
PATTABIRAMAN ET AL : AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS

 Automated Derivation of Application-aware
Error Detectors Using Static Analysis: The

Trusted Illiac Approach
Karthik Pattabiraman, Member IEEE, Zbigniew Kalbarczyk, Member IEEE, and Ravishankar K.

Iyer, Fellow IEEE

Abstract— This paper presents a technique to derive and implement error detectors to protect an application from data errors.

The error detectors are derived automatically using compiler-based static analysis from the backward program slice of critical

variables in the program. Critical variables are defined as those that are highly sensitive to errors, and deriving error detectors for

these variables provides high coverage for errors in any data value used in the program. The error detectors take the form of

checking expressions and are optimized for each control flow path followed at runtime. The derived detectors are implemented

using a combination of hardware and software and continuously monitor the application at runtime. If an error is detected at

runtime, the application is stopped so as to prevent error propagation and enable a clean recovery. Experiments show that the

derived detectors achieve low-overhead error detection while providing high coverage for errors that matter to the application.

Index Terms—B.2.3 Error Checking, B.8.1 Reliability, Testing, and Fault-tolerance, C.3.e Reconfigurable Hardware, D.2

Software Engineering (Reliability), D.4.5.d Fault-tolerance

1 INTRODUCTION

This paper presents a methodology to derive error detec-

tors for an application based on compiler-based static

analysis. The derived detectors detect data errors in the

application. A data error is defined as a d ivergence in the

data values used in a program from an error-free run of

the program for the same input. Data errors can result

from incorrect computation and would not be caught by

generic techniques such as ECC in memory. They can also

arise due to software defects (bugs).

In the past, static analysis [1] and dynamic analysis [2]

approaches have been proposed to find bugs in programs.

These approaches have proven effective in finding known

kinds of errors prior to deployment of the application in

an operational environment. However, studies have

shown that the kinds of errors encountered by applica-

tions in operational settings are often subtle errors (such

as in timing and synchronization) [3], which are not

caught by static or dynamic methods.

Furthermore, programs upon encountering an error, may

execute for billions of cycles before crashing (if they crash)

[4], during which time the error may propagate to a per-

manent state [5]. In order to detect runtime errors, we

need mechanisms that can provide high-coverage, low -

latency error detection to preempt uncontrolled system

crash or hang and prevent error propagation that can lead

to state corruption. This is the focus of this paper.

Duplication has traditionally been used to provide high

coverage at runtime for software errors and hardware

errors [6]. However, in order to prevent error propagation

and preempt crashes, a comparison needs to be per-

formed after every instruction, which in turn results in

high performance overhead. Therefore, duplication tech-

niques compare the results of replicated instructions at

selected program points, such as stores to memory [7, 8].

While this reduces the performance overhead of duplica-

tion, it sacrifices coverage, as the program may crash be-

fore reaching the comparison point. Further, duplication-

based techniques detect all errors that manifest in instru c-

tions and data. It has been found that less than 50% of

these errors typically result in application failure (crash,

hang, or incorrect output) [9]. Therefore, more than 50%

of the errors detected by duplication are benign [10].

The main contribution of this paper is an approach to derive

runtime error detectors using static analysis of the application.

The derived detectors can be implemented using either software

or programmable hardware. While this paper focuses on the

software implementation of the detectors, the detectors have also

been implemented in hardware in the context of the Reliability

and Security Engine (RSE)[11]. They have been prototyped as

part of the Trusted Illiac project, which is a configurable, appli-

cation-aware, high-performance platform for trustworthy com-

puting being developed at the University of Illinois [12, 13].

We find experimentally that the derived detectors

preempt crashes and provide high detection coverage for

errors that result in application failures. The key findings

of the study are as follows: (1) the derived detectors detect

around 75% of errors that propagate and cause crashes,

(2) the percentage of benign errors detected is less than

3%, and (3) the average performance overhead of the d e-

rived detectors is 33%.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 K. Pattabiraman is with Microsoft Research, Redmond, WA 98052. E-mail:
karpat@microsoft.com. This work was performed when he was with the
Center for Reliable and High-Performance Computing, Urbana, IL.

 Z. Kalbarczyk is with the Center for Reliable and High-Performance Com-
puting, Urbana, IL 61801. E-mail: kalbarcz@uiuc.edu

 R.K. Iyer is with the Center for Reliable and High-Performance Compu-
ting, Urbana, IL 61801. E-mail: rkiyer@uiuc.edu

mailto:karpat@microsoft.com

2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ID

2 RELATED WORK

Related techniques for (1) uncovering softw are bugs using

static/ dynamic program analysis and (2) providing ru n-

time detection of hardware/ software errors can be d i-

vided into several broad groups as shown in Table 1.

The static techniques d iscussed in Table 1 are geared to-

ward detecting errors at compile time, while the d ynamic

analysis techniques are geared towards providing feed -

back to the programmer for bug finding. Both these types

are fault-avoidance techniques (the fault is removed before

the program is operational) [14]. Despite the existence of

these techniques and rigorous program testing, subtle but

important errors such as timing errors persist in a pro-

gram [3, 15]. Furthermore, fu ll replication can detect

many of these errors; but not only does it incur significant

performance overheads, it also results in a large number

of benign error detections that have no impact on the a p-

plication [10]. Thus, there is a need for a technique that

takes advantage of application characteristics and detects

arbitrary errors at runtime without incurring the over-

heads of replication.

Table 1: Classification of related techniques

Class Example Comments

S
ta

ti
c

A
n

a
ly

si
s

T
e
ch

n
iq

u
e
s Prefix [16],

ESP [17],

LINT[1]

Checks the program based on a well-understood fault model, usually specified based on common programming

bugs (e.g. NULL pointer dereferences). The techniques attempt to locate errors across all feasible paths in the pr o-

gram (a program path that corresponds to an actual execution of the program). Determining feasible paths is known

to be an impossible problem in the general case. Therefore, these techniques make appro ximations that result in

find ing errors that will never occur in a real execu tion, lead ing to wasteful detections.

D
y

n
a

m
ic

 A
n

a
ly

si
s

T
e
ch

n
iq

u
e
s

DAIKON

[2]

Derives code invariants such as the constancy of a variable, linear relationships among sets of program variables,

and inequalities involving two or more program variables. DAIKON’s primary purpose is to present the inv ariants

found to programmers. The invariants are d erived based on the execution of the application with a representative

set of inputs that are not in this set may result in the invariants being violated even when there is no error in the

progam.

DIDUCE

[18]

Uses the invariants learned during an early stage of the program execution to detect errors in the subsequent part of

the execution. It is unclear how the invariants learned during the early stages represent the entire application’s ex-

ecution. This in turn may lead to false detections.

R
u

le
-b

a
se

d

D
e
te

ct
o

rs

H iller et al.

[19], Patta-

biraman et

al. [20]

Derives error detectors based on rule-based templates, wherein the choice of templates and the parameters are either

manually specified [19] or automatically derived [20]. The generic problem with rule-based detectors however, is

that they are specific to an application domain (e.g. specific embedded applications), and it is d ifficult to make them

work for general-purpose applications. Further, the rules learned may not be representative of all inputs to the ap-

plication and may be violated even when there is no error in the application.

In
fe

rr
in

g
 S

p
e
-

ci
fi

ca
ti

o
n

s

fr
o

m
 C

o
d

e

PR-Miner

[21], Engler

et al [22]

Learns program patterns from source code analysis and consider violations of these patterns as program bugs . Pat-

terns are learned from localized code samples and extended to the whole code base. The techniques are useful for

find ing common programming errors such as copy-and-paste errors. It is unclear if they can be used for detecting

more subtle errors that occur in well-tested code, such as timing and memory errors, as these errors may not be

easily localized to code sections. Further, these techniques have false-positives i.e. many errors are not real bugs.

C
o

m
p

il
e
r-

b
a

se
d

 R
e
p

li
-

ca
ti

o
n

Benso et

al.[23],

EDDI [7],

SWIFT [8]

Replicates the entire program, which can result in high performance overheads (90-100%). An important issue in all

low-level replication techniques is that they result in the detection of many errors that have no impact on the appl i-

cation (benign errors). This constitutes a wasteful detection (and subsequent recovery) from the application’s view-

point. Further, duplication-based techniques offer limited protection from software faults and permanent hardware

faults because both the original program and the replica can incur common-mode faults.

R
u

n
ti

m
e
 V

e
-

ri
fi

ca
ti

o
n

JavaMac

[24], Java-

PathEx-

plorer [25]

Checks whether the program violates a programmer-specified safety property by constructing a model of the pro-

gram and checking the model based on the actual program execution. The checking is done at specific pr ogram

points depending on the model. However, if there is a general error in the program there is no guarantee that the

program will reach the check before crashing. Since the papers describing these techniques only consider errors that

are d irectly detectable (by the checking technique), the coverage for a ran dom hardware or software error is not

clear.

R
u

n
ti

m
e
 E

rr
o

r
D

e
te

ct
io

n
 f

o
r

sp
e
ci

fi
c

e
rr

o
r

cl
a

ss
e
s

Memory

Safety

Checking

[26-28]

Checks every program store that is performed through a pointer (at runtime) to ensure t hat the write is within the

allowed bounds of the pointer. The techniques are effective for detecting common problems due to buffer overflows

and dangling pointer errors. It is unclear whether they are effective in detecting random e rrors that arise due to

incorrect computation unless such an error results in a pointer writing outside its allowed bounds. The techniques

also requires checking every memory write, and this can result in prohibitive performance ove rheads (5x-6x).

Race Con-

d ition De-

tection [29,

30]

Checks for race conditions in a multi-threaded program. A race condition occurs when a shared variable is accessed

without explicit and appropriate synchronization. The techniques check for races in lock -based programs by dynam-

ically monitoring lock acquisitions and releases. However, these approaches involve instrumenting and d ynamically

monitoring memory writes to shared variables in programs, which in turn can result in prohibitve pe rformance

overheads (6x to 60x). Moreover, conventional race-detection techniques may find races that have no impact on the

program’s output (benign races), thereby resulting in wasteful d etections.

Control-

flow

Checking

[31] [32]

Ensures that a program’s statically derived control-flow graph is preserved during the program’s execution. This is

achieved by adding checks on the targets of jump instructions and at entries and exits of basic blocks. However,

fault-injection experiments have shown that only 33% of the manifested errors result in violations of control-flow

and can hence be detected by these techniques (even assuming that the detection coverage is 100%).

PATTABIRAMAN ET AL : AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS

In earlier work [33], we have shown the feasibility of d e-

riving error detectors based on static analysis of applica-

tions and have shown that the derived detectors provide

high detection coverage (for data errors) with low per-

formance overheads. This paper extends this idea by (1)

presenting algorithms for automated static derivation of

error detectors and their implementation, (2) d iscussing

their scalability of the derivation process and the coverage

of the derived detectors, and (3) qualitatively analyzing

the coverage of the derived detectors for software errors.

3 APPROACH

This section presents an overview of the detector deriva-

tion approach.

3.1 Terms and Definitions

Backw ard program slice of a variable at a program loca-

tion is the set of all program statements/ instructions that

can affect the value of the variable at that program loca-

tion [34].

Crit ical variable is a program variable that exhibits high

sensitivity to random data errors in the application. Plac-

ing checks on critical variables achieves high detection

coverage for data errors.

Checking expression is an optimized sequence of instru c-

tions that recompute the critical variable. It is computed

from the backward slice of the critical variable for a specific

acyclic control path in the program.

Detector is the set of all checking expressions for a critical

variable, one for each acyclic, intra-procedural control

path in the program.

3.2 Steps in Detector Derivation

The main steps in error detector derivation are as follows:

A. Ident ificat ion of crit ical variables. The critical va-

riables are identified based on an analysis of the dynamic

execution of the program. The application is executed

with representative inputs to obtain its dynamic execution

profile, which is used to choose critical variables for d e-

tector placement. Critical variables are variables with the

highest dynamic fanouts in the program, as errors in these

variables are likely to propagate to many locations in the

program and cause program failure. The approach for

identifying critical variables was presented in [35], where

it was shown (experimentally) to provide 85% coverage

with approximately 10 critical variables in the entire pro-

gram
1
. However, in this paper, critical variables are ch o-

sen on a per-function basis in the program i.e. each fun c-

tion/ procedure in the program is considered sep arately to

identify critical variables.

B. Computat ion of backw ard slice of crit ical variables . A

backward traversal of the static dependence graph of the

program is performed starting from the instruction that

computes the value of the critical variable going back to

the beginning of the function. The slice is specialized for

1
 The paper considered ideal detectors which could detect any devia-

tion from the correct value.

each acyclic control path that reaches the computation of

the critical variable from the top of the function. The slic-

ing algorithm used is a static slicing technique that con-

siders all possible dependences between instructions in

the program regardless of program inputs (based on

source language semantics). Hence, the slice will be a su-

perset of the dependencies encountered during an execu-

tion of the program and encompasses all valid inputs.

C. Check derivat ion, insert ion, inst rumentat ion.

 Check derivation: The specialized backward slice for

each control path is optimized considering only the in-

structions on the corresponding path, to form the check-

ing expression.

 Check insertion: The checking expression is inserted

in the program immediately after the computation of the

critical variable.

 Instrumentation: Program is instrumented to track

control-paths followed at runtime in order to choose the

checking expression for that specific control path.

D. Runt ime checking in hardw are and softw are. The con-

trol path followed is tracked (by the inserted instrumenta-

tion) at runtime. The path-specific inserted checks are

executed at appropriate points in the execution depen d-

ing on the control path followed at runtime. The checks

recompute the value of the critical variable for the ru n-

time control path. The recomputed value is compared

with the original value computed by the main program.

In case of a mismatch, the original program is stopped

and recovery is initiated .

The main sources of performance overhead for the detec-

tors are as follows:

(1) Path tracking: The overhead of tracking paths is signif-

icant (4x) when done in software. Therefore, a proto-

type implementation of path tracking is p erformed in

hardware. This hardware is integrated with the Re-

liability and Security Engine (RSE) [11]. RSE is a

hardware framework that provides a plug-and-play

environment for including modules that can perform

a variety of checking and monitoring tasks in the pro-

cessor ’s data-path. The path-tracking component is

implemented as a module in the RSE (Appendix A).

(2) Checking: In order to further reduce the performance

overhead, the check execution itself can be moved to

hardware. This is an area of fu ture investigation.

3.3 Example of Derived Detectors

The derived detectors are illustrated using a simplified

example of an if-then-else statement in Figure 1. A more

realistic example is presented in Section 4. In the figure,

the original code is shown in the left and the checking

code added is shown in the right. Assume that the detec-

tor placement analysis procedure has id entified f as one of

the critical variables that need to be checked before its use

in the following basic block. Only the instructions in the

backward slice of variable f are shown in Figure 1.

In Figure 1, there are two paths in the program slice of f,

corresponding to each of the two branches. The instru c-

tions on each path can be optimized to yield a checking

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ID

expression that checks the value of f along that path. In

the case of the first path (path=1), the expression reduces

to (2 * c - e) and this is assigned to the temporary variable

f2. Similarly the expression for the second path (path=2)

corresponding to the else branch statement reduces to (a +

e) and is also assigned to f2. Instrumentation is added to

keep track of paths at runtime. At runtime, when control

reaches the inserted check, the appropriate checking ex-

pression for f is chosen based on the value of the path va-

riable and the value of f2 is compared with the value of f

computed by the program. In case there is a mismatch, an

error is declared and the program is stopped.

Figure 1: Example code fragment with detectors inserted

3.4 Software Errors Covered

Since the technique proposed in this paper enforces the

compiler-extracted source-code semantics of programs at

runtime, it can detect any software error that violates the

source program’s semantics at runtime. This includes

software errors caused by pointer corruptions in pro-

grams (memory corruption errors) as well as those caused

by missing or incorrect synchronization in concurrent

programs (timing errors). We consider how the proposed

technique detects these errors:

Memory corruption errors: Languages such as C and C++

allow pointers to w rite anywhere in memory (to the stack

and heap). Memory corruption errors are caused by poin-

ters in the code writing outside their intended object
2
 (ac-

cording to source code semantics), therby corrupting oth-

er objects in memory. However, static analysis performed

by compilers typically assumes that objects are infinitely

far apart in memory and that a pointer can only write

within its intended object. As a result, the backward slice

of critical variables extracted by the compiler includes

only those dependences that arise due to explicit assign-

ment of values to objects via pointers to the object. There-

fore, the technique detects all memory errors that corrupt

one or more variable in the backward slice of critical v a-

riables, as long as the shared state between the check and

the main program is not corrupted (e.g. memory errors

that affect function parameters will not be d etected , as

only intra-procedural slices are considered by the tech-

nique).

2
 The term object refers to both program variables and memory objects.

Figure 2 illustrates an example of a mem ory corruption

error in an application and how the proposed technique

detects the error. In the figure, function foo computes the

running sum (stored in sum) of an array of integers (buf)

and also the maximum integer (max) in the array. If the

maximum exceeds a predetermined threshold , the func-

tion returns the accumulated sum corresponding to the

index of the maximum element in the array (maxIndex).

In Figure 2, the array sum is declared to be of size bufLen,

which is the number of elements in the array buf. Howev-

er, there is a write to buf[i+1] in line 5, where i can take

values from 0 to bufLen. As a result, a buffer overflow oc-

curs in the last iteration of the loop, leading to the value

of the variable max being overwritten by the write in line

5 (assuming that max is stored immediately after the array

buf on the stack). The value of max would be subsequently

overwritten with the value of the sum of all the elements

in the array, which is something the programmer almost

certainly d id not expect (this results in a logical error).

int foo(int buf[]) {

1: int sum[bufLen];

2: int max = 0; int maxIndex = 0;

3: sum[0] = 0;

4: for (int i = 0; i < bufLen; ++i) {

5: sum[i + 1] = sum[i] + buf[i];

6: if (max < buf[i]) {

7: max = buf[i];

8: maxIndex = i;

9: }

10: }

11: if (max > threshold) return sum[maxIndex];

12: return sum[bufLen];

}

Figure 2: Example of a memory corruption error

In the above example, assume that the variable max has

been identified as critical, and is being checked in line 9.

Recall that the proposed technique will detect a memory

corruption error if and only if the error causes corruption

of the critical variable (which is the case in this example).

In this case, the checking expression for max will depend

on whether the branch corresponding to the if statement

in line 6 is taken. If the branch is not taken, the value of

max is the value of max from the previous iteration of the

loop. If the branch is taken, then the value of max is com-

puted to be the value buf[i]. These are the only possible

values for the max variable, and both values are

represented in the detector. The memory corruption error

in line 5 will overwrite the variable max with the value

sum[bufLen], thereby causing a mismatch in the detector ’s

value. Hence, the error will be detected by the technique.

Note that the detector does not isolate the actual line of

code or the variable where the memory error occurs.

Therefore, it can detect any memory corruption error that

affects the value of the critical variable, independent of

where the error occurs. As a result, the technique does not

need to instrument all unsafe writes to memory as done

by conventional memory-safety techniques (e.g. [26-28]).

PATTABIRAMAN ET AL : AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS

Race conditions and synchronization errors: Race cond i-

tions occur in concurrent programs due to lack of syn-

chronized accesses to shared variables. Static analysis

techniques typically do not take into account asynchron-

ous modifications of variables when extracting depen-

dences in programs. As a resu lt, the backward slice only

includes modifications to the shared variables made u n-

der proper synchronization. Hence, race conditions that

result in unsynchronized writes to shared variables to the

variables in the backward slice of critical variables. How -

ever, race cond itions that result in unsynchronized reads

may not be detected unless the result read by the read

propagates to the backward slice of the critical variable.

Note that the technique does not detect benign races (i.e.

race conditions in which the value of the variable is not

affected by the order of the writes), as it checks the value

of the variable being written to rather than whether the

write is synchronized.

Figure 3 shows a hypothetical example of a race condition

in a program. Function foo adds a constant value to each

element of an array a which is passed into it as a formal

parameter. It is also passed an array a_lock, which main-

tains fine-grained locks for each element of A . Before op-

erating on an element of the array, the thread acquires the

appropriate lock from the array a_lock. This ensures that

another thread is not able to modify the contents of array

a[i], provided the other thread tries to acquire the lock before

modifying a[i]. Therefore, the locks by themselves do not

protect the contents of a[i] unless all threads adhere to the

locking d iscipline. The prop erty of adherence to the lock-

ing d iscipline is hard to verify using static analysis alone

because (1) the thread modifying the contents of array a

could be in a d ifferent module than the one being an a-

lyzed, and the source code of the other module may not

be available at compile time, and (2) precise pointer ana l-

ysis is required to find the specific element of a being

written to in the array. Such precise analysis is often u n-

scalable, and static analysis techniques perform approxi-

mations that result in missed detections.

1: void foo(int* a, mutex* alock, int n, int c) {

 2: int i = 0;

 3: int sum = 0;

 4: for (i=0; i<n; i++) {

 5: acquire_mutex(alock[i]);

 6: old_a = a[i];

 7: a[i] = a[i] + c;

 8: check(a[i] == old_a + c)

 9: release_mutex(alock[i]);

 10: }

}

Figure 3: Example for race condition detection

The proposed technique, on the other hand, would detect

illegal modifications to the array a even by threads that do

not follow the locking d iscipline. Assume that the var ia-

ble a[i] in line 7 has been determined to be a critical varia-

ble. The proposed technique would place a check on a[i]

to recompute it in line 8. Now assume that the variable

a[i] was modified by an errant thread that does not follow

the locking d iscipline. This would cause the value of a[i]

computed in line 7 to be d ifferent from what it should

have been in a correct execution (which is its previous

value added to the constant c). Therefore, the error is d e-

tected by the recomputation check in line 8.

The following points can be noted in the example: (1) The

source code of the errant thread is not needed to derive

the check and hence it can be in a d ifferent module, (2)

The check will fail only if the actual computed value is

d ifferent and is therefore immune to benign races that

have no manifestation on the computation of the critical

variable, and (3) in this example, it is enough for the tech-

nique to analyze the code of the function foo to derive the

check for detecting the race cond ition
3
.

3.5 Hardware Errors Covered

Hardware transient errors that result in corruption of a rc-

hitectural state are considered in the fault-model. Exam-

ples of hardware errors covered include,

 Instruction fetch and decode errors: Either the

wrong instruction is fetched , (OR) a correct instru c-

tion is decoded incorrectly resulting in data value

corruption.

 Execute and memory unit errors: An ALU instruction

is executed incorrectly inside a fu nctional unit, (OR)

the wrong memory address is computed for a

load/ store instruction, resulting in data value corru p-

tion.

 Cache/memory/register file errors: A value in the

cache, memory, or register file experiences a soft error

that causes it to be incorrectly interpreted in the pro-

gram (assuming that ECC is not used).

4 STATIC ANALYSIS

This section describes the static analysis technique to d e-

rive detectors and add instrumentation for path tracking.

The bubble-sort program shown in Figure 4(a) is used as

a working example throughout this section.

We use the LLVM compiler infrastructure [36]to derive

error detectors for the program. A new compiler pass

called the Value Recomputation Pass (VRP) was introduced

into LLVM. The VRP performs the backward slicing star t-

ing from the instru ction that computes the value of the

critical variable to the beginning of the function. It also

performs check derivation, insertion and instrumentation.

The output of the pass is provided as input to other opti-

mization passes in LLVM.

LLVM uses Static Single Assignment form (SSA) [37] as its

intermediate code representation. In deriving the back-

ward program slice, two well understood properties of

SSA form are used as follows:

 In SSA form, each variable (value) is defined exactly

once in the program, and the definition is assigned a

unique name. This unique name makes it easy to

3
 This may not hold in case the modification is done prior to the fun c-

tion call.

6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ID

identify data dependences among instructions.

 SSA form uses a special static construct called the phi

instruction that is u sed to keep track of the data d e-

pendences when there is a merging of data values

from different control edges. The phi instruction in-

cludes the variable name for each control edge that is

merged and the correspond ing basic block. This in-

struction allows the specialization of the backward

slice based on control-paths by the technique.

void Bubble(int srtElements, int* sortList) {

 int i, j, top;
 bInitarr(sortList, srtElements);
 top=srtelements;
 while (top>1) {//Outer-while-loop
 i=1;
 while (i<top) {// Inner while-loop
 if (sortlist[i] > sortlist[i+1])
 {
 j = sortlist[i];
 sortlist[i] = sortlist[i+1];
 sortlist[i+1] = j;
 } // end-if
 i=i+1;
 } // end-inner-while
 top=top-1;
 } // end-outer-while
}

(a)

loopentry:
…

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [0, loopentry], [tmp.i, endif]

tmp.i = add indvar.i, 1

i.1 = cast tmp.i to int

tmp.9 = getArrayElement sortlist, tmp.i

tmp.10 = load [tmp.9]

tmp.12 = add i.1, 1

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]

tmp.15 = setgt tmp.10, tmp.14

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]

br endif

endif:
tmp.16 = setlt tmp.12, top

br tmp.16, no_exit, loop_exit

loopexit:

….

loopentry:
…

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [0, loopentry], [tmp.i, endif]

tmp.i = add indvar.i, 1

i.1 = cast tmp.i to int

tmp.9 = getArrayElement sortlist, tmp.i

tmp.10 = load [tmp.9]

tmp.12 = add i.1, 1

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]

tmp.15 = setgt tmp.10, tmp.14

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]

br endif

endif:
tmp.16 = setlt tmp.12, top

br tmp.16, no_exit, loop_exit

loopexit:

….
(b)

Figure 4: (a) Example code fragment (b) Correspond-

ing LLVM intermediate code
A simplified version of the LLVM intermediate code cor-

responding to the inner-while loop in the bubble-sort

program is shown in Figure 4(b). In Figure 4(b), the basic

blocks are labeled with unique names and their su ccessors

are shown through directed arrows. Each instruction as-

signs its result (if any) to a unique variable. The, phi in-

struction was explained earlier. The getArrayElement in-

struction dereferences an array base pointer and index to

reference the element at the array index location. The cast

instruction converts values of one type into another. The

setgt and setlt instructions compare two values and the br

instruction executes a branch based on the results of the

comparison. The load and store instructions read from and

write to memory respectively.

4.1 Value Recomputation Pass

The basic ideas behind the VRP were introduced by us in

[33]. The details of the VRP algorithm are presented for

the first time in this paper. The VRP takes LLVM interm e-

diate code annotated with critical variables and extracts

their path-specific backward slices. It computes the back-

ward slice by traversing the static dependence graph of

the program starting from the instruction that computes

the value of the critical variable.

By extracting the path-specific backward slice and exposing it to

other optimization passes in the compiler, the Value Recomputa-

tion Pass (VRP) enables aggressive compiler optimizations to be

performed on the slice that would not be possible otherwise.

4.1.1 Path-specific Slicing Algorithm

An important contribution of this paper is the algorithm

used for creating the path-specific slice for critical va-

riables. The instruction that computes the critical variable

in the program is called the critical instruction. In order

to derive the backward program slice of a critical instruc-

tion, the VRP performs backward traversal of the static

data dependence graph. The traversal starts from the

critical instruction and terminates when one or more of

the following cond itions is met:

 The beginning of the current function is reached . It

is sufficient to consider intra-procedural slices in the

backward traversal because each function is consi-

dered separately for the detector placement analysis.

For example, in Figure 4a, the array sortList is passed

as an argument to the function Bubble. The slice does

not include the computation of sortList in the calling

function. If sortList is a critical variable in the calling

function, say foo, then a detector will be derived for it

when foo is analyzed.

 A basic block is revisited in a loop. During the

backward traversal, if data dependence within a loop

is encountered , the detector is broken into two detec-

tors, one placed on the critical variable and one on the

variable that affects the critical variable within the

loop. This second detector ensures that the variable

within the loop is computed correctly and hence the

value can be used without recomputing it in the first

detector. Therefore, only acyclic paths are considered .

 A dependence across loop iterations is encountered.

Recomputing critical variables across multiple loop

iterations can involve loop unrolling or buffering in-

termediate values that are rewritten in the loop. This

in turn can complicate the design of the detector. In-

stead , the VRP splits the detector into two detectors,

one for the dependence-generating variable and one

for the critical variable.

 A memory operand is encountered . Memory de-

pendences are not considered because LLVM pro-

PATTABIRAMAN ET AL : AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS

motes most memory objects to registers prior to ru n-

ning the VRP. Since there is an unbounded number of

virtual registers for storing variables in SSA form, the

analysis does not have to be constrained by the nu m-

ber of physical registers available on the target m a-

chine. However it may not always be possible to

promote memory objects to register e.g. pointer refer-

ences to dynamically allocated data. In such cases, the

VRP duplicates the load of the memory object, pro-

vided the load address is not modified along the con-

trol path from the load instruction to the critical in-

struction (as determined by pointer analysis [38]).

Table 2: Pseudocode of backward traversal algorithm

Function visit(seedInstruction, pathID, parent):

 ActiveSet ={ seedInstruction }

 if parent==0:

 SliceList[pathID] = { }

 else:

 SliceList[pathID] = SliceList[parent]

 nextPathID = pathID

 while not empty(ActiveSet):

 I = Remove instruction for ActiveSet

 Visited[BasicBlock(I)] = true

 // Do not consider interprocedural slices

 if I is a function argument or constant:

 terminal = true

 else if I is a non-phi instruction:

 SliceList[pathID] = SliceList[PathID] U { I }

 ActiveSet = ActiveSet U operands(I)

 else if I is a phi instruction:

 for each operand of the phi:

 // Check if a loop is encountered

 // or if going back multiple iterations

 if not (Visited [BasicBlock(operand)]

 and not CrossingInsn(I, operand))

 nextPathID = pathID + 1

 result = call visit(operand ,

 nextPathID, pathID)

 terminal = terminal OR ~(result)

 else:

 SeedList = SeedList U { operand }

 // Add the path to the pathList if terminal path

 if (terminal)

 PathList = PathList U { pathID }

 return terminal

Function computeSlices (criticalInstruction):

 SeedList = { criticalInstruction }

 PathList = { }

 while not empty(SeedList):

 seedInstruction=Remove instruction from SeedList

 call visit(seedInstruction, 0, 0)

 return PathList, SliceList

The algorithm for computing path -specific backward slic-

es of the critical instruction is shown in Table 2. We high-

light its main points here:

 During the backward traversal, when a phi-

instruction is encountered indicating a merge in con-

trol-flow paths, the slice is forked for each control

path that is merged at the phi. The algorithm main-

tains the list of instructions in each path -specific slice

in the array SliceList. The function computeSlices takes

as input the critical instruction and outputs the SliceL-

ist array, which contains the instructions in the back-

ward slice for each acyclic path in the function.

 The actual traversal of the dependence graph occurs

in the function visit, which takes as input the starting

instruction, an ID (number) corresponding to the con-

trol-flow path it traverses (index of the path in the Sli-

ceList array), and the index of the parent path. The

computeSlices function calls the visit function for each

critical instruction. The visit function visits each ope-

rand of an instruction in turn, adding it to the SliceList

of the current path. When a phi instruction is encou n-

tered , a new path is spawned for each operand of the

phi instruction (by calling the visit function recursive-

ly on the operand with a new path ID and the current

path as the parent). The traversal is then continued

along this new path.

 Only terminal paths are added to the final list of

paths (PathList) returned by the ComputeSlice proce-

dure. A terminal path is defined as one that term i-

nates without spawning any new paths.

 Certain instructions cannot be recomputed in the

checking expression, because performing recomputa-

tion of such instructions can alter the semantics of the

program. Examples are mallocs, frees, function calls

and function returns. Omitting mallocs and frees does

not seem to impact coverage except for allocation in-

tensive programs, as shown by our results in section

6.2. Omitting function calls and returns does not im-

pact coverage for program functions because the de-

tector placement analysis considers each function

separately (section 3.2).

Assuming that the critical variable chosen for the example

in Figure 4a is sortlist[i], the intermediate code representa-

tion for this variable is the instruction tmp.10 in Figure 4b.

The VRP computes the backward slice of tmp.10, which

consists of the two paths shown in Figure 5.

Path 0: no_exit loopentry

 indvar.i = 0
 tmp.i = add indvar.i, 1
 tmp.9 =getArrayElement
sortlist,tmp.i
 tmp.10 = load[tmp.9]

Path 1: endif loopentry

indvar.i = tmp.i
 tmp.i = add indvar.i, 1
 tmp.9 = getArrayElement sort-
list,tmp.i
 tmp.10 = load [tmp.9]

Figure 5: Path-specific slices for example

4.1.2 VRP and Other Optimization Passes

After extracting the path-specific slices, the VRP performs

the following operations on the slices:

 Places the instructions in the backward slice of the

critical variable corresponding to each control path in

its own basic block.

8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ID

 Replaces the phi instructions in the slice with the in-

coming value corresponding to the control edges for

the path. This allows subsequent compiler optimiza-

tion passes to substitu te the phi values d irectly in

their uses through either constant propagation or

copy propagation [38].

 Creates copies of variables used in the path -specific

slices that are not live at the detector insertion point.

For example, the value of tmp.i is overwritten in the

loop before the detector can be reached and a copy

old.tmp.i is created before the value is overwritten .

 Renames the operands in the slices to avoid conflicts

with the main program and thereby ensure that SSA

form is preserved by the slice.

 Instruments program branches with path identifiers

considered by the backward slicing algorithm. This

includes introduction of special instructions at

branches pertaining to the paths in the slice, and also

at function entry and exit points.

The standard LLVM optimization passes are invoked on

the path-specific backward slices extracted by the VRP.

The optimization passes yield reduced instruction se-

quences that compute the critical variables for the corres-

ponding paths. Further, since there are no control-

transfers within the sequence of instructions for each

path, the compiler is able to optimize the instruction se-

quence for the path much more aggressively than it

would have otherwise. This is because the compiler does

not usually consider specific control paths when perform-

ing optimizations for reasons of space an d time efficiency.

However, by selectively extracting the backward slices for crit i-

cal variables and by specializing them for specific control paths,

the VRP is able to keep the space and time overheads small.

4.1.3 VRP Output

The LLVM intermed iate code from Figure 4 with the

checks inserted by the VRP is shown in Figure 6. The VRP

creates two different instruction sequences to compute the

value of the critical variable correspond ing to the control

paths in the code. The first control path corresponds to

the control transfer from the basic block loopentry to the

basic block no_exit in Figure 6. The optimized set of in-

structions corresponding to the first control path is en-

coded as a checking expression in the block path0 in Fig-

ure 6. The second control path corresponds to the control

transfer from the basic block endif to the basic block

no_exit in Figure 4. The optimized set of instructions cor-

responding to the second control path is encoded as a

checking expression in the block path1 in Figure 6.

The instructions in the basic blocks path0 and path1 recompute

the value of the critical variable tmp.10. These instruction se-

quences constitute the checking expressions for the critical vari-

able tmp.10 and comprise of 2 instructions and 3 instructions

respectively. The basic block Check in Figure 6 compares

the value computed by the checking expressions to the

value computed in the original program. A mismatch

signals an error and the appropriate error handler is

invoked in the basic block error. Otherwise, control is

transferred to the basic block restBlock, which contains the

instructions following the computation of tmp.10 in the

original program.

Consider what happens when an error affects an instru c-

tion that is involved in the com putation of the critical va-

riable. Assume that the error affects the instruction that

computes tmp.i in Figure 4(b) (this instruction indirectly

impacts the computation of the critical variable tmp.10).

Figure 6: LLVM code with checks inserted by VRP

We now describe how this error is detected by the check-

ing expressions in path0 and path1 when the correspond-

ing control paths are executed by the program .

First, consider the case when the runtime path followed

corresponds to the execution of the checking expression in

the basic block path0. In path0, the compiler performs con-

stant propagation and replaces the computation of tmp.i

with the constant 1 in Figure 6. As a result, the error in the

computation of tmp.i is not manifested in path0. Hence,

the value of the critical variable computed in path0, name-

ly new.0.tmp.10, is d ifferent from the value of the critical

variable computed in the original program. Th us, the er-

ror in the computation of tmp.i is detected .

Next, consider the case when the path followed corres-

ponds to the execution of the checking expression in

path1. The VRP inserts code to copy the original value of

tmp.i into old.tmp.i before tmp.i is overwritten in the pro-

gram. The value old.tmp.i is used in the checking expres-

sion in path1 to recompute the value of tmp.i, namely

new.1.tmp.i, which in turn is used to recompute the critical

variable in path1. The value new.tmp.i is computed and

stored separately from the original value tmp.i, and con-

sequently does not suffer from the error that affected the

no_exit:.
indvar = phi [0, loopentry], [tmp.i, then], [tmp.i, endif]

old.tmp..i = tmp..i

tmp.i = add indvar.i, 1

i.1 = cast tmp.i to int

tmp.9 = getArrayIndex sortlist, tmp.i

tmp.10 = load [tmp.9]

pathVal = getState()

br pathVal, path.0, path.1

path0:
new.0.tmp.9 = getArrayIndex sortList, 1

new.0.tmp.10 = load [new.0.tmp.9]

br Check

path1:
new.1.tmp.i = add old.tmp.i, 1

new.1.tmp.9 = getArrayIndex sortlist, new.1.tmp.i

new.1.tmp.10 = load [new.1.tmp.9]

br Check

Check:
new.tmp.10 = phi [new.0.tmp, path0], [new.1.tmp, path1]

compare = seteq new.10, tmp.10

br compare, errorBlock, restBlock

restBlock:

tmp.12 = add int i.1, 1

tmp.13 = getArrayIndex sortlist, tmp.12

tmp.14 = load tmp.13

tmp.15 = setgt tmp.10, tmp.14

br bool tmp.15, label then, label endif

errorBlock:

call errFunc()

PATTABIRAMAN ET AL : AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS

computation of tmp.i. As a result, the value of the critical

variable computed in path1, namely new.1.tmp.i is d ifferent

from the one computed in the original program. Thus, the

error in the computation of tmp.i is detected .

4.2 Scalability

This section d iscusses factors that could potentially limit

the scalability of the VRP algorithm and how these are

addressed by the proposed technique. The factors that

affect the technique’s scalability are as follow s:

 Number of control paths: This is addressed by con-

sidering only intra-procedural, acyclic paths in the

program correspond ing to the backward slices of crit-

ical variables. At worst, the number of paths is expo-

nential in the number of branch instructions in the

program. In practice however, the number of control

paths is polynomial in the number of branch instru c-

tions (unless the program is performing decision tree

like computations).

 Size of checking expression: The size of the checking

expression depends on the number of levels in the

dependence tree of the critical variable considered by

the algorithm. Terminating the dependency tree at

loop and function boundaries naturally limits the

checking expression’s size.

 Number of detectors: The number of critical va-

riables per function is a tradeoff between the desired

coverage and an acceptable performance overhead.

Placing more detectors achieves higher coverage but

may result in higher performance overheads. The a l-

gorithm may introduce add itional detectors, for ex-

ample, when splitting a detector into two detectors

across loop iterations, but this reduces the size of each

checking expression. Therefore, for a given number of

critical variables, the number of detectors varies in-

versely as the size of each checking expression.

4.3 Coverage

The VRP operates on program variables at the compiler ’s

intermediate representation (IR) level. In the LLVM infra-

structure, the IR is close to the program’s source code

[36]and abstracts many of the low -level details of the u n-

derlying architecture. For example, the IR has an infinite

number of virtual registers, uses Static Single Assignment

(SSA), and has native sup port for memory allocation (mal-

loc and alloca) and pointer arithmetic (getElementPtr
4
 in-

struction). Moreover, the runtime m echanisms for stack

manipulations and function calls are transparent to the IR.

As a result, the VRP may not protect data that is not visi-

ble at the IR level. Therefore, the VRP is best su ited for

detecting errors that impact program state visible at the

source level. Note that the generic approach presented in

Section 3, however, is not tied to a specific level of compi-

lation and can be implemented at any level.

The VRP operates on LLVM’s intermediate code, which

4
 This is the general case of the getArrayElement instruction.

does not include common runtime mechanisms such as

manipulation of the stack and base pointers. Moreover,

the intermediate code assumes that the target machine

has an infinite register file and does not take into account

the physical limitations of the machine.

Data errors in a program can occur in three possible plac-

es (locations): (1) Source-level variables or memory ob-

jects, (2) Precompiled Libraries linked with the applica-

tion, and (3) Code added by the compiler ’s target -specific

code generator for common runtime operations such as

stack manipulation and handling register-file spills. The

technique presented in the paper aims at detecting errors

in the first category, and can be extended to detect errors

in the second category provided the source code of the

library is available or the library is compiled with the

proposed technique. However, errors in the third catego-

ry, namely those that occur in the code added by the

compiler ’s code generator cannot be detected using the

proposed technique unless the error affects one or more

source-level variables or memory objects. This is because

the code added by the compiler is transparent to the VRP

and hence cannot be protected by the derived detectors.

The steps in compiling a program with LLVM are as fol-

lows: First, the application’s source code along with the

source (or intermediate) code of runtime libraries are con-

verted to LLVM’s generic intermedia te code form. This

intermediate form is in -turn compiled onto the target ar-

chitecture’s object code, which is then linked with pre-

compiled libraries to form the final executable. The

process is similar to conventional compilation, except that

the application and the source libraries are first compiled

to the intermediate code format (by a modified gcc front-

end) before being converted to object code. Each level of

compilation progressively adds more state to the pro-

gram. Table 3 shows the data elements of the program’s

state visible at each level of compilation.

As shown in Table 3, the intermediate code level does not

include data elements in the final executable that are ad d-

ed by the compiler and linker. Since the VRP operates at

the intermediate code level, it does not see the elements in

the lower levels and the derived detectors may not detect

errors in these levels. This can be addressed by imple-

menting the technique at lower compilation levels.

Table 3: State visible at each level of compilation
Code Level Elements of program state that are visible

Source Level
(1) Local variables, (2) global variables and (3) d y-

namic data allocated on heap

Intermediate

Code

(1) Branch addresses of if statements, loops, and

case statements, (2) temporary variables used in

evaluation of complex expressions

Object Code
(1) Temporary variables to handle register file sp ills,

and (2) stack manipulation mechanisms.

4.4 State Machine Generation

The VRP extracts a set of checking expressions for each

detector in the program. Each checking expression in the

set corresponds to an acyclic, intra-procedural control

path leading to the critical variable from the top of the

10 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ID

function. The VRP also inserts instrumentation to notify

the runtime system when the program takes a branch be-

longing to one of the paths in the set. This is done by in-

serting a special operation called EmitEdge that identifies

the source and destination basic blocks of the branch with

unique identifiers. The VRP then exports the basic block

identifiers of the branches along each path in a separate

text file for each detector in the program.

A post-processing analysis then parses these text files and

builds a state-machine representation of the paths for each

check. The state machines are constructed such that every

instrumented branch in the program causes state transi-

tions in one or more state machines. A complete sequence

of branches corresponding to a control path for which a

checking expression has been derived will drive the state

machine for the check to an accepting state corresponding

to the checking expression.

Table 4: Algorithm to convert paths to state machines

for each critical variable V in the program:

 open the path-file corresponding to the variable

 for each path in the path-file:

 PathNumber Read path ID in path file

 Read an edge e = (src, sink) from the path file

 S Start_State

 Create an accepting state “A” for the path

 if this is the only edge for the path:

 if Transition[S, A] does not contain e

 Transition[S, A] <- Transition[S,A] U e

 else:

 current = S

 for each edge e in the path

 if there exists a state K such that

 (Transition[current,K] contains e):

 current K

 else:

 Create a new state L

 Transition[current, L] e

 current L

 Set current as the accepting state for path

 close the path file for the critical variable

endfor

The algorithm used by the post-processing analysis to

convert the control edge sequences to finite state m a-

chines is shown in Table 4. The algorithm processes the

path files for each check, and adds states to the state m a-

chine corresponding to the check. The aim is to d istin-

guish one path from another in the check, while at the

same time introducing the least number of states to the

state machine. This is because each state occupies a fixed

number of bits in hardware, and our goal is to m inimize

the total number of bits that must be stored by the hard -

ware module for path-tracking and consequently the area

occupied by it (see Appendix A).

The algorithm in Table 4 works as follows: It starts in the

starting state of the state machine and processes each

edge in the list of edges for the path. It adds a new state

for an edge if and only if no transition exists for the edge

from the current state in the state machine. If such a tran-

sition exists, it transitions to the state leading from the

current state corresponding to the edge, and processes the

next edge in the path. It continues until it has processed

all the edges of the path, and marks the last state added as

the accepting state for the path in the state machine.

When the algorithm terminates, it outputs the transition

table for the state machines, as well as the list of accepting

states corresponding to each path of the check.

The time-complexity of the algorithm in Table 4 is O(| V|

* | P| * | E|), where | V| is the number of critical va-

riables in the program, | P| is the maximum number of

control-paths in the backward slice of the variable and

| E| is the maximum number of edges in the control paths

corresponding to each critical variable. The space com-

plexity of the technique is O (| V| *| Ů E| * H), where | H |

is the maximum number of shared edges among control-

paths corresponding to the critical variables, and Ů E is

the union of the edges in the program’s control paths.

Figure 7a shows the control-flow graph (CFG) of the pro-

gram shown in Figure 4. As shown earlier, the critical va-

riable is computed in the basic block endif. The VRP has

identified 4 intra-procedural acyclic paths
5
 in the back-

ward slice of the critical variable:

1. loopentry no_exit, no_exit endif

2. loopentry no_exit, then endif

3. endif no_exit, no_exit endif

4. endif no_exit, then endif

The state machine derived by the algorithm for the con-

trol-flow graph in Figure 7(a) is shown in Figure 7(b). The

algorithm has introduced two new states A and B in add i-

tion to four accepting states D, E, F and G for the four

paths shown above. The transitions between states cor-

respond to the edges identified by the VRP to d istinguish

paths from one another.

5 EXPERIMENTAL SETUP

This section describes the mechanisms for measurement

of performance and coverage provided by the proposed

technique. It also describes the benchmarks used .

5.1 Performance Measurement

All experiments are carried out on a single core Pentium 4

machine with 1GB RAM and 2.0 Ghz clock speed running

the Linux operating system. The performance overheads

of each individual component introduced by the pro-

posed technique are measured as follows:

Modification overhead: Performance overhead due to the

extra code introduced by the VRP for instrumentation and

checking. This code may cause cache misses and branch

mispredictions and incur performance overhead.

5
 In the earlier d iscussion, only two of these paths were considered.

PATTABIRAMAN ET AL : AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS

(a)

(b)

Figure 7(a) Control-flow graph (CFG) of bubblesort

application (b) Corresponding finite state machine

Checking overhead: Performance overhead of executing the

instructions in each check to recompute the critical varia-

ble and compare the recomputed value with the original

value. This also includes the cost of branching to the

check, choosing the checking expression to be excuted

and branching back to the program’s code.

The overhead of path-tracking is not considered in measuring

performance overheads because the path tracking is done in

parallel with the execution of the main program using a

specialized hardware module. The path-tracking module

can execute asynchronously and needs to be synchronized

with the main processor only when the check is per-

formed (see Appendix A for a detailed descrip tion).

We implemented the path-tracking module using soft-

ware emulation and measured the performance over-

heads of the application with both path -tracking and

checking enabled . We then measure the application over-

head with only path -tracking enabled and su btract it from

the earlier result in order to obtain the checking over-

heads. In order to obtain the code modification overheads,

we executed the application with both path -tracking and

checking d isabled and measured the increase in execution

time over the unmodified application.

Finally, we do not assume a specific recovery technique in

the paper and hence do not consider the overhead of error

recovery in our measurements.

5.2 Coverage Measurements

Fault injections: In order to measure the coverage of the

derived detectors, we inject faults into the data of the ap-

plication protected with the derived detectors. We imple-

mented a new LLVM pass to insert calls to a special faul-

tInject function after the computation of each program

variable in the original program . The variable to be in-

jected is passed as an argument to the faultInject function.

The uses of the program variable in the original program

are substitu ted with the return value of the faultInject

function inserted for the variable.

At runtime, the call to the faultInject function corrupts the

value of a single program variable by flipping a single bit

in its value. The value into which the fault is injected is

chosen at random from the entire set of dynamic values

used in an error-free execution of the program (that are

visible at the compiler ’s intermediate code level). In order

to ensure controllability, only a single fault is injected in

each execution of the application.

Only the values in the original function prior to instru -

mentation are considered for fault-injection. No faults are

injected into the detectors themselves. This is because we

assume that no more than one fault can occur during the

application’s execution. Injecting faults into detectors will

at worst lead to false detections, i.e., detect ion of an error

when none exists. However, we do inject errors into states

shared between the detectors and the program in order to

emulate common mode errors.

Error detection: After a fault is injected , the following

program outcomes are possible: (1) the program may ter-

minate by taking an exception (crash), (2) the program

may continue and produce correct output (success), (3)

the program may continue and produce incorrect output

(fail-silent violation), or (4) the program may timeout

(hang). The injected fault may also cause one of the in-

serted detectors to detect the error and flag a violation.

When a violation is flagged , the program is allowed to

continue (although in reality it would be stopped) so that

the final outcome of the program under the error can be

observed. The coverage of the detector is classified based

on the final outcome of the program. For example, a d e-

tector is considered to detect a crash if the detector upon

encountering the error, flags a violation, and subsequently

the program crashes. Hence, when a detector d etects a

crash, it is in reality, preempting the crash of the program.

Error propagation: Our goal is to measure the effective-

ness of the detectors in detecting errors that propagate

before causing the program to crash. For errors that do

not propagate before the crash, the crash itself may be

considered the detection mechanism (for example, the

state can be recovered from a clean checkpoint). Hence,

the coverage provided by the derived detectors for non -

propagated errors is not reported . In the experiments,

12 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ID

error propagation is tracked by observing whether an

instruction that uses the erroneous variable’s value is ex-

ecuted after the fault has been injected . If the original val-

ue into which the error was injected is overwrit ten, the

propagation of the error is no longer tracked. The error-

propagation is tracked using instrumentation inserted

into the program through a new LLVM pass. The instru-

mentation is inserted just before the definitions of va-

riables that are dependent on the fault-injected value.

5.3 Benchmarks

Table 5 describes the programs used to evaluate the tech-

nique and their characteristics. The first 9 programs in the

table are from the Stanford benchmark suite [39] and the

next 5 programs are from the Olden benchmark suite [40].

The former benchmark set consists of small programs

performing a multitude of common tasks. The latter

benchmark set consists of pointer-intensive programs.

Table 5: Benchmark programs and characteristics
Bench

mark

Lines

of C

Description of program

IntMM 159 Matrix multiplication of integers

RealMM 161 Matrix multiplication of floating-point numbers

Oscar 270 Computes Fast-Fourier Transform

Bubblesort 171 Sorts a list of numbers using bubblesort

Quicksort 174 Sorts a list of numbers using quicksort

Treesort 187 Sorts a list of numbers using treesort

Perm 169 Computes all permutations of a string

Queens 188 Solves the N-Queens problem

Towers 218 Solves the Towers of Hanoi problem

Health 409 Discrete-event simulation (using linked lists)

Em3d 639 Electro-magnetic wave propagation (linked lists)

Mst 389 Computes minimum spanning tree (graphs)

Barnes-Hut 1427 Solves N-body force computation problem(octrees)

Tsp 572 Solves traveling salesman problem (binary trees)

6 RESULTS

This section presents the performance (Section 6.1), and

coverage results (Section 6.2) obtained from the experi-

mental evaluation of the proposed technique. The results

are reported for the case when 5 critical variables were

chosen in each function by the placement analysis.

6.1 Performance Overheads

The performance overhead of the derived detectors rela-

tive to the normal (uninstrumented) program’s execution

is shown in Figure 8. Both the checking overhead and the

code modification overheads are represented . The results

are summarized below:

 The average checking overhead introduced by the

detectors is 25%, while the average code modification

overhead is 8%. Therefore, the total performance over-

head introduced by the detectors is 33%.

 The worst-case overheads are incurred in the case of

the tsp application, which has a total overhead of nearly

80%. This is because tsp is a compute-intensive program

involving tight loops. Checks within a loop introduce ex-

tra branch instructions and increase the execution time.

6.2 Detection Coverage

For each application, 1000 faults are injected , one in each

execution of the application. The error-detection coverage

(when 5 critical variables are chosen in each function) for

d ifferent classes of failure are reported in Table 6. A blank

entry in the table indicates that no faults of the type were

manifested for the application. For example, no hangs

were manifested for the IntMM application in the fault

injection experiments. The second column of the table

shows the number of errors that propagate and lead to the

application crashing. The numbers within the braces in

this column indicate the percentage of prop agated , crash-

causing errors that are detected before propagation.

Table 6: Coverage with 5 critical variables / function

Apps
Prop.

Crashes (%)

FSV

(%)

Hang

(%)

Success

(%)

IntMM 100 (97) 100 9

RealMM 100 (98) 0

Oscar 57 (34) 7 60 0.5

Bubblesort 100 (73) 100 0 5

Quicksort 90 (57) 44 100 4

Treesort 75 (68) 50 3

Perm 100 (55) 16 0.9

Queens 79 (61) 20 3

Towers 79 (78) 39 100 2

Health 39 (39) 0 0 0

Em3d 79 (79) 1

Mst 83 (53) 79 0 5

Barnes-Hut 49 (39) 23

Tsp 64 (64) 0 0

Average 77 (64) 41 35 2.5

Figure 8: Performance overhead when 5 critical variables are chosen per function

PATTABIRAMAN ET AL : AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS

6.3 Discussion

The results indicate the proposed technique achieves 77%

coverage for errors that prop agate and cause the program

to crash. Full-duplication approaches can provide 100%

coverage if they perform comparisons after every instru c-

tion. In practice, this is very expensive, and fu ll-

duplication approaches compare instructions only before

store and branch instructions [7, 8]. With this optimiza-

tion, the coverage provided by fu ll-duplication is less

than 100%. The papers that describe these techniques do

not quantify the coverage in terms of error propagation,

so a d irect comparison with our technique is not possible.

In an earlier study, we found that about 15% of the errors

detected by fu ll-duplication techniques resulted in a crash

in the same cycle as the detection [10]. These detections

are in effect redundant, as the error does not propagate

prior to the crash. Therefore when excluding redundant

detections, the proposed technique detects 90% of the

errors detected by fu ll-duplication. Further, the perfor-

mance overhead of the technique is only 33% compared

to fu ll-duplication, which incurs an overhead of 60-100%

when performed in software [7, 8]. An important aspect

of the technique is that it detects just 2.5% of benign er-

rors in an application. In contrast, in fu ll-duplication, over

50% of the detected errors are benign [9, 10].

7 CONCLUSION

This paper presented a technique to derive error detectors

for protecting an application from data errors (due to both

hardware and software). The error detectors were derived

automatically using compiler-based static analysis from

the backward program slice of crit ical variables in the

program. The slice is optimized aggressively based on

specific control-paths in the application , to form a check-

ing expression. At runtime, the control path executed by

the progrm is tracked using specialized hardware, and

the corresponding checking expressions are executed . The

checking expressions recompute the values of the critical

variable and check whether the recomputed value d i-

verges from the original value computed in the program,

in which case the program is halted .

Experiments show that the derived detectors achieve low -

overhead error detection (33%) while providing high cov-

erage (77%) for errors that cause application failure. Fur-

ther, they detect less than 3 % of benign errors.

Future work will focus on (1) deriving detectors at lower

levels of compilation (e.g. assembly code) in order to im-

prove the detection coverage and (2) migration of the

checking functionality to reconfigurable hardware in or-

der to reduce the performance overheads of the detectors.

Acknowledgments: This work was supported in part by

National Science Foundation (NSF) grants CNS-0406351,

CNS-0524695, and CNS-05-51665, the Gigascale Systems

Research Center (GSRC/ MARCO), Motorola Corp oration

as part of the Motorola Center for Communications

(UIUC), and Boeing Corporation as part of Boeing

Trusted Software Center at the Information Trust Inst i-

tu te. We thank Fran Baker for editorial support.

References
[1] Evans, D., J. Guttag, J. Horning, and Y.-M. Tan. LCLint: a

tool for using specifications to check code. in 2nd ACM SIGSOFT sympo-

sium on Foundations of software engineering. 1994. New Orleans, Loui-

siana, United States: ACM Press.

[2] Ernst, M.D., J. Cockrell, W.G. Griswold , and D. Notkin.

Dynamically discovering likely program invariants to support program

evolution. in 21st international conference on Software engineering. 1999.

Los Angeles, California, United States: IEEE Computer Society Press.

[3] Gray, J. Why do computers stop and what can be done about it .

in Symposium on Reliable Distributed Systems. 1986: IEEE.

[4] Gu, W., Z. Kalbarczyk, R. Iyer, and Z. Yang. Characteriza-

tion of linux kernel behavior under errors. in International Conference on

Dependable Systems and Networks. 2003: IEEE Computer Society.

[5] Chandra, S. and P.M. Chen. How Fail-Stop are Faulty Pro-

grams? in Proceedings of the The Twenty-Eighth Annual International

Symposium on Fault-Tolerant Computing. 1998: IEEE Computer Society.

[6] Spainhower, L. and W. Bartlett, Commercial Fault Tolerance:

A Tale of Two Systems. IEEE Transactions on Dependable and Secure

Systems, 2004. 1(1): p. 87-96.

[7] Oh, N., P.P. Shirvani, and E.J. McCluskey, Error detection by

duplicated instructions in super-scalar processors. IEEE Transactions on

Relibility, 2002. 51(1): p. 63-75.

[8] Reis, G.A., J. Chang, N. Vachharajani, R. Rangan, and D.I.

August. SWIFT: Software Implemented Fault Tolerance. in International

symposium on Code generation and optimization. 2005: IEEE Computer

Society.

[9] Iyer, R.K., N.M. Nakka, Z.T. Kalbarczyk, and S. Mitra, Re-

cent advances and new avenues in hardware-level reliability support. Mi-

cro, IEEE, 2005. 25(6): p. 18-29.

[10] Nakka, N., K. Pattabiraman, and R. Iyer, Processor-Level Se-

lective Replication, in Proceedings of the 37th Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks. 2007, IEEE

Computer Society.

[11] Nakka, N., Z. Kalbarczyk, R.K. Iyer, and J. Xu. An Architec-

tural Framework for Providing Reliability and Security Support . in Inter-

national Conference on Dependable Systems and Networks. 2004: IEEE

Computer Society.

[12] Iyer, R.K., Z. Kalbarczyk, K. Pattabiraman, W. Healey, W.-

M.W. Hwu, P. Klemperer, and R. Farivar, Toward Application-Aware

Security and Reliability. IEEE Security and Privacy, 2007. 5(1): p. 57-62.

[13] Iyer, R.K. TRUSTED ILLIAC: A Configurable Hardware

Framework for a Trusted Computing Base. 2007.

[14] Avizienis, A., J.C. Laprie, B. Randell, and C. Landwehr, Ba-

sic concepts and taxonomy of dependable and secure computing. IEEE

Transactions on Dependable and Secure Computing, 2004. 1(1): p. 11-

33.

[15] Sullivan, M. and R. Chillarege. Software defects and their im-

pact on system availability-a study of field failures in operating systems. in

Twenty-First Symposium on Fault-Tolerant Computing. 1991.

[16] Bush, W.R., J.D. Pincus, and D.J. Sielaff, A static analyzer for

finding dynamic programming errors. Software Practice and Experience,

2000. 30(7): p. 775-802.

[17] Das, M., S. Lerner, and M. Seigle. ESP: path-sensitive pro-

gram verification in polynomial time. in Proceedings of the ACM SIG-

PLAN 2002 Conference on Programming language design and implemen-

tation. 2002. Berlin, Germany: ACM Press.

[18] Hangal, S. and M.S. Lam. Tracking down software bugs using

automatic anomaly detection. in 24th International Conference on Software

Engineering. 2002. Orlando, Florida: ACM Press.

[19] Hiller, M. Executable Assertions for Detecting Data Errors in

Embedded Control Systems. in International Conference on Dependable

Systems and Networks (formerly FTCS-30 and DCCA-8). 2000: IEEE

Computer Society.

[20] Pattabiraman, K., G.P. Saggese, D. Chen, Z. Kalbarczyk,

and R.K. Iyer. Dynamic Derivation of Application-Specific Error Detec-

tors and their Implementation in Hardware. in Sixth European Dependable

Computing Conference. 2006. Coimbra, Portugal: IEEE CS Press.

14 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ID

[21] Li, Z. and Y. Zhou. PR-Miner: automatically extracting impli-

cit programming rules and detecting violations in large software code. in

13th ACM SIGSOFT international symposium on Foundations of software

engineering. 2005. Lisbon, Portugal: ACM Press.

[22] Engler, D., D.Y. Chen, S. Hallem, A. Chou, and B. Chelf.

Bugs as deviant behavior: a general approach to inferring errors in systems

code. in Eighteenth ACM Symposium on Operating systems principles.

2001. Banff, Alberta, Canada: ACM Press.

[23] Benso, A., S. Chiusano, P. Prinetto, and L. Tagliaferri. A

C/C++ Source-to-Source Compiler for Dependable Applications. in Inter-

national Conference on Dependable Systems and Networks (formerly

FTCS-30 and DCCA-8). 2000: IEEE Computer Society.

[24] Kim, M., M. Viswanathan, S. Kannan, I. Lee, and O. So-

kolsky, Java-MaC: A Run-Time Assurance Approach for Java Programs.

Formal Methods in System Design, 2004. 24(2): p. 129-155.

[25] Havelund , K. and G. Rosu, An Overview of the Runtime Ve-

rification Tool Java PathExplorer. Formal Methods in System Design,

2004. 24(2): p. 189-215.

[26] Dhurjati, D., S. Kowshik, and V. Adve. SAFECode: enforcing

alias analysis for weakly typed languages. in ACM SIGPLAN conference

on Programming language design and implementation . 2006. Ottawa,

Ontario, Canada: ACM Press.

[27] Jones, R.W.M. and P.H.J. Kelly. Backwards-Compatible

Bounds Checking for Arrays and Pointers in C Programs. in Automated

and Algorithmic Debugging. 1997.

[28] Ruwase, O. and M.S. Lam. A practical dynamic buffer over-

flow detector. in 11th Annual Network and Distributed System Security.

2004.

[29] Savage, S., M. Burrows, G. Nelson, P. Sobalvarro, and T.

Anderson, Eraser: a dynamic data race detector for multithreaded pro-

grams. ACM Transactions on Computer Systems, 1997. 15(4): p. 391-

411.

[30] Engler, D. and K. Ashcraft, RacerX: effective, static detection

of race conditions and deadlocks. SIGOPS Oper. Syst. Rev., 2003. 37(5): p.

237-252.

[31] Oh, N., P.P. Shirvani, and E.J. McCluskey, Control-flow

checking by software signatures. IEEE Transactions on Reliability, 2002.

51(1): p. 111-122.

[32] Abadi, M., M. Budiu, U.l. Erlingsson, and J. Ligatti. Con-

trol-flow integrity. in 12th ACM conference on Computer and communica-

tions security. 2005. Alexandria, VA, USA: ACM Press.

[33] Pattabiraman, K., Z. Kalbarczyk, and R. Iyer. Automated

Derivation of Application-Aware Error Detectors using Static Analysis. in

Internation Online Testing Symposium (IOLTS). 2007: IEEE.

[34] Tip, F., A survey of program slicing techniques. Journal of

Programming Languages, 1995. 3(3): p. 121-189.

[35] Pattabiraman, K., Z. Kalbarczyk, and R.K. Iyer. Application-

based metrics for strategic placement of detectors. in Pacific Rim Dependa-

ble Computing. 2005. Changsha, China: IEEE CS Press.

[36] Lattner, C. and V. Adve. LLVM: A Compilation Framework

for Lifelong Program Analysis \ & Transformation. in international sympo-

sium on Code generation and optimization. 2004. Palo Alto, California:

IEEE Computer Society.

[37] Cytron, R., J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K.

Zadeck, Efficiently computing static single assignment form and the con-

trol dependence graph. ACM Transactions on Programming Languages

and Systems, 1991. 13(4): p. 451-490.

[38] Muchnick, S.S., Advanced compiler design and implementa-

tion. 1997: Morgan Kaufmann Publishers Inc. 856.

[39] Weicker, R.P., An Overview of Common Benchmarks, in Com-

puter. 1990. p. 65-75.

[40] Carlisle, M.C. and A. Rogers. Software caching and computa-

tion migration in Olden. in Fifth ACM SIGPLAN symposium on Prin-

ciples and practice of parallel programming. 1995. Santa Barbara, Cali-

fornia, United States: ACM Press.

AUTHORS’ BIOGRAPHY

Karthik Pattabiraman received the M.S

and PhD degree in computer science from

the University of Illinois at Urbana-

Champaign (UIUC). He is currently a

post-doctoral researcher at Microsoft

Research. His research interests include

design of reliable and secure applications

using static and dynamic analysis, as well

as experimental and formal techniques

for dependability validation. Karthik’s d issertation proposed the

idea of application-aware dependability and he was the lead grad u-

ate student in the Trusted Illiac project at the University of Illinois.

Based on his d issertation work, Karthik Pattabiraman was awarded

the William C. Carter award in 2008 by the IFIP Working Group on

Dependability (WG 10.4) and the IEEE Technical Commit tee on

Fault-tolerant Computting (TC-FTC). He is a member of the IEEE

and the IEEE Computer Society.

Zbigniew T. Kalbarczyk received the

PhD degree in computer science from the

Technical University of Sofia, Bulgaria.

He is currently a principal research scien-

tist at the Center for Reliable and High-

Performance Computing in the Coord i-

nated Science Laboratory of the Universi-

ty of Illinois at Urbana-Champaign. After

receiving his doctorate, he worked as an

assistant professor in the Laboratory for

Dependable Computing at Chalmers University of Technology in

Gothenburg, Sweden. His research interests are in the area of reliable

and secure networked systems. Currently, he is a lead researcher on

the project to explore and d evelop high availability and security

infrastructure capable of managing redundant resources across in-

terconnected nodes, to foil security threats, detect errors in both the

user applications and the infrastru cture components, and recover

quickly from failures when they occur. His research involves also

developing of automated techniques for validation and benchmark-

ing of dependable computing systems. He served as a program

Chair of Dependable Computing and Communication Symp osium

(DCCS), a track of the International Conference on Dependable Sys-

tems and Networks (DSN) 2007 and Program Co-Chair of Perfor-

mance and Dependability Symposium, a track of the DSN 2002. He

is a member of the IEEE and IEEE Computer Society.

Ravishankar K. Iyer is Interim Vice Chan-

cellor for Research at the University of Illi-

nois at Urbana-Champaign, where he is a

George and Ann Fisher Distinguished Pro-

fessor of Engineering. He holds appoint-

ments in the Department of Electrical and

Computer Engineering and the Department

of Computer Science and his previous post

was the Director of the Coord inated Science

Laboratory (CSL) at Illinois. Professor Iyer also serves as Co-Director

of the Center for Reliable and High-Performance Computing at CSL

and Chief Scientist at the Information Trust Institute.Iyer's research

interests are in the area of d ependable and secure systems. He has

been responsible for major advances in the design and validation of

dependable computing systems. He currently leads the TRUSTED

ILLIAC project at Illinois, which is developing application -aware

adaptive architectures for supporting a wide range of dependability

and security requirements in heterogeneous environments. Professor

Iyer is a Fellow the AAAS, the IEEE and the ACM. He has received

several awards including the Humbold t Foundation Senior Distin-

guished Scientist Award for excellence in research and teaching, the

AIAA Information Systems Award and Medal for "fundamental and

pioneering contributions towards the design, evaluation, and valid a-

tion of dependable aerospace computing systems," and the IEEE

Emanuel R. Piore Award "for fundamental contributions to mea-

surement, evaluation, and design of reliable computing systems.

