates that the equilibrium values are relevant for Q1 through Q4. Later in

the analysis X5 is reintroduced as a random variable whose outcome depends on the random

H5 outcome. To solve for the equilibrium values of X1 and E1(X5) substitute X4 = ω4
0 +ω4

1X1

and S4 = γ4
0 + γ4

1X1 into the boundary condition, γ8
0 + γ8

1E(X5) + γ8
2(S4 + H5) = S̄8, and

the equilibrium pricing equation which governs the transition from Q4 to Q5: E1(P5) − P4 =

m0 + m1S4. Solving for X1 and E1(X5) involves solving for the equilibrium value of S4. The

desired expression is S4 = Γ4
0 + Γ4

1E1(H5), where:

Γ4
0 =

γ4
1 [S̄8 − γ8

0 + γ8
1(Z − Φ)]

γ8
1ω

4
1 − γ4

1(mγ8
1 − γ8

2)
Γ4

1 = − γ4
1γ

8
2

γ8
1ω

4
1 − γ4

1(mγ8
1 − γ8

2))
(B.4)

Within equation (B.4) note that Φ = (γ4
1ω

4
0 − ω4

1γ
4
0)/γ4

1 . It is important to keep in mind that

the solutions for Q5 through Q8 depend indirectly on E1(H5) because all of the Q5 variables

depend on S5, and S5 depends on S4, which itself depends on E1(H5).

Equation (B.4) can now be used to specify solution values for X and S as a function of

E1(H5) for Q1 through Q4, and random H5 for Q5 through Q8. Specifically, Xt = Ωt
0 +

Ωt
1E1(H5) and St = Γt0 + Γt1E1(H5) for t ∈ {1, 2, 3, 4}, and Xt = Ωt

0 + Ωt
1H5 and St =

Γt0 + Γt1H5 for t ∈ {5, 6, 6, 8}. The expressions for the Ω and Γ coefficients are in Table 4

below. Finally, quarterly price, Pt = a − bXt, can be expressed as Pt = δt0 + δt1E(H5) for

t ∈ {1, 2, 3, 4}, and Pt = δt0 + δt1H5 for t ∈ {5, 6, 7, 8}, where δt0 = a − bΩt
0 and δt1 = −bΩt

1.

Once again, the Q5 through Q8 prices depend indirectly on E1(H5) via the storage functions.

Results Conditioned on Q2 Forecast

In the beginning of Q2 market participants receive an updated forecast of the year 2 harvest,

H2
5 . The full set of prices will adjust due to the changes in current and future consumption and

storage. After the adjustment P2 = δ̄2
0 + δ̄2

2H
1
5 + δ̄2

1H
2
5 . What follows is the derivation of the

expressions for the three coefficients, δ̄2
0 , δ̄2

1 and δ̄2
2 .
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Table 4: Additional Coefficients for X and S

Consumption (Xt) Stocks (St)

Ωt
0 Ωt

1 Γt0 Γt1

Q1 −γ40
γ41

+
Γ4
0

γ41

Γ4
1

γ41
S0 +H1 − Ω1

1 −Ω1
1

Q2 ω2
0 + ω2

1Ω1
0 ω2

1Ω1
1 γ2

0 + γ2
1Ω1

0 γ2
1Ω1

1

Q3 ω3
0 + ω3

1Ω1
0 ω3

1Ω1
1 γ3

0 + γ3
1Ω1

0 γ3
1Ω1

1

Q4 ω4
0 + ω4

1Ω1
0 ω4

1Ω1
1 See eqn. (B.4) See eqn. (B.4)

Q5 S̄8−γ80
γ81
− γ82

γ81(Γ4
0+Γ4

1E(H5))
−γ82
γ81

γ5
0 + γ5

1Ω5
0 + γ5

2S
∗
4 γ5

1Ω5
1 + γ5

2

Q6 ω6
0 + ω6

1Ω5
0 + ω6

2S
∗
4 ω6

1Ω5
1 + ω6

2 γ6
0 + γ6

1Ω5
0 + γ6

2S
∗
4 γ6

1Ω5
1 + γ6

2

Q7 ω7
0 + ω7

1Ω5
0 + ω7

2S
∗
4 ω7

1Ω5
1 + ω7

2 γ7
0 + γ7

1Ω5
0 + γ7

2S
∗
4 γ7

1Ω5
1 + γ7

2

Q8 ω8
0 + ω8

1Ω5
0 + ω8

2S
∗
4 ω8

1Ω5
1 + ω8

2 γ8
0 + γ8

1Ω5
0 + γ8

2S
∗
4 γ8

1Ω5
1 + γ8

2

Note that S∗
4 = Γ4

0 + Γ4
1E(H5)

The system of equations to be solved include: S2 = S∗
1 −X2, S3 = S2−X3, S4 = S3−X4

X3 = X2 − Z −mS2 and X4 = X3 − Z −mS3 where S∗
1 = Γ1

0 + Γ1
1E1(H5) is the expression

for Q1 ending stocks. The solution is given by:

X4 = ω̄4
0 + ω̄4

1X2 (B.5)

and

S4 = γ̄4
0 + γ̄4

1X2 (B.6)

The expressions for the coefficients in this pair of equations are as follows:

ω̄4
0 = −(2 +m)Z −m(2 +m)S∗

1 ω̄4
1 = m2 + 3m+ 1

γ̄4
0 = (3 +m)Z + (m2 + 3m+ 1)S∗

1 γ̄4
1 = −(m2 + 4m+ 3)

(B.7)

Following the steps from the previous section, it can be shown that S4 = Γ̄4
0 + Γ̄4

1E2(H5)

where the expressions for Γ̄4
0 and Γ̄4

1 are given by equation (B.4) with the coefficients in equation

(B.7) substituting for the corresponding coefficients in equation (B.4). Make a similar substitu-

tion for the Φ expression, which resides immediately below equation (B.4).
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The next step is to combine S4 = γ̄4
0 + γ̄4

1X2 and S4 = Γ̄4
0 + Γ̄4

1H
2
5 with expressions for the

four coefficients substituted in. This gives

X2 = Ω̄2
0 + Ω̄2

1H
2
5 + Ω̄2

2S
∗
1 (B.8)

The coefficients in this equation have the following expressions:

Ω̄2
0 = (3+m)Z

m2+4m+3
− γ̄41(S̄8−γ80)

K0

+
γ81
K0

((m2 + 4m+ 3)(2 +m)Z − (m2 + 3m+ 1)((3 +m)Z − γ̄4
1Z))

(B.9)

Ω̄2
1 =

γ̄4
1γ

8
2

(γ8
1 ω̄

4
1 − γ4

1(mγ8
1 − γ8

2)) (m2 + 4m+ 3)
(B.10)

and

Ω̄2
2 =

γ81
K0

((m2 + 4m+ 3)(2 +m)m− (m2 + 3m+ 1)2) + m2+3m+1
m2+4m+3

(B.11)

Within this set of equations K0 = (γ8
1 ω̄

4
1 − γ̄4

1(mγ8
1 − γ8

2))(m2 + 4m+ 3).

The finish this section substitute equation (B.8) and S∗
1 = Γ1

0 + Γ1
1H

1
5 into Pt = a− bXt to

obtain the following:

P2 = δ̄2
0 + δ̄2

2H
1
5 + δ̄2

1H
2
5 (B.12)

where: δ̄2
0 = a− bΩ̄2

0 − bΩ̄2
2Γ1

0, δ̄2
1 = −bΩ̄2

1 and −bΩ̄2
2Γ1

1
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