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Abstract— This paper presents a technique to derive and implement error detectors to protect an application from data errors. 

The error detectors are derived automatically using compiler-based static analysis from the backward program slice of critical 

variables in the program. Critical variables are defined as those that are highly sensitive to errors, and deriving error detectors for 

these variables provides high coverage for errors in any data value used in the program. The error detectors take the form of 

checking expressions and are optimized for each control flow path followed at runtime. The derived detectors are implemented 

using a combination of hardware and software and continuously monitor the application at runtime. If an error is detected at 

runtime, the application is stopped so as to prevent error propagation and enable a clean recovery. Experiments show that the 

derived detectors achieve low-overhead error detection while providing high coverage for errors that matter to the application. 

Index Terms—B.2.3 Error Checking, B.8.1 Reliability, Testing, and Fault-tolerance, C.3.e Reconfigurable Hardware,  D.2 

Software Engineering (Reliability), D.4.5.d Fault-tolerance 

1 INTRODUCTION 

This paper presents a methodology to derive error detec-

tors for an application based on compiler-based static 

analysis. The derived detectors detect data errors in the 

application. A data error is defined as a d ivergence in the 

data values used  in a program from an error-free run of 

the program for the same input. Data errors can result 

from incorrect computation and would  not be caught by 

generic techniques such as ECC in memory. They can also 

arise due to software defects (bugs). 

In the past, static analysis [1] and dynamic analysis [2] 

approaches have been proposed to find  bugs in programs. 

These approaches have proven effective in finding known 

kinds of errors prior to deployment of the application in 

an operational environment. However, studies have 

shown that the kinds of errors encountered  by applica-

tions in operational settings are often subtle errors (such 

as in timing and synchronization) [3], which are not 

caught by static or dynamic methods.  

Furthermore, programs upon encountering an error, may 

execute for billions of cycles before crashing (if they crash) 

[4], during which time the error may propagate to a per-

manent state [5].  In order to detect runtime errors, we 

need mechanisms that can provide high-coverage, low -

latency error detection to preempt uncontrolled  system 

crash or hang and prevent error propagation that can lead  

to state corruption. This is the focus of this paper. 

Duplication has traditionally been used  to provide high 

coverage at runtime for software errors and hardware 

errors [6]. However, in order to prevent error propagation 

and preempt crashes, a comparison needs to be per-

formed after every instruction, which in turn results in 

high performance overhead. Therefore, duplication tech-

niques compare the results of replicated  instructions at 

selected  program points, such as stores to memory [7, 8]. 

While this reduces the performance overhead of duplica-

tion, it sacrifices coverage, as the program may crash be-

fore reaching the comparison point. Further, duplication-

based techniques detect all errors that manifest in instru c-

tions and data. It has been found that less than 50% of 

these errors typically result in application failure (crash, 

hang, or incorrect output) [9]. Therefore, more than 50% 

of the errors detected  by duplication are benign [10]. 

The main contribution of this paper is an approach to derive 

runtime error detectors using static analysis of the application. 

The derived detectors can be implemented using either software 

or programmable hardware. While this paper focuses on the 

software implementation of the detectors, the detectors have also 

been implemented in hardware in the context of the Reliability 

and Security Engine (RSE)[11]. They have been prototyped as 

part of the Trusted Illiac project, which is a configurable, appli-

cation-aware, high-performance platform for trustworthy com-

puting being developed at the University of Illinois [12, 13]. 

We find  experimentally that the derived detectors 

preempt crashes and provide high detection coverage for 

errors that result in application failures. The key findings 

of the study are as follows: (1) the derived detectors detect 

around 75% of errors that propagate and  cause crashes, 

(2) the percentage of benign errors detected  is less than 

3%, and (3) the average performance overhead of the d e-

rived  detectors is 33%. 
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2 RELATED WORK 

Related  techniques for (1) uncovering softw are bugs using 

static/ dynamic program analysis and (2) providing ru n-

time detection of hardware/ software errors can be d i-

vided into several broad groups as shown in Table 1. 

The static techniques d iscussed  in Table 1 are geared  to-

ward  detecting errors at compile time, while the d ynamic 

analysis techniques are geared  towards providing feed -

back to the programmer for bug finding. Both these types 

are fault-avoidance techniques (the fault is removed before 

the program is operational) [14]. Despite the existence of 

these techniques and rigorous program testing, subtle but 

important errors such as timing errors persist in a pro-

gram [3, 15].  Furthermore, fu ll replication can detect 

many of these errors; but not only does it incur significant 

performance overheads, it also results in a large number 

of benign error detections that have no impact on the a p-

plication [10]. Thus, there is a need for a technique that 

takes advantage of application characteristics and detects 

arbitrary errors at runtime without incurring the over-

heads of replication. 

Table 1: Classification of related techniques  

Class Example Comments 
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ESP [17], 

LINT[1] 

Checks the program based on a well-understood  fault model, usually specified  based  on common programming 

bugs (e.g. NULL pointer dereferences). The techniques attempt to locate errors across all feasible paths in the pr o-

gram (a program path that corresponds to an actual execution of the program). Determining feasible paths is known 

to be an impossible problem in the general case. Therefore, these techniques make appro ximations that result in 

find ing errors that will never occur in a real execu tion, lead ing to wasteful detections. 
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DAIKON 

[2] 

Derives code invariants such as the constancy of a variable, linear relationships among sets of program variables, 

and  inequalities involving two or more program variables. DAIKON’s primary purpose is to present the inv ariants 

found  to programmers. The invariants are d erived based  on the execution of the application with a representative 

set of inputs that are not in this set may result in the invariants being violated  even when there is no error in the 

progam. 

DIDUCE 

[18] 

Uses the invariants learned  during an early stage of the program execution to detect errors in the subsequent part of 

the execution. It is unclear how the invariants learned during the early stages represent the entire application’s ex-

ecution. This in turn may lead  to false detections. 
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H iller et al. 

[19], Patta-

biraman et 

al. [20] 

Derives error detectors based  on rule-based  templates, wherein the choice of templates and  the parameters are either 

manually specified  [19] or automatically derived  [20]. The generic problem with rule-based  detectors however, is 

that they are specific to an application domain (e.g. specific embedded  applications), and it is d ifficult to make them 

work for general-purpose applications. Further, the rules learned  may not be representative of all inputs to the ap-

plication and may be violated  even when there is no error in the application. 
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PR-Miner 

[21], Engler 

et al  [22] 

Learns program patterns from source code analysis and  consider violations of these patterns as program bugs . Pat-

terns are learned  from localized code samples and  extended  to the whole code base. The techniques are useful for 

find ing common programming errors such as copy-and-paste errors. It is unclear if they can be used  for detecting 

more subtle errors that occur in well-tested  code, such as timing and memory errors, as these errors may not be 

easily localized to code sections. Further, these techniques have false-positives i.e. many errors are not real bugs. 
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Benso et 

al.[23], 

EDDI [7], 

SWIFT [8] 

Replicates the entire program, which can result in high performance overheads (90-100%). An important issue in all 

low-level replication techniques is that they result in the detection of many errors that have no impact on the appl i-

cation (benign errors). This constitutes a wasteful detection (and  subsequent recovery) from the application’s view-

point. Further, duplication-based  techniques offer limited  protection from software faults and  permanent hardware 

faults because both the original program and the replica can incur common-mode faults. 
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JavaMac 

[24], Java-

PathEx-

plorer [25] 

Checks whether the program violates a programmer-specified  safety property by constructing a model of the pro-

gram and  checking the model based  on the actual program execution. The checking is done at specific pr ogram 

points depending on the model. However, if there is a general error in the program there is no guarantee that the 

program will reach the check before crashing. Since the papers describing these techniques only consider errors that 

are d irectly detectable (by the checking technique), the coverage for a ran dom hardware or software error is not 

clear. 
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Memory 

Safety 

Checking 

[26-28] 

Checks every program store that is performed through a pointer (at runtime) to ensure t hat the write is within the 

allowed bounds of the pointer. The techniques are effective for detecting common problems due to buffer overflows 

and  dangling pointer errors. It is unclear whether they are effective in detecting random e rrors that arise due to 

incorrect computation unless such an error results in a pointer writing outside its allowed bounds. The techniques 

also requires checking every memory write, and this can result in prohibitive performance ove rheads (5x-6x). 

Race Con-

d ition De-

tection [29, 

30] 

Checks for race conditions in a multi-threaded  program. A race condition occurs when a shared  variable is accessed  

without explicit and  appropriate synchronization. The techniques check for races in lock -based programs by dynam-

ically monitoring lock acquisitions and releases. However, these approaches involve instrumenting and  d ynamically 

monitoring memory writes to shared  variables in programs, which in turn can result in prohibitve pe rformance 

overheads (6x to 60x). Moreover, conventional race-detection techniques may find  races that have no impact on the 

program’s output (benign races), thereby resulting in wasteful d etections. 

Control-

flow 

Checking 

[31] [32] 

Ensures that a program’s statically derived  control-flow graph is preserved  during the program’s execution. This is 

achieved  by adding checks on the targets of jump instructions and at entries and exits of basic blocks. However, 

fault-injection experiments have shown that only 33% of the manifested  errors result in violations of control-flow 

and  can hence be detected  by these techniques (even assuming that the detection coverage is 100%). 
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In earlier work [33], we have shown the feasibility of d e-

riving error detectors based  on static analysis of applica-

tions and have shown that the derived detectors provide 

high detection coverage (for data errors) with low per-

formance overheads. This paper extends this idea by (1) 

presenting algorithms for automated  static derivation of 

error detectors and their implementation, (2) d iscussing 

their scalability of the derivation process and  the coverage 

of the derived detectors, and (3) qualitatively analyzing 

the coverage of the derived detectors for software errors.  

3 APPROACH 

This section presents an overview of the detector deriva-

tion approach.  

3.1 Terms and Definitions 

Backw ard program slice of a variable at a program loca-

tion is the set of all program statements/ instructions that 

can affect the value of the variable at that program loca-

tion [34].  

Crit ical variable is a program variable that exhibits high 

sensitivity to random data errors in the application. Plac-

ing checks on critical variables achieves high detection 

coverage for data errors.  

Checking expression is an optimized  sequence of instru c-

tions that recompute the critical variable. It is computed 

from the backward slice of the critical variable for a specific 

acyclic control path in the program. 

Detector is the set of all checking expressions for a critical 

variable, one for each acyclic, intra-procedural control 

path in the program. 

3.2 Steps in Detector Derivation 

The main steps in error detector derivation  are as follows: 

A. Ident ificat ion of crit ical variables. The critical va-

riables are identified  based on an analysis of the dynamic 

execution of the program. The application is executed  

with representative inputs to obtain its dynamic execution 

profile, which is used  to choose critical variables for d e-

tector placement. Critical variables are variables with the 

highest dynamic fanouts in the program, as errors in these 

variables are likely to propagate to many locations in the 

program and cause program failure. The approach for 

identifying critical variables was presented  in [35], where 

it was shown (experimentally) to provide 85% coverage 

with approximately 10 critical variables in the entire pro-

gram
1
.  However, in this paper, critical variables are ch o-

sen on a per-function basis in the program i.e. each fun c-

tion/ procedure in the program is considered  sep arately to 

identify critical variables.  

B. Computat ion of backw ard slice of crit ical variables . A 

backward traversal of the static dependence graph of the 

program is performed starting from the instruction that 

computes the value of the critical variable going back to 

the beginning of the function. The slice is specialized  for 

 
1
 The paper considered ideal detectors which could detect any devia-

tion from the correct value. 

each acyclic control path that reaches the computation of 

the critical variable from the top of the function. The slic-

ing algorithm used is a static slicing technique that con-

siders all possible dependences between instructions in 

the program regardless of program inputs (based  on 

source language semantics). Hence, the slice will be a su-

perset of the dependencies encountered  during an execu-

tion of the program and encompasses all valid  inputs. 

C. Check derivat ion, insert ion, inst rumentat ion. 

 Check derivation: The specialized  backward  slice for 

each control path is optimized considering only the in-

structions on the corresponding path, to form the check-

ing expression. 

 Check insertion: The checking expression is inserted  

in the program immediately after the computation of the 

critical variable. 

 Instrumentation: Program is instrumented  to track 

control-paths followed at runtime in order to choose the 

checking expression for that specific control path. 

D. Runt ime checking in hardw are and softw are. The con-

trol path followed is tracked (by the inserted  instrumenta-

tion) at runtime. The path-specific inserted  checks are 

executed  at appropriate points in the execution depen d-

ing on the control path  followed at runtime. The checks 

recompute the value of the critical variable for the ru n-

time control path. The recomputed  value is compared  

with the original value computed  by the main program. 

In case of a mismatch, the original program is stopped 

and recovery is initiated .  

The main sources of performance overhead for the detec-

tors are as follows: 

(1) Path tracking: The overhead of tracking paths is signif-

icant (4x) when done in software. Therefore, a proto-

type implementation of path tracking is p erformed  in 

hardware. This hardware is integrated  with the Re-

liability and Security Engine (RSE) [11]. RSE is a 

hardware framework that provides a plug-and-play 

environment for including modules that can perform 

a variety of checking and monitoring tasks in the pro-

cessor ’s data-path. The path-tracking component is 

implemented  as a module in the RSE (Appendix A). 

(2) Checking: In order to further reduce the performance 

overhead, the check execution itself can be moved to 

hardware. This is an area of fu ture investigation. 

3.3 Example of Derived Detectors  

The derived  detectors are illustrated  using a simplified  

example of an if-then-else statement in Figure 1. A more 

realistic example is presented  in Section  4. In the figure, 

the original code is shown in the left and the checking 

code added is shown in the right. Assume that the detec-

tor placement analysis procedure has id entified  f as one of 

the critical variables that need to be checked before its use 

in the following basic block. Only the instructions in the 

backward  slice of variable f are shown in Figure 1. 

In Figure 1, there are two paths in the program slice of f, 

corresponding to each of the two branches. The instru c-

tions on each path can be optimized to yield  a checking 
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expression that checks the value of f along that path. In 

the case of the first path (path=1), the expression reduces 

to (2 * c - e) and  this is assigned to the temporary variable 

f2. Similarly the expression for the second path (path=2) 

corresponding to the else branch statement reduces to (a + 

e) and  is also assigned  to f2. Instrumentation is added to 

keep track of paths at runtime. At runtime, when control 

reaches the inserted  check, the appropriate checking ex-

pression for f is chosen based on the value of the path va-

riable and the value of f2 is compared with the value of f 

computed  by the program. In case there is a mismatch, an 

error is declared  and the program is stopped.  

 

Figure 1: Example code fragment with detectors inserted  

3.4 Software Errors Covered 

Since the technique proposed in this paper enforces the 

compiler-extracted  source-code semantics of programs at 

runtime, it can detect any software error that violates the 

source program’s semantics at runtime. This includes 

software errors caused by pointer corruptions in pro-

grams (memory corruption errors) as well as those caused 

by missing or incorrect synchronization in concurrent 

programs (timing errors). We consider how the proposed 

technique detects these errors: 

Memory corruption errors: Languages such as C and C++ 

allow pointers to w rite anywhere in memory (to the stack 

and heap). Memory corruption errors are caused by poin-

ters in the code writing outside their intended object
2
 (ac-

cording to source code semantics), therby corrupting oth-

er objects in memory. However, static analysis performed  

by compilers typically assumes that objects are infinitely 

far apart in memory and that a pointer can only write 

within its intended object. As a result, the backward  slice 

of critical variables extracted  by the compiler includes 

only those dependences that arise due to explicit assign-

ment of values to objects via pointers to the object. There-

fore, the technique detects all memory errors that corrupt 

one or more variable in the backward  slice of critical v a-

riables, as long as the shared  state between the check and  

the main program is not corrupted  (e.g. memory errors 

that affect function parameters will not be d etected , as 

only intra-procedural slices are considered  by the tech-

nique). 

 
2
 The term object refers to both program variables and memory objects.  

Figure 2 illustrates an example of a mem ory corruption 

error in an application and how the proposed technique 

detects the error. In the figure, function foo computes the 

running sum (stored  in sum) of an array of integers (buf) 

and  also the maximum integer (max) in the array. If the 

maximum exceeds a predetermined threshold , the func-

tion returns the accumulated  sum corresponding to the 

index of the maximum element in the array (maxIndex).  

In Figure 2, the array sum is declared  to be of size bufLen, 

which is the number of elements in the array buf. Howev-

er, there is a write to buf[i+1] in line 5, where i can take 

values from 0 to bufLen. As a result, a buffer overflow oc-

curs in the last iteration of the loop, leading to the value 

of the variable max being overwritten by the write in line 

5 (assuming that max is stored  immediately after the array 

buf on the stack). The value of max would  be subsequently 

overwritten with the value of the sum of all the elements 

in the array, which is something the programmer almost 

certainly d id  not expect (this results in a logical error).  

 

int foo(int buf[]) { 

1:        int sum[bufLen]; 

2:        int max = 0; int maxIndex = 0; 

3:        sum[0] = 0;  

4:        for (int i = 0; i < bufLen; ++i) { 

5:              sum[i + 1] = sum[i] + buf[i];  

6:              if (max < buf[i])  { 

7:                            max = buf[i]; 

8:                            maxIndex = i; 

9:             } 

10:       } 

11:      if (max > threshold)      return sum[maxIndex]; 

12:      return sum[bufLen]; 

} 

Figure 2: Example of a memory corruption error 

In the above example, assume that the variable max has 

been identified  as critical, and is being checked in line 9. 

Recall that the proposed technique will detect a memory 

corruption error if and only if the error causes corruption 

of the critical variable (which is the case in this example). 

In this case, the checking expression for max will depend  

on whether the branch corresponding to the if statement 

in line 6 is taken. If the branch is not taken, the value of 

max is the value of max from the previous iteration of the 

loop. If the branch is taken, then the value of max is com-

puted  to be the value buf[i]. These are the only possible 

values for the max variable, and both values are 

represented  in the detector. The memory corruption error 

in line 5 will overwrite the variable max with the value 

sum[bufLen], thereby causing a mismatch in the detector ’s 

value. Hence, the error will be detected  by the technique. 

Note that the detector does not isolate the actual line of 

code or the variable where the memory error occurs. 

Therefore, it can detect any memory corruption error that 

affects the value of the critical variable, independent of 

where the error occurs. As a result, the technique does not 

need to instrument all unsafe writes to memory as done 

by conventional memory-safety techniques (e.g. [26-28]). 
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Race conditions and synchronization errors: Race cond i-

tions occur in concurrent programs due to lack of syn-

chronized accesses to shared  variables. Static analysis 

techniques typically do not take into account asynchron-

ous modifications of variables when extracting depen-

dences in programs. As a resu lt, the backward  slice only 

includes modifications to the shared  variables made u n-

der proper synchronization. Hence, race conditions that 

result in unsynchronized writes to shared  variables to the 

variables in the backward  slice of critical variables. How -

ever, race cond itions that result in unsynchronized reads 

may not be detected  unless the result read  by the read  

propagates to the backward  slice of the critical variable. 

Note that the technique does not detect benign races (i.e. 

race conditions in which the value of the variable is not 

affected  by the order of the writes), as it checks the value 

of the variable being written to rather than whether the 

write is synchronized.  

Figure 3 shows a hypothetical example of a race condition 

in a program. Function foo adds a constant value to each 

element of an array a which is passed  into it as a formal 

parameter. It is also passed  an array a_lock, which main-

tains fine-grained locks for each element of A . Before op-

erating on an element of the array, the thread  acquires the 

appropriate lock from the array a_lock. This ensures that 

another thread  is not able to modify the contents of array 

a[i], provided the other thread tries to acquire the lock before 

modifying a[i]. Therefore, the locks by themselves do not 

protect the contents of a[i] unless all threads adhere to the 

locking d iscipline. The prop erty of adherence to the lock-

ing d iscipline is hard  to verify using static analysis alone 

because (1) the thread  modifying the contents of array a 

could  be in a d ifferent module than the one being an a-

lyzed, and the source code of the other module may not 

be available at compile time, and (2) precise pointer ana l-

ysis is required  to find  the specific element of a being 

written to in the array. Such precise analysis is often u n-

scalable, and static analysis techniques perform approxi-

mations that result in missed  detections. 

 

1: void  foo(int* a, mutex* alock, int n, int c) { 

 2:        int i = 0; 

 3:        int sum = 0; 

 4:        for (i=0; i<n; i++) { 

 5:               acquire_mutex( alock[i] ); 

 6:               old_a = a[i]; 

 7:                a[i] = a[i] + c; 

 8:                check( a[i] == old_a + c) 

 9:                release_mutex( alock[i] ); 

 10:       } 

} 

Figure 3: Example for race condition detection 

The proposed technique, on the other hand, would  detect 

illegal modifications to the array a even by threads that do 

not follow the locking d iscipline.  Assume that the var ia-

ble a[i] in line 7 has been determined to be a critical varia-

ble. The proposed technique would  place a check on a[i] 

to recompute it in line 8. Now assume that the variable 

a[i] was modified  by an errant thread  that does not follow 

the locking d iscipline. This would  cause the value of a[i] 

computed  in line 7 to be d ifferent from what it should  

have been in a correct execution (which is its previous 

value added to the constant c). Therefore, the error is d e-

tected  by the recomputation check in line 8. 

The following points can be noted  in the example: (1) The 

source code of the errant thread  is not needed to derive 

the check and hence it can be in a d ifferent module, (2) 

The check will fail only if the actual computed  value is 

d ifferent and is therefore immune to benign races that 

have no manifestation on the computation of the critical 

variable, and (3) in this example, it is enough for the tech-

nique to analyze the code of the function foo to derive the 

check for detecting the race cond ition
3
.   

3.5 Hardware Errors Covered 

Hardware transient errors that result in corruption of a rc-

hitectural state are considered  in the fault-model. Exam-

ples of hardware errors covered  include, 

 Instruction fetch and decode errors: Either the 

wrong instruction is fetched , (OR) a correct instru c-

tion is decoded  incorrectly resulting in data value 

corruption. 

 Execute and memory unit errors: An ALU instruction 

is executed  incorrectly inside a fu nctional unit, (OR) 

the wrong memory address is computed  for a 

load/ store instruction, resulting in data value corru p-

tion. 

 Cache/memory/register file errors: A value in the 

cache, memory, or register file experiences a soft error 

that causes it to be incorrectly interpreted  in the pro-

gram (assuming that ECC is not used). 

4 STATIC ANALYSIS 

This section describes the static analysis technique to d e-

rive detectors and add instrumentation for path tracking. 

The bubble-sort program shown in Figure 4(a) is used  as 

a working example throughout this section.   

We use the LLVM compiler infrastructure [36]to derive 

error detectors for the program. A new compiler pass 

called  the Value Recomputation Pass (VRP) was introduced 

into LLVM. The VRP performs the backward  slicing star t-

ing from the instru ction that computes the value of the 

critical variable to the beginning of the function. It also 

performs check derivation, insertion and instrumentation. 

The output of the pass is provided as input to other opti-

mization passes in LLVM. 

LLVM uses Static Single Assignment form (SSA) [37] as its 

intermediate code representation. In deriving the back-

ward  program slice, two well understood properties of 

SSA form are used  as follows: 

 In SSA form, each variable (value) is defined exactly 

once in the program, and the definition is assigned a 

unique name. This unique name makes it easy to 
 

3
 This may not hold in case the modification is done prior to the fun c-

tion call. 
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identify data dependences among instructions.  

 SSA form uses a special static construct called  the phi 

instruction that is u sed  to keep track of the data d e-

pendences when there is a merging of data values 

from different control edges. The phi instruction in-

cludes the variable name for each control edge that is 

merged and the correspond ing basic block. This in-

struction allows the specialization of the backward  

slice based  on control-paths by the technique. 

 
void Bubble(int srtElements, int* sortList) { 

           int i, j,  top; 
          bInitarr( sortList, srtElements ); 
          top=srtelements; 
         while ( top>1 ) {//Outer-while-loop 
                 i=1; 
                while ( i<top ) {// Inner while-loop 
                          if ( sortlist[i] > sortlist[i+1] ) 
                         { 
                                     j = sortlist[i]; 
                                    sortlist[i] = sortlist[i+1]; 
                                    sortlist[i+1] = j; 
                         } // end-if 
                         i=i+1; 
                } // end-inner-while 
               top=top-1; 
        } // end-outer-while 
} 

(a) 
 

loopentry:
…

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [ 0, loopentry ], [tmp.i, endif ]   

tmp.i = add indvar.i, 1         

i.1 = cast tmp.i to int                

tmp.9 = getArrayElement sortlist, tmp.i            

tmp.10 = load [ tmp.9 ]      

tmp.12 = add i.1, 1                  

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]           

tmp.15 = setgt tmp.10, tmp.14      

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]

br endif

endif: 
tmp.16 = setlt tmp.12, top         

br tmp.16, no_exit, loop_exit

loopexit:

….

loopentry:
…

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [ 0, loopentry ], [tmp.i, endif ]   

tmp.i = add indvar.i, 1         

i.1 = cast tmp.i to int                

tmp.9 = getArrayElement sortlist, tmp.i            

tmp.10 = load [ tmp.9 ]      

tmp.12 = add i.1, 1                  

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]           

tmp.15 = setgt tmp.10, tmp.14      

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]

br endif

endif: 
tmp.16 = setlt tmp.12, top         

br tmp.16, no_exit, loop_exit

loopexit:

….  
(b) 

Figure 4: (a) Example code fragment (b) Correspond-

ing LLVM intermediate code 
A simplified  version of the LLVM intermediate code cor-

responding to the inner-while loop in the bubble-sort 

program is shown in Figure 4(b).  In Figure 4(b), the basic 

blocks are labeled  with unique names and their su ccessors 

are shown through directed  arrows. Each instruction as-

signs its result (if any) to a unique variable. The, phi in-

struction was explained earlier. The getArrayElement in-

struction dereferences an array base pointer and index to 

reference the element at the array index location. The cast 

instruction converts values of one type into another. The 

setgt and setlt instructions compare two values and the br 

instruction executes a branch based on the results of the 

comparison. The load and  store instructions read  from and 

write to memory respectively. 

4.1 Value Recomputation Pass 

The basic ideas behind the VRP were introduced by us in 

[33]. The details of the VRP algorithm are presented  for 

the first time in this paper. The VRP takes LLVM interm e-

diate code annotated  with critical variables and extracts 

their path-specific backward  slices. It computes the back-

ward  slice by traversing the static dependence graph of 

the program starting from the instruction that computes 

the value of the critical variable.  

By extracting the path-specific backward slice and exposing it to 

other optimization passes in the compiler, the Value Recomputa-

tion Pass (VRP) enables aggressive compiler optimizations to be 

performed on the slice that would not be possible otherwise. 

4.1.1 Path-specific Slicing Algorithm  

An important contribution of this paper is the algorithm 

used for creating the path-specific slice for critical va-

riables. The instruction that computes the critical variable 

in the program is called  the critical instruction.  In order 

to derive the backward  program slice of a critical instruc-

tion, the VRP performs backward  traversal of the static 

data dependence graph.  The traversal starts from the 

critical instruction and terminates when one or more of 

the following cond itions is met: 

 The beginning of the current function is reached . It 

is sufficient to consider intra-procedural slices in the 

backward  traversal because each function is consi-

dered  separately for the detector placement analysis. 

For example, in Figure 4a, the array sortList is passed  

as an argument to the function Bubble. The slice does 

not include the computation of sortList in the calling 

function. If sortList is a critical variable in the calling  

function, say foo, then a detector will be derived  for it 

when foo is analyzed. 

 A basic block is revisited in a loop. During the 

backward  traversal, if data dependence within a loop 

is encountered , the detector is broken into two detec-

tors, one placed on the critical variable and one on the 

variable that affects the critical variable within the 

loop. This second detector ensures that the variable 

within the loop is computed  correctly and hence the 

value can be used  without recomputing it in the first 

detector. Therefore, only acyclic paths are considered . 

 A dependence across loop iterations is encountered. 

Recomputing critical variables across multiple loop 

iterations can involve loop unrolling or buffering in-

termediate values that are rewritten in the loop. This 

in turn can complicate the design of the detector. In-

stead , the VRP splits the detector into two detectors, 

one for the dependence-generating variable and one 

for the critical variable. 

 A memory operand is encountered .  Memory de-

pendences are not considered  because LLVM pro-
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motes most memory objects to registers prior to ru n-

ning the VRP. Since there is an unbounded number of 

virtual registers for storing variables in SSA form, the 

analysis does not have to be constrained by the nu m-

ber of physical registers available on the target m a-

chine. However it may not always be possible to 

promote memory objects to register e.g. pointer refer-

ences to dynamically allocated  data. In such cases, the 

VRP duplicates the load  of the memory object, pro-

vided the load  address is not modified  along the con-

trol path from the load  instruction to the critical in-

struction (as determined by pointer analysis [38]).  

 

Table 2: Pseudocode of backward traversal algorithm 

Function visit( seedInstruction, pathID, parent ): 

        ActiveSet ={ seedInstruction } 

         if parent==0: 

                  SliceList[ pathID ] = { } 

          else: 

                  SliceList[ pathID ] = SliceList[ parent ] 

         nextPathID = pathID  

         while not empty( ActiveSet ): 

                     I = Remove instruction for ActiveSet 

                     Visited[ BasicBlock(I) ] = true 

                      // Do not consider interprocedural slices 

                     if I is a function argument or constant: 

                               terminal = true          

                     else if I is a non-phi instruction: 

                                 SliceList[pathID] =  SliceList[PathID] U { I } 

                                 ActiveSet = ActiveSet U operands( I ) 

                      else if I is a phi instruction: 

                               for  each operand  of the phi: 

                                    // Check if a loop is encountered  

                                   // or if  going back multiple iterations 

                                    if not ( Visited  [ BasicBlock(operand) ]  

                                       and  not CrossingInsn(I, operand) ) 

                                           nextPathID = pathID + 1   

                                           result = call visit(operand ,  

                                                                  nextPathID, pathID ) 

                                           terminal = terminal OR ~(result) 

                                    else: 

                                          SeedList = SeedList U { operand  }                                                                   

            // Add the path to the pathList if terminal path 

            if (terminal)  

                      PathList = PathList U { pathID } 

          return terminal  

 

Function computeSlices (criticalInstruction): 

         SeedList = {  criticalInstruction } 

         PathList = { } 

          while not empty( SeedList ):  

               seedInstruction=Remove instruction from SeedList  

               call visit( seedInstruction, 0, 0 )                     

          return PathList, SliceList 

 

The algorithm for computing path -specific backward  slic-

es of the critical instruction is shown in Table 2. We high-

light its main points here: 

 During the backward  traversal, when a phi-

instruction is encountered  indicating a merge in con-

trol-flow paths, the slice is forked for each control 

path that is merged  at the phi. The algorithm main-

tains the list of instructions in each path -specific slice 

in the array SliceList. The function computeSlices takes 

as input the critical instruction and outputs the SliceL-

ist array, which contains the instructions in the back-

ward  slice for each acyclic path in the function.  

 The actual traversal of the dependence graph occurs 

in the function visit, which takes as input the starting 

instruction, an ID (number) corresponding to the con-

trol-flow path it traverses (index of the path in the Sli-

ceList array), and the index of the parent path. The 

computeSlices function calls the visit function for each 

critical instruction. The visit function visits each ope-

rand of an instruction in turn, adding it to the SliceList 

of the current path. When a phi instruction is encou n-

tered , a new path is spawned for each operand of the 

phi instruction (by calling the visit function recursive-

ly on the operand  with a new path ID and the current 

path as the parent). The traversal is then continued  

along this new path.  

 Only terminal paths are added to the final list of 

paths (PathList) returned by the ComputeSlice proce-

dure. A terminal path is defined as one that term i-

nates without spawning any new paths.  

 Certain instructions cannot be recomputed  in the 

checking expression, because performing recomputa-

tion of such instructions can alter the semantics of the 

program. Examples are mallocs, frees, function calls 

and function returns. Omitting mallocs and  frees does 

not seem to impact coverage except for allocation in-

tensive programs, as shown by our results in section 

6.2. Omitting function calls and returns does not im-

pact coverage for program functions because the de-

tector placement analysis considers each function 

separately (section 3.2). 

Assuming that the critical variable chosen for the example 

in Figure 4a is sortlist[i], the intermediate code representa-

tion for this variable is the instruction tmp.10 in Figure 4b. 

The VRP computes the backward  slice of tmp.10, which 

consists of the two paths shown in Figure 5.   

 
Path 0: no_exit  loopentry 
 
 indvar.i = 0 
 tmp.i = add  indvar.i, 1          
 tmp.9 =getArrayElement  
sortlist,tmp.i              
 tmp.10 = load[  tmp.9 ] 

Path 1: endif  loopentry 
 

indvar.i = tmp.i    
 tmp.i = add indvar.i, 1          
 tmp.9 = getArrayElement  sort-
list,tmp.i              
 tmp.10 = load [ tmp.9 ]      

Figure 5: Path-specific slices for example 

4.1.2 VRP and Other Optimization Passes 

After extracting the path-specific slices, the VRP performs 

the following operations on the slices: 

 Places the instructions in the backward  slice of the 

critical variable corresponding to each control path in 

its own basic block.  
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 Replaces the phi instructions in the slice with the in-

coming value corresponding to the control edges for 

the path. This allows subsequent compiler optimiza-

tion passes to substitu te the phi values d irectly in 

their uses through either constant propagation or 

copy propagation [38]. 

 Creates copies of variables used  in the path -specific 

slices that are not live at the detector insertion point. 

For example, the value of tmp.i is overwritten in the 

loop before the detector can be reached  and a copy 

old.tmp.i is created  before the value is overwritten .  

 Renames the operands in the slices to avoid  conflicts 

with the main program and  thereby ensure that SSA 

form is preserved by the slice. 

 Instruments program branches with path identifiers 

considered  by the backward  slicing algorithm. This 

includes introduction of special instructions at 

branches pertaining to the paths in the slice, and also 

at function entry and exit points.  

The standard  LLVM optimization passes are invoked on 

the path-specific backward  slices extracted  by the VRP. 

The optimization passes yield  reduced instruction se-

quences that compute the critical variables for the corres-

ponding paths. Further, since there are no control-

transfers within the sequence of instructions for each 

path, the compiler is able to optimize the instruction se-

quence for the path much more aggressively than it 

would  have otherwise. This is because the compiler does 

not usually consider specific control paths when perform-

ing optimizations for reasons of space an d time efficiency. 

However, by selectively extracting the backward slices for crit i-

cal variables and by specializing them for specific control paths, 

the VRP is able to keep the space and time overheads small. 

4.1.3 VRP Output 

The LLVM intermed iate code from Figure 4 with the 

checks inserted  by the VRP is shown in Figure 6. The VRP 

creates two different instruction sequences to compute the 

value of the critical variable correspond ing to the control 

paths in the code. The first control path corresponds to 

the control transfer from the basic block loopentry to the 

basic block no_exit in Figure 6. The optimized set of in-

structions corresponding to the first control path is en-

coded as a checking expression in the block path0 in Fig-

ure 6. The second control path corresponds to the control 

transfer from the basic block endif to the basic block 

no_exit in Figure 4. The optimized set of instructions cor-

responding to the second control path is encoded  as a 

checking expression in the block path1 in Figure 6. 

The instructions in the basic blocks path0 and path1 recompute 

the value of the critical variable tmp.10. These instruction se-

quences constitute the checking expressions for the critical vari-

able tmp.10 and comprise of 2 instructions and 3 instructions 

respectively. The basic block Check in Figure 6 compares 

the value computed  by the checking expressions to the 

value computed  in the original program. A mismatch 

signals an error and  the appropriate error handler  is 

invoked in the basic block error. Otherwise, control is 

transferred  to the basic block restBlock, which contains the 

instructions following the computation of tmp.10 in the 

original program. 

Consider what happens when an error affects an instru c-

tion that is involved in the com putation of the critical va-

riable. Assume that the error affects the instruction that 

computes tmp.i in  Figure 4(b) (this instruction indirectly 

impacts the computation of the critical variable tmp.10).  

 

 

Figure 6: LLVM code with checks inserted by VRP 

We now describe how this error is detected  by the check-

ing expressions in path0 and  path1 when the correspond-

ing control paths are executed  by the program . 

First, consider the case when the runtime path followed 

corresponds to the execution of the checking expression in 

the basic block path0. In path0, the compiler performs con-

stant propagation and replaces the computation of tmp.i 

with the constant 1 in Figure 6. As a result, the error in the 

computation of tmp.i is not manifested  in path0. Hence, 

the value of the critical variable computed  in path0, name-

ly new.0.tmp.10, is d ifferent from the value of the critical 

variable computed  in the original program. Th us, the er-

ror in the computation of tmp.i is detected . 

Next, consider the case when the path followed corres-

ponds to the execution of the checking expression in 

path1. The VRP inserts code to copy the original value of 

tmp.i into old.tmp.i before tmp.i is overwritten in the pro-

gram. The value old.tmp.i is used  in the checking expres-

sion in path1 to recompute the value of tmp.i, namely 

new.1.tmp.i, which in turn is used  to recompute the critical 

variable in  path1. The value new.tmp.i is computed  and  

stored  separately from the original value tmp.i, and  con-

sequently does not suffer from the error that affected  the 

 

 

 

no_exit:.
indvar = phi  [0, loopentry], [tmp.i, then ], [tmp.i, endif ]   

old.tmp..i = tmp..i 

tmp.i = add indvar.i, 1         

i.1 = cast tmp.i to int                

tmp.9 = getArrayIndex sortlist, tmp.i             

tmp.10 = load [ tmp.9 ]      

pathVal = getState( ) 

br pathVal, path.0, path.1

path0:
new.0.tmp.9 = getArrayIndex sortList, 1

new.0.tmp.10 = load [ new.0.tmp.9 ]          

br Check

path1:
new.1.tmp.i = add old.tmp.i, 1         

new.1.tmp.9 = getArrayIndex sortlist, new.1.tmp.i        

new.1.tmp.10 = load [ new.1.tmp.9 ]     

br Check

Check:
new.tmp.10 = phi [new.0.tmp, path0], [new.1.tmp, path1]

compare = seteq new.10, tmp.10

br compare, errorBlock, restBlock

restBlock:

tmp.12 = add int i.1, 1                  

tmp.13 = getArrayIndex sortlist, tmp.12             

tmp.14 = load tmp.13

tmp.15 = setgt tmp.10, tmp.14       

br bool tmp.15, label then, label endif

errorBlock:

call errFunc()
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computation of tmp.i. As a result, the value of the critical 

variable computed  in path1, namely new.1.tmp.i is d ifferent 

from the one computed  in the original program. Thus, the 

error in the computation of tmp.i is detected . 

4.2 Scalability 

This section d iscusses factors that could  potentially limit 

the scalability of the VRP algorithm and how these are 

addressed  by the proposed  technique. The factors that 

affect the technique’s scalability are as follow s: 

 Number of control paths: This is addressed  by con-

sidering only intra-procedural, acyclic paths in the 

program correspond ing to the backward  slices of crit-

ical variables. At worst, the number of paths is expo-

nential in the number of branch instructions in the 

program. In practice however, the number of control 

paths is polynomial in the number of branch instru c-

tions (unless the program is performing decision tree 

like computations). 

 Size of checking expression: The size of the checking 

expression depends on the number of levels in the 

dependence tree of the critical variable considered  by 

the algorithm. Terminating the dependency tree at 

loop and function boundaries naturally limits the 

checking expression’s size.  

 Number of detectors: The number of critical va-

riables per function is a tradeoff between the desired  

coverage and an acceptable performance overhead.  

Placing more detectors achieves higher coverage but 

may result in higher performance overheads. The a l-

gorithm may introduce add itional detectors, for ex-

ample, when splitting a detector into two detectors 

across loop iterations, but this reduces the size of each 

checking expression. Therefore, for a given number of 

critical variables, the number of detectors varies in-

versely as the size of each checking expression. 

4.3 Coverage 

The VRP operates on program variables at the compiler ’s 

intermediate representation (IR) level. In the LLVM infra-

structure, the IR is close to the program’s source code 

[36]and abstracts many of the low -level details of the u n-

derlying architecture. For example, the IR has an infinite 

number of virtual registers, uses Static Single  Assignment  

(SSA), and has native sup port for memory allocation (mal-

loc and  alloca) and pointer arithmetic (getElementPtr
4
 in-

struction). Moreover, the runtime m echanisms for stack 

manipulations and  function calls are transparent to the IR. 

As a result, the VRP may not protect data that is not  visi-

ble at the IR level. Therefore, the VRP is best su ited  for 

detecting errors that impact program state visible at the 

source level. Note that the generic approach presented  in 

Section 3, however, is not tied  to a specific level of compi-

lation and can be implemented  at any level. 

The VRP operates on LLVM’s intermediate code, which 

 
4
 This is the general case of the getArrayElement instruction.  

does not include common runtime mechanisms such as 

manipulation of the stack and base pointers. Moreover, 

the intermediate code assumes that the target machine 

has an infinite register file and does not take into account 

the physical limitations of the machine.   

Data errors in a program can occur in three possible plac-

es (locations): (1) Source-level variables or memory ob-

jects, (2) Precompiled  Libraries linked  with the applica-

tion, and  (3) Code added by the compiler ’s target -specific 

code generator for common runtime operations such as 

stack manipulation and handling register-file spills. The 

technique presented  in the paper aims at detecting errors  

in the first category, and can be extended to detect errors 

in the second category provided the source code of the 

library is available or the library is compiled  with the 

proposed technique. However, errors in the third  catego-

ry, namely those that occur in the code added by the 

compiler ’s code generator cannot be detected  using the 

proposed technique unless the error affects one or more 

source-level variables or memory objects. This is because 

the code added by the compiler is transparent to the VRP 

and hence cannot be protected  by the derived detectors.  

The steps in compiling a program with LLVM are as fol-

lows: First, the application’s source code along with the 

source (or intermediate) code of runtime libraries are con-

verted  to LLVM’s generic intermedia te code form. This 

intermediate form is in -turn compiled  onto the target ar-

chitecture’s object code, which is then linked with pre- 

compiled  libraries to form the final executable.  The 

process is similar to conventional compilation, except that 

the application and the source libraries are first compiled  

to the intermediate code format (by a modified  gcc front-

end) before being converted  to object code. Each level of 

compilation progressively adds more state to the pro-

gram. Table 3 shows the data elements of the program’s 

state visible at each level of compilation.  

As shown in Table 3, the intermediate code level does not 

include data elements in the final executable that are ad d-

ed  by the compiler and linker. Since the VRP operates at 

the intermediate code level, it does not see the elements in 

the lower levels and the derived detectors may not detect 

errors in these levels. This can be addressed  by imple-

menting the technique at lower compilation levels. 

 

Table 3: State visible at each level of compilation 
Code Level Elements of program state that are visible 

Source Level 
(1) Local variables, (2) global variables and  (3) d y-

namic data allocated  on heap 

Intermediate 

Code 

(1) Branch addresses of if statements, loops, and  

case statements,  (2) temporary variables used  in 

evaluation of complex expressions 

Object Code 
(1) Temporary variables to handle register file sp ills, 

and  (2) stack manipulation mechanisms. 

4.4 State Machine Generation 

The VRP extracts a set of checking expressions for each 

detector in the program. Each checking expression in the 

set corresponds to an acyclic, intra-procedural control 

path leading to the critical variable from the top of the 
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function. The VRP also inserts instrumentation to notify 

the runtime system when the program takes a branch be-

longing to one of the paths in the set. This is done by in-

serting a special operation called  EmitEdge that identifies 

the source and destination basic blocks of the branch with 

unique identifiers. The VRP then exports the basic block 

identifiers of the branches along each path in a separate 

text file for each detector in the program.  

A post-processing analysis then parses these text files and 

builds a state-machine representation of the paths for each 

check. The state machines are constructed  such that every 

instrumented  branch in the program causes state transi-

tions in one or more state machines. A complete sequence 

of branches corresponding to a control path for which a 

checking expression has been derived will drive the state 

machine for the check to an accepting state corresponding 

to the checking expression. 

 

Table 4: Algorithm to convert paths to state machines 

for each critical variable V in the program: 

           open the path-file corresponding to the variable 

            for each path in the path-file: 

                    PathNumber  Read  path ID in path file 

                      Read  an edge e = (src, sink) from the path file 

                     S  Start_State 

                    Create an accepting state “A” for the path  

                    if this is the only edge for the path: 

                           if Transition[S, A] does not contain e     

                                Transition[S, A] <- Transition[S,A] U e 

                     else: 

                          current = S 

                           for each edge e in the path 

                                 if there exists a state K such that  

                                    (Transition[current,K] contains e): 

                                       current  K                      

                                 else: 

                                      Create a new state L 

                                      Transition[current, L]  e    

                                      current  L 

                            Set current as the accepting state for path  

              close the path file for the critical variable 

endfor   

The algorithm used by the post-processing analysis to 

convert the control edge sequences to finite state m a-

chines is shown in Table 4. The algorithm processes the 

path files for each check, and adds states to the state m a-

chine corresponding to the check. The aim  is to d istin-

guish one path from another in the check, while at the 

same time introducing the least number of states to the 

state machine. This is because each state occupies a fixed  

number of bits in hardware, and our goal is to m inimize 

the total number of bits that must be stored  by the hard -

ware module for path-tracking and consequently the area 

occupied  by it (see Appendix A). 

The algorithm in Table 4 works as follows: It starts in the 

starting state of the state machine and processes each 

edge in the list of edges for the path.  It adds a new state 

for an edge if and only if no transition exists for the edge 

from the current state in the state machine. If such a tran-

sition exists, it transitions to the state leading from the 

current state corresponding to the edge, and processes the 

next edge in the path. It continues until it has processed  

all the edges of the path, and  marks the last state added as 

the accepting state for the path in the state machine. 

When the algorithm terminates, it outputs the transition 

table for the state machines, as well as the list of accepting 

states corresponding to each path of the check.  

The time-complexity of the algorithm in Table 4 is O(| V|  

*  | P|  * | E| ), where | V|  is the number of critical va-

riables in the program, | P|  is the maximum number of 

control-paths in the backward  slice of the variable and  

| E|  is the maximum number of edges in the control paths 

corresponding to each critical variable. The space com-

plexity of the technique is O (| V|  *| Ů E| * H), where | H |  

is the maximum number of shared  edges among control-

paths corresponding to the critical variables, and Ů E is 

the union of the edges in the program’s control paths.  

Figure 7a shows the control-flow graph (CFG) of the pro-

gram shown in Figure 4. As shown earlier, the critical va-

riable is computed  in the basic block endif. The VRP has 

identified  4 intra-procedural acyclic paths
5
 in the back-

ward  slice of the critical variable:  

1. loopentry  no_exit, no_exit endif 

2. loopentry  no_exit, then  endif 

3. endif  no_exit, no_exit  endif 

4. endif  no_exit, then  endif 

The state machine derived by the algorithm for the con-

trol-flow graph in Figure 7(a) is shown in Figure 7(b). The 

algorithm has introduced two new states A  and  B in add i-

tion to four accepting states D, E, F and  G for the four 

paths shown above. The transitions between states cor-

respond to the edges identified  by the VRP to d istinguish 

paths from one another.  

5 EXPERIMENTAL SETUP 

This section describes the mechanisms for measurement 

of performance and coverage provided by the proposed  

technique. It also describes the benchmarks used . 

5.1 Performance Measurement 

All experiments are carried  out on a single core Pentium 4 

machine with 1GB RAM and  2.0 Ghz clock speed running 

the Linux operating system. The performance overheads 

of each individual component introduced by the pro-

posed technique are measured  as follows: 

Modification overhead: Performance overhead due to the 

extra code introduced by the VRP for instrumentation and  

checking. This code may cause cache misses and branch 

mispredictions and incur performance overhead. 

 
5
 In the earlier d iscussion, only two of these paths were considered. 
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(a) 

(b) 

Figure 7(a) Control-flow graph (CFG) of bubblesort 

application (b) Corresponding finite state machine  

Checking overhead: Performance overhead of executing the 

instructions in each check to recompute the critical varia-

ble and compare the recomputed  value with the original 

value. This also includes the cost of branching to the 

check, choosing the checking expression to be excuted  

and branching back to the program’s code. 

The overhead of path-tracking is not considered in measuring 

performance overheads because the path tracking is done in 

parallel with the execution of the main program  using a 

specialized  hardware module. The path-tracking module 

can execute asynchronously and needs to be synchronized 

with the main processor only when the check is per-

formed  (see Appendix A for a detailed  descrip tion).  

We implemented  the path-tracking module using soft-

ware emulation and measured  the performance over-

heads of the application with both path -tracking and 

checking enabled . We then measure the application over-

head with only path -tracking enabled  and su btract it from 

the earlier result in order to obtain the checking over-

heads. In order to obtain the code modification overheads, 

we executed  the application with both path -tracking and 

checking d isabled  and measured  the increase in execution 

time over the unmodified  application. 

Finally, we do not assume a specific recovery technique in 

the paper and hence do not consider the overhead of error 

recovery in our measurements. 

5.2 Coverage Measurements 

Fault injections: In order to measure the coverage of the 

derived detectors, we inject faults into the data of the ap-

plication protected  with the derived detectors. We imple-

mented  a new LLVM pass to insert calls to a special faul-

tInject function after the computation of each program 

variable in the original program . The variable to be in-

jected  is passed  as an argument to the faultInject function. 

The uses of the program variable in the original program 

are substitu ted  with the return value of the faultInject 

function inserted  for the variable.  

At runtime, the call to the faultInject function corrupts the 

value of a single program variable by flipping a single bit 

in its value. The value into which the fault is injected  is 

chosen at random from the entire set of dynamic values 

used  in an error-free execution of the program (that are 

visible at the compiler ’s intermediate code level). In order 

to ensure controllability, only a single fault is injected  in 

each execution of the application. 

Only the values in the original function prior to instru -

mentation are considered  for  fault-injection. No faults are 

injected  into the detectors themselves. This is because we 

assume that no more than one fault can occur during the 

application’s execution. Injecting faults into detectors will 

at worst lead  to false detections, i.e., detect ion of an error 

when none exists. However, we do inject errors into states 

shared  between the detectors and the program in order to 

emulate common mode errors.  

Error detection: After a fault is injected , the following 

program outcomes are possible: (1) the program may ter-

minate by taking an exception (crash), (2) the program 

may continue and produce correct output (success), (3) 

the program may continue and produce incorrect output 

(fail-silent violation), or (4) the program may timeout 

(hang). The injected  fault may also cause one of the in-

serted  detectors to detect the error and flag a violation.  

When a violation is flagged , the program is allowed to 

continue (although in reality it would  be stopped) so that 

the final outcome of the program under the error can be 

observed.  The coverage of the detector is classified  based 

on the final outcome of the program. For example, a d e-

tector is considered  to detect a crash if the detector upon 

encountering the error, flags a violation, and subsequently 

the program crashes. Hence, when a detector d etects a 

crash, it is in reality, preempting the crash of the program.  

Error propagation: Our goal is to measure the effective-

ness of the detectors in detecting errors that propagate 

before causing the program to crash. For errors that do 

not propagate before the crash, the crash itself may be 

considered  the detection mechanism (for example, the 

state can be recovered  from a clean checkpoint). Hence, 

the coverage provided by the derived detectors for non -

propagated  errors is not reported . In the experiments, 
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error propagation is tracked by observing whether an 

instruction that uses the erroneous variable’s value is ex-

ecuted  after the fault has been injected . If the original val-

ue into which the error was injected  is overwrit ten, the 

propagation of the error is no longer tracked. The error-

propagation is tracked using instrumentation inserted  

into the program through a new LLVM pass. The instru-

mentation is inserted  just before the definitions of va-

riables that are dependent on  the fault-injected  value. 

5.3 Benchmarks  

Table 5 describes the programs used  to evaluate the tech-

nique and their characteristics. The first 9 programs in the 

table are from the Stanford  benchmark suite [39] and  the 

next 5 programs are from the Olden benchmark suite [40]. 

The former benchmark set consists of small programs 

performing a multitude of common tasks. The latter 

benchmark set consists of pointer-intensive programs. 

 

Table 5: Benchmark programs and characteristics 
Bench 

mark 

Lines 

of C  

Description of program 

IntMM 159 Matrix multiplication of integers 

RealMM 161 Matrix multiplication of floating-point numbers 

Oscar 270 Computes Fast-Fourier Transform 

Bubblesort 171 Sorts a list of numbers using bubblesort  

Quicksort 174 Sorts a list of numbers using quicksort 

Treesort 187 Sorts a list of numbers using treesort 

Perm  169 Computes all permutations of a string 

Queens 188 Solves the N-Queens problem 

Towers 218 Solves the Towers of Hanoi problem 

Health 409 Discrete-event simulation (using linked lists) 

Em3d 639 Electro-magnetic wave propagation (linked lists) 

Mst 389 Computes minimum spanning tree (graphs) 

Barnes-Hut 1427 Solves N-body force computation problem(octrees) 

Tsp 572 Solves traveling salesman problem (binary trees) 

6 RESULTS 

This section presents the performance (Section 6.1), and  

coverage results (Section 6.2) obtained from the experi-

mental evaluation of the proposed technique. The results 

are reported  for the case when 5 critical variables were 

chosen in each function by the placement analysis.  

6.1 Performance Overheads 

The performance overhead of the derived detectors rela-

tive to the normal (uninstrumented) program’s execution 

is shown in Figure 8.  Both the checking overhead and the 

code modification overheads are represented . The results 

are summarized  below:  

 The average checking overhead introduced by the 

detectors is 25%, while the average code modification 

overhead is 8%. Therefore, the total performance over-

head introduced by the detectors is 33%. 

 The worst-case overheads are incurred  in the case of 

the tsp application, which has a total overhead of nearly 

80%. This is because tsp is a compute-intensive program 

involving tight loops. Checks within a loop introduce ex-

tra branch instructions and increase the execution time.  

6.2 Detection Coverage 

For each application, 1000 faults are injected , one in each 

execution of the application. The error-detection coverage 

(when 5 critical variables are chosen in each function ) for 

d ifferent classes of failure are reported  in Table 6. A blank 

entry in the table indicates that no faults of the type were 

manifested  for the application. For example, no hangs 

were manifested  for the IntMM  application in the fault 

injection experiments. The second column of the table 

shows the number of errors that propagate and lead  to the 

application crashing. The numbers within the braces in 

this column indicate the percentage of prop agated , crash-

causing errors that are detected  before propagation.  

 

Table 6: Coverage with 5 critical variables / function 

Apps 
Prop. 

Crashes (%) 

FSV 

(%) 

Hang 

(%) 

Success 

(%) 

IntMM 100 (97) 100  9 

RealMM 100 (98)   0 

Oscar 57 (34) 7 60 0.5 

Bubblesort 100 (73) 100 0 5 

Quicksort 90 (57) 44 100 4 

Treesort 75 (68) 50  3 

Perm 100 (55) 16  0.9 

Queens 79 (61) 20  3 

Towers 79 (78) 39 100 2 

Health 39 (39) 0 0 0 

Em3d 79 (79)   1 

Mst 83 (53) 79 0 5 

Barnes-Hut 49 (39)  23  

Tsp 64 (64)  0 0 

Average 77 (64) 41 35 2.5 

 

 

Figure 8: Performance overhead when 5 critical variables are chosen per function 
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6.3 Discussion 

The results indicate the proposed technique achieves 77% 

coverage for errors that prop agate and cause the program 

to crash. Full-duplication approaches can provide 100% 

coverage if they perform comparisons after every instru c-

tion. In practice, this is very expensive, and fu ll-

duplication approaches compare instructions only  before 

store and branch instructions [7, 8]. With this optimiza-

tion, the coverage provided by fu ll-duplication is less 

than 100%. The papers that describe these techniques do 

not quantify the coverage in terms of error propagation, 

so a d irect comparison with our technique is not possible. 

In an earlier study, we found that about 15% of the errors 

detected  by fu ll-duplication techniques resulted  in a crash 

in the same cycle as the detection [10].  These detections 

are in effect redundant, as the error does not propagate 

prior to the crash. Therefore when excluding redundant 

detections, the proposed technique detects 90% of the 

errors detected  by fu ll-duplication. Further, the perfor-

mance overhead of the technique is only 33% compared 

to fu ll-duplication, which incurs an overhead of 60-100% 

when performed in software [7, 8]. An important aspect 

of the technique is that it detects just 2.5% of benign er-

rors in an application. In contrast, in fu ll-duplication, over 

50% of the detected  errors are benign [9, 10].  

7 CONCLUSION 

This paper presented  a technique to derive error detectors 

for protecting an application from data errors (due to both 

hardware and  software). The error detectors were derived 

automatically using compiler-based static analysis from 

the backward  program slice of crit ical variables in the 

program. The slice is optimized aggressively based on 

specific control-paths in the application , to form a check-

ing expression. At runtime, the control path executed  by 

the progrm is tracked using specialized  hardware, and 

the corresponding checking expressions are executed . The 

checking expressions recompute the values of the critical 

variable and check whether the recomputed  value d i-

verges from the original value computed  in the program, 

in which case the program is halted .  

Experiments show that the derived detectors achieve low -

overhead error detection (33%) while providing high cov-

erage (77%) for errors that cause application failure. Fur-

ther, they detect less than 3 % of benign errors.  

Future work will focus on (1) deriving detectors at lower 

levels of compilation (e.g. assembly code) in order to im-

prove the detection coverage and (2) migration  of the 

checking functionality to reconfigurable hardware in or-

der to reduce the performance overheads of the detectors. 
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