
Processor-level Selective 

Replication

N. Nakka, K. Pattabiraman, R. K. Iyer

Coordinated Science Laboratory

University of Illinois, Urbana-Champaign



11/19/2009 2

Why another replication technique?



11/19/2009 3

Contributions

 Instructions replicated selectively

 Replicate only computations of critical 

variables

 Extensive fault injection-based coverage 

evaluation

 63% coverage as compared to 72% coverage 

for Full Duplication

 Combined metric for detection and overhead



11/19/2009 4

Full Duplication vs Selective Replication

 Full duplication comes at a price
 Performance overhead up to 50%
 Lower performance overhead ranging from 11% to 

22%

 Area overhead –thread synchronization 
hardware
 Simple hardware structures to replicate instruction

 Results stored in re-order buffer

 Benign error detections (75% of injected errors)
 Benign error detection reduced by 18%



11/19/2009 5

Reliability – Selective Replication

 Two questions arise:

 What to replicate? and How to replicate?

 Critical variables [Pattabiraman ’05]

 High probability of error propagating to variable

 High likelihood of variable error leading to crash or FSV

 Critical variables derived from dynamic 

dependency graph (DDG)

 Fanout found to be best heuristic

 Replicate only computation of critical variable

 Backward slice from DDG



11/19/2009 6

Reliability – Selective Replication
 Modify fetch, rename and commit mechanisms

I-Cache Fetch Rename Issue Exec WB Commit
Replicated

Commit

Replicated

Fetch

Replicated

Fetch

Replicated

Rename

Replicated

Rename



11/19/2009 7

Replicated Fetch
 Instructions fetched into temp_fetch_buf

 Replicas routed through mux to fetch_buf

 Replicas dispatched like normal instructions

M3 M1M2

temp_fetch_buf ABCD

ABCD

REPL_LVL

+

-1

Z Z

012301230123

Z Z

fetch_buf

0
1
2
3

M3 M1M2

temp_fetch_buf ABCD

AABB

2

+

-1

Z Z

012301230123

Z Z

fetch_buf

0
1
2
3



11/19/2009 8

Replicated Rename

ROB Instruction Entry1 0

REPL

REPL_INDEX

RAT#0

RAT#2

RAT#1

RAT#3

1

0

1

2

3

Src

SELECT

RENAMED

REGISTER

 REPL and REPL_INDEX fields in re-order buffer

 Replica maintains dependencies within itself

 Corresponding Register Alias Table, RAT, looked up

ROB Instruction Entry1 0

REPL

REPL_INDEX

RAT#0

RAT#2

RAT#1

RAT#3

1

0

1

2

3

Src

SELECT

RENAMED

REGISTER



11/19/2009 9

Evaluation

 Performance overhead

 Coverage evaluated using fault-injection

 Workload: Siemens suite of benchmarks

 SimpleScalar augmented for selective replication
 Introduced hooks for fault-injection

Benchmark #lines of code # static insts #dynamic insts

schedule 412 100504 77702 

schedule2 373 102520 208324

print_tokens 727 82296 271976 

print_tokens2 569 80568 77179 



11/19/2009 10

Fault Model

 Scope: Errors within the processor

 Instruction errors

 Data errors

 Common-mode errors: Not injected

 Errors in memory, cache

 Errors in fetch mechanism



11/19/2009 11

Fault Model - Instruction Errors

Memory

Fetch

 During transfer from 

cache to pipeline

 During decode in 

pipeline

Dispatch

Instruction

Instruction



11/19/2009 12

Fault Model - Data Errors

Fetch

Src1 Src2

Result

 Errors in the output of 

a functional unit 

 written to a register

 used as an effective 

address for a memory 

access instruction Execute



11/19/2009 13

Normalized performance overhead

32.8%
36.5%

43.7%
47.3%

0%

20%

40%

60%

80%

100%

120%

schedule schedule2 print_tokens print_tokens2

SELREP FULLREP

On an average SELREP has an overhead of 40% compared to FULLREP



11/19/2009 14

SELREP/FULLREP – Detection

46.9% 28.3%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Baseline

SELREP

FULLREP

Baseline

SELREP

FULLREP

R
e

p
lic

a
ti
o

n
 D

e
te

c
ti
o

n
S

y
s
te

m
 D

e
te

c
ti
o

n

Different Instruction Same Instruction



11/19/2009 15

SELREP/FULLREP – Detection

71.7%

46.9% 28.3%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Baseline

SELREP

FULLREP

Baseline

SELREP

FULLREP

R
e

p
lic

a
ti
o

n
 D

e
te

c
ti
o

n
S

y
s
te

m
 D

e
te

c
ti
o

n

Different Instruction Same Instruction



11/19/2009 16

62.7%

71.7%

46.9% 28.3%

4.2%

2.0%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Baseline

SELREP

FULLREP

Baseline

SELREP

FULLREP

R
e

p
lic

a
ti
o

n
 D

e
te

c
ti
o

n
S

y
s
te

m
 D

e
te

c
ti
o

n

Different Instruction Same Instruction

SELREP/FULLREP – Detection

For about 40% overhead SELREP achieves 

about 90% coverage of full replication



11/19/2009 17

SELREP/FULLREP– FSVs & Hangs

48.5%

1.2%

10.4%

14.5%

59.0%

1.5%

0% 10% 20% 30% 40% 50% 60% 70%

Benign Error Detection

Program Hang

Fail Silence Violation

Full Rep SELREP Baseline



11/19/2009 18

Combined Metric

Overhead

DetectionErrorBenignDetection 


0.63

0.45
0.38

1.02

1.59

1.09

0.68

2.19

0.00

0.50

1.00

1.50

2.00

2.50

schedule print_tokens print_tokens2 schedule2

FULLREP SELREP

On an average SELREP is more 2 times better than FULLREP in this metric



11/19/2009 19

Conclusions

 Presented a technique for selective replication of 

instructions

 Replicated only computation of critical variables

 Low overhead and minimal additional hardware

 Fault injection based coverage evaluation

 Compared to Full Duplication

 About 59% less overhead for SELREP 

 Up to 88% coverage

 17% reduction in benign error detection



11/19/2009 20

Where do we stand in replication?
Technique Description Discussion

DIVA
[Austin, Weaver ’01]

Simple checker 

checks complex 

main core

Multiple checkers non-trivial

Errors in control-flow

Prediction stream omission errors

SRTR
[Vijaykumar et. al. ’02]

Two threads 

check each 

other’s values

Introduces many hardware structures

Indirect accesses for comparison

Replication mechanism not detailed

Detailed architecture presented

Introspection
[Qureshi, Patt ’05]

Redundant thread 

execution during 

cache miss

Introduces introspection buffer

High overhead for low-memory access 

applications

Some issues e.g., register file bandwidth, 

prediction outcome check, not addressed

Selective

Replication

Dynamically 

replicates 

instructions

Simple h/w to replicate selectively

Switching between modes

Result stored in re-order buffer

Not all instructions replicated



11/19/2009 21

Why the Siemens Suite?

 Extensively used in the testing community

 Show high level of data dependencies

 Moderately-sized to enable use in fault-

injection experiments


