
Processor-level Selective 

Replication

N. Nakka, K. Pattabiraman, R. K. Iyer

Coordinated Science Laboratory

University of Illinois, Urbana-Champaign



11/19/2009 2

Why another replication technique?



11/19/2009 3

Contributions

 Instructions replicated selectively

 Replicate only computations of critical 

variables

 Extensive fault injection-based coverage 

evaluation

 63% coverage as compared to 72% coverage 

for Full Duplication

 Combined metric for detection and overhead



11/19/2009 4

Full Duplication vs Selective Replication

 Full duplication comes at a price
 Performance overhead up to 50%
 Lower performance overhead ranging from 11% to 

22%

 Area overhead –thread synchronization 
hardware
 Simple hardware structures to replicate instruction

 Results stored in re-order buffer

 Benign error detections (75% of injected errors)
 Benign error detection reduced by 18%



11/19/2009 5

Reliability – Selective Replication

 Two questions arise:

 What to replicate? and How to replicate?

 Critical variables [Pattabiraman ’05]

 High probability of error propagating to variable

 High likelihood of variable error leading to crash or FSV

 Critical variables derived from dynamic 

dependency graph (DDG)

 Fanout found to be best heuristic

 Replicate only computation of critical variable

 Backward slice from DDG



11/19/2009 6

Reliability – Selective Replication
 Modify fetch, rename and commit mechanisms

I-Cache Fetch Rename Issue Exec WB Commit
Replicated

Commit

Replicated

Fetch

Replicated

Fetch

Replicated

Rename

Replicated

Rename



11/19/2009 7

Replicated Fetch
 Instructions fetched into temp_fetch_buf

 Replicas routed through mux to fetch_buf

 Replicas dispatched like normal instructions

M3 M1M2

temp_fetch_buf ABCD

ABCD

REPL_LVL

+

-1

Z Z

012301230123

Z Z

fetch_buf

0
1
2
3

M3 M1M2

temp_fetch_buf ABCD

AABB

2

+

-1

Z Z

012301230123

Z Z

fetch_buf

0
1
2
3



11/19/2009 8

Replicated Rename

ROB Instruction Entry1 0

REPL

REPL_INDEX

RAT#0

RAT#2

RAT#1

RAT#3

1

0

1

2

3

Src

SELECT

RENAMED

REGISTER

 REPL and REPL_INDEX fields in re-order buffer

 Replica maintains dependencies within itself

 Corresponding Register Alias Table, RAT, looked up

ROB Instruction Entry1 0

REPL

REPL_INDEX

RAT#0

RAT#2

RAT#1

RAT#3

1

0

1

2

3

Src

SELECT

RENAMED

REGISTER



11/19/2009 9

Evaluation

 Performance overhead

 Coverage evaluated using fault-injection

 Workload: Siemens suite of benchmarks

 SimpleScalar augmented for selective replication
 Introduced hooks for fault-injection

Benchmark #lines of code # static insts #dynamic insts

schedule 412 100504 77702 

schedule2 373 102520 208324

print_tokens 727 82296 271976 

print_tokens2 569 80568 77179 



11/19/2009 10

Fault Model

 Scope: Errors within the processor

 Instruction errors

 Data errors

 Common-mode errors: Not injected

 Errors in memory, cache

 Errors in fetch mechanism



11/19/2009 11

Fault Model - Instruction Errors

Memory

Fetch

 During transfer from 

cache to pipeline

 During decode in 

pipeline

Dispatch

Instruction

Instruction



11/19/2009 12

Fault Model - Data Errors

Fetch

Src1 Src2

Result

 Errors in the output of 

a functional unit 

 written to a register

 used as an effective 

address for a memory 

access instruction Execute



11/19/2009 13

Normalized performance overhead

32.8%
36.5%

43.7%
47.3%

0%

20%

40%

60%

80%

100%

120%

schedule schedule2 print_tokens print_tokens2

SELREP FULLREP

On an average SELREP has an overhead of 40% compared to FULLREP



11/19/2009 14

SELREP/FULLREP – Detection

46.9% 28.3%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Baseline

SELREP

FULLREP

Baseline

SELREP

FULLREP

R
e

p
lic

a
ti
o

n
 D

e
te

c
ti
o

n
S

y
s
te

m
 D

e
te

c
ti
o

n

Different Instruction Same Instruction



11/19/2009 15

SELREP/FULLREP – Detection

71.7%

46.9% 28.3%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Baseline

SELREP

FULLREP

Baseline

SELREP

FULLREP

R
e

p
lic

a
ti
o

n
 D

e
te

c
ti
o

n
S

y
s
te

m
 D

e
te

c
ti
o

n

Different Instruction Same Instruction



11/19/2009 16

62.7%

71.7%

46.9% 28.3%

4.2%

2.0%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Baseline

SELREP

FULLREP

Baseline

SELREP

FULLREP

R
e

p
lic

a
ti
o

n
 D

e
te

c
ti
o

n
S

y
s
te

m
 D

e
te

c
ti
o

n

Different Instruction Same Instruction

SELREP/FULLREP – Detection

For about 40% overhead SELREP achieves 

about 90% coverage of full replication



11/19/2009 17

SELREP/FULLREP– FSVs & Hangs

48.5%

1.2%

10.4%

14.5%

59.0%

1.5%

0% 10% 20% 30% 40% 50% 60% 70%

Benign Error Detection

Program Hang

Fail Silence Violation

Full Rep SELREP Baseline



11/19/2009 18

Combined Metric

Overhead

DetectionErrorBenignDetection 


0.63

0.45
0.38

1.02

1.59

1.09

0.68

2.19

0.00

0.50

1.00

1.50

2.00

2.50

schedule print_tokens print_tokens2 schedule2

FULLREP SELREP

On an average SELREP is more 2 times better than FULLREP in this metric



11/19/2009 19

Conclusions

 Presented a technique for selective replication of 

instructions

 Replicated only computation of critical variables

 Low overhead and minimal additional hardware

 Fault injection based coverage evaluation

 Compared to Full Duplication

 About 59% less overhead for SELREP 

 Up to 88% coverage

 17% reduction in benign error detection



11/19/2009 20

Where do we stand in replication?
Technique Description Discussion

DIVA
[Austin, Weaver ’01]

Simple checker 

checks complex 

main core

Multiple checkers non-trivial

Errors in control-flow

Prediction stream omission errors

SRTR
[Vijaykumar et. al. ’02]

Two threads 

check each 

other’s values

Introduces many hardware structures

Indirect accesses for comparison

Replication mechanism not detailed

Detailed architecture presented

Introspection
[Qureshi, Patt ’05]

Redundant thread 

execution during 

cache miss

Introduces introspection buffer

High overhead for low-memory access 

applications

Some issues e.g., register file bandwidth, 

prediction outcome check, not addressed

Selective

Replication

Dynamically 

replicates 

instructions

Simple h/w to replicate selectively

Switching between modes

Result stored in re-order buffer

Not all instructions replicated



11/19/2009 21

Why the Siemens Suite?

 Extensively used in the testing community

 Show high level of data dependencies

 Moderately-sized to enable use in fault-

injection experiments


