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Why another replication technique?
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Contributions

 Instructions replicated selectively

 Replicate only computations of critical 

variables

 Extensive fault injection-based coverage 

evaluation

 63% coverage as compared to 72% coverage 

for Full Duplication

 Combined metric for detection and overhead
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Full Duplication vs Selective Replication

 Full duplication comes at a price
 Performance overhead up to 50%
 Lower performance overhead ranging from 11% to 

22%

 Area overhead –thread synchronization 
hardware
 Simple hardware structures to replicate instruction

 Results stored in re-order buffer

 Benign error detections (75% of injected errors)
 Benign error detection reduced by 18%
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Reliability – Selective Replication

 Two questions arise:

 What to replicate? and How to replicate?

 Critical variables [Pattabiraman ’05]

 High probability of error propagating to variable

 High likelihood of variable error leading to crash or FSV

 Critical variables derived from dynamic 

dependency graph (DDG)

 Fanout found to be best heuristic

 Replicate only computation of critical variable

 Backward slice from DDG
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Reliability – Selective Replication
 Modify fetch, rename and commit mechanisms
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Replicated Fetch
 Instructions fetched into temp_fetch_buf

 Replicas routed through mux to fetch_buf

 Replicas dispatched like normal instructions

M3 M1M2

temp_fetch_buf ABCD

ABCD

REPL_LVL

+

-1

Z Z

012301230123

Z Z

fetch_buf

0
1
2
3

M3 M1M2

temp_fetch_buf ABCD

AABB

2

+

-1

Z Z

012301230123

Z Z

fetch_buf

0
1
2
3



11/19/2009 8

Replicated Rename
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 REPL and REPL_INDEX fields in re-order buffer

 Replica maintains dependencies within itself

 Corresponding Register Alias Table, RAT, looked up
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Evaluation

 Performance overhead

 Coverage evaluated using fault-injection

 Workload: Siemens suite of benchmarks

 SimpleScalar augmented for selective replication
 Introduced hooks for fault-injection

Benchmark #lines of code # static insts #dynamic insts

schedule 412 100504 77702 

schedule2 373 102520 208324

print_tokens 727 82296 271976 

print_tokens2 569 80568 77179 
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Fault Model

 Scope: Errors within the processor

 Instruction errors

 Data errors

 Common-mode errors: Not injected

 Errors in memory, cache

 Errors in fetch mechanism
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Fault Model - Instruction Errors

Memory

Fetch

 During transfer from 

cache to pipeline

 During decode in 

pipeline

Dispatch

Instruction

Instruction
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Fault Model - Data Errors

Fetch

Src1 Src2

Result

 Errors in the output of 

a functional unit 

 written to a register

 used as an effective 

address for a memory 

access instruction Execute
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Normalized performance overhead
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On an average SELREP has an overhead of 40% compared to FULLREP
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SELREP/FULLREP – Detection
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SELREP/FULLREP – Detection
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SELREP/FULLREP – Detection

For about 40% overhead SELREP achieves 

about 90% coverage of full replication
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SELREP/FULLREP– FSVs & Hangs
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Combined Metric
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On an average SELREP is more 2 times better than FULLREP in this metric
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Conclusions

 Presented a technique for selective replication of 

instructions

 Replicated only computation of critical variables

 Low overhead and minimal additional hardware

 Fault injection based coverage evaluation

 Compared to Full Duplication

 About 59% less overhead for SELREP 

 Up to 88% coverage

 17% reduction in benign error detection
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Where do we stand in replication?
Technique Description Discussion

DIVA
[Austin, Weaver ’01]

Simple checker 

checks complex 

main core

Multiple checkers non-trivial

Errors in control-flow

Prediction stream omission errors

SRTR
[Vijaykumar et. al. ’02]

Two threads 

check each 

other’s values

Introduces many hardware structures

Indirect accesses for comparison

Replication mechanism not detailed

Detailed architecture presented

Introspection
[Qureshi, Patt ’05]

Redundant thread 

execution during 

cache miss

Introduces introspection buffer

High overhead for low-memory access 

applications

Some issues e.g., register file bandwidth, 

prediction outcome check, not addressed

Selective

Replication

Dynamically 

replicates 

instructions

Simple h/w to replicate selectively

Switching between modes

Result stored in re-order buffer

Not all instructions replicated
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Why the Siemens Suite?

 Extensively used in the testing community

 Show high level of data dependencies

 Moderately-sized to enable use in fault-

injection experiments


