
Dynamic Derivation of Application-Specific Error Detectors and their
Implementation in Hardware

K. Pattabiraman, G.P. Saggese, D. Chen, Z. Kalbarczyk, R.K. Iyer
Center for Reliable and High-Performance Computing, University of Illinois at Urbana-Champaign

{pattabir, saggese, dchen8, kalbar, iyer}@crhc.uiuc.edu

Abstract - This paper proposes a novel technique for
preventing a wide range of data errors from corrupting
the execution of applications. The proposed technique
enables automated derivation of fine-grained,
application-specific error detectors. An algorithm based
on dynamic traces of application execution is developed
for extracting the set of error detector classes,
parameters, and locations in order to maximize the error
detection coverage for a target application. The paper
also presents an automatic framework for synthesizing the
set of detectors in hardware to enable low-overhead run-
time checking of the application execution. Coverage
(evaluated using fault injection) of the error detectors
derived using the proposed methodology, the additional
hardware resources needed, and performance overhead
for several benchmark programs are also reported.

1 Introduction
This paper presents a technique to derive and implement
error detectors that protect programs from data errors.
These are errors that cause a divergence in data values
from those in an error-free execution of the program. Data
errors can cause the program to crash, hang, or produce
incorrect output (fail-silent violations). Such errors can
result from incorrect computation, and they would not be
caught by generic techniques such as ECC in memory.
It is common practice for developers to write assertions in
programs for debugging and error-detection purposes. For
example, Andrews [2] discusses the use of executable
assertions (checks for data reasonableness) to support
testing and fault-tolerance. Chandra et al. [16] uses
analysis of open-source data to show that application-
specific knowledge is vital in detecting and recovering
from many kinds of application errors.
Many static and dynamic analysis tools (Prefix[5], LCLint
[6], Daikon[14]) have been proposed to find bugs in
programs. However, these tools are not geared toward
detecting runtime errors. To detect runtime errors, we
need mechanisms that can provide high-coverage, low-
latency (rapid) error detection to: (i) preempt uncontrolled
system crash/hang and (ii) prevent propagation of
erroneous data and limit the extent of the (potential)
damage. Eliminating chances for an error to propagate is
essential because programs, upon encountering an error
that could eventually lead to a crash, may execute for
billions of cycles before crashing [17]. During this time,
the program can exhibit unpredictable behavior, such as
writing a corrupted state to a checkpoint [10] or sending a

corrupted message to another process [15] (in a
distributed environment).
A technique to detect runtime errors was proposed by
Hiller et al. [18], who insert assertions in an embedded
application based on the high-level behavior of its signals.
They facilitate the programmer in inserting assertions by
means of well-defined classes of detectors. In a
companion paper, they also describe how to place
assertions by performing extensive fault-injection
experiments [19]. While this technique is successful if the
programmer has extensive knowledge of the application
and if fault-injection can be performed, it is desirable to
enable deriving detectors without such knowledge and
inserting them in strategic locations without performing
fault-injection.
Our goal is to devise detectors that preemptively capture
errors that affect the application and to do so in an
automated way without requiring programmer
intervention or fault-injection into the system. In this
paper, the term detectors refers to executable assertions
that are automatically derived based on the dynamic
behavior of the application.
In earlier work, we introduced and evaluated a
methodology to place detectors in application code to
maximize error-detection coverage [9]. That methodology
chooses both the program variable and the program
location at which the detector must be placed without
requiring fault-injection into the program. For a large-
application such as gcc, we showed that by placing
detectors at 10 program points according to the
methodology described in the paper, it is possible to
obtain coverage of up to 80 % (for crash failures). It was
assumed that if an error propagated to a variable chosen
for placing a detector, then there existed some mechanism
that would detect the error in that variable (ideal
detector).
In this paper, we derive the executable assertions that
effectively constitute the specific detectors for the chosen
variables (in practice). The method proposed for
automated derivation of error detectors is based on
analysis of data values produced during the course of a
program execution for a set of representative inputs. Error
detectors corresponding to each variable and location
(chosen according to the detector placement methodology
in [9]) are learned based on pre-determined generic
classes of rules. The derived detectors continuously

monitor the application at run-time, checking for the
presence of errors.
The detectors derived can be implemented either in
software or hardware. Hardware implementation is
essential to ensure low-overhead error detection without
sacrificing coverage. An automatic process for converting
the detectors from an abstract representation into a
hardware implementation is outlined.
The proposed methodology is applied to derive detectors
for several benchmark programs. Experimental evaluation
of coverage (assessed via random fault injection into
application data), the additional hardware resources
needed, and performance overheads indicate the
following: (1) The derived detectors detect between 50
and 75% of errors that are manifested at the application
level when 100 detectors are placed in the application
code (corresponding to about 5% of application code). (2)
False positives (detectors flag an error when no error is
present) are less than 2.5% for the benchmarks
considered. (3) Hardware implementation of the detectors
results in a performance overhead of less than 5%, with
acceptable area and power overheads.

2 Approach and Fault-Model
 The derivation and implementation of the error detectors
in hardware and software consists of four main phases,
depicted in Figure 1. The analysis and design phases are
related to the derivation of the detectors, while the
synthesis and checking phases are related to the
implementation and use of the detectors at runtime.

Figure 1: Steps in derivation and implementation of
error detectors

During the analysis phase, the program locations and
variables for placing detectors to maximize coverage are
identified, based on the execution of the code and the
Dynamic Dependence Graph (DDG) of the program. This
approach is based on the technique proposed in [9] and
does not require fault-injection into the program to choose
the detector variables and locations. Rather, it uses
metrics such as the fanouts and lifetimes of nodes in the
DDG to place the detectors.
The program code is then instrumented to record the
values of the chosen variables at the locations selected for
detector placement. The recorded values are used during

the design phase to derive the best detector that matches
the observed values for the variable, based on
predetermined generic detector classes (see Section 5).
After this stage, the detectors can either be integrated into
application code as software assertions or implemented in
hardware. The coverage of the derived detectors is
quantified in the context of benchmark applications
executing on an enhanced version of the Simplescalar
simulator [12] (see Section 6). This applies both to
software and hardware implementation of the detectors.
The synthesis phase converts the generated assertions into
an HDL (Hardware Description Language) representation
that is synthesized in hardware. It also inserts special
instructions in the application code to invoke and
configure the hardware detectors. This is explained in
Section 7. Finally, during the checking phase, the custom
hardware detectors are deployed in the system to provide
low-overhead, concurrent run-time error detection for the
application. When a detector detects a deviation from the
application’s behavior learned during the design phase, it
flags this as an error in the application.
The Fault Model. The fault model adopted in this study
covers errors in the data values used during the program
execution. This includes faults in: (1) the instruction
stream that result either in the wrong op-code being
executed or in the wrong registers being read or written
by the instruction, (2) the functional units of the processor
which result in incorrect computations, (3) the instruction
fetch and decode units, which result in an incorrect
instruction being fetched or decoded (4) the memory and
data bus, which cause wrong values to be fetched or
written in memory and/or the processor register file. Note
that these errors would not be detected by techniques such
as ECC in memory.
The fault-model also represents certain types of software
errors that result in data-value corruptions such as: (1)
synchronization errors or race conditions that result in
corruptions of data values due to incorrect sequencing of
operations, (2) memory corruption errors, e.g., buffer-
overflows and dangling pointer references that can cause
arbitrary data values to be overwritten in memory, and (3)
use of un-initialized or incorrectly initialized values
(along infrequently executed paths), as these could result
in the use of unpredictable values depending on the
platform and environment. These are residual errors that
are present even in well tested code, and do not manifest
in common usage of the program, but in the rare cases
that they do, are hard to detect.

3 Related Work
A number of tools have been proposed to find bugs in
programs based on static analysis, such as Prefix [5],
LCLint [6] and ESC/Java [24]. These tools require the
programmer to specify invariants about the program that
are then verified by static techniques such as theorem-
proving or symbolic execution.

Tools have also been proposed to automatically derive
invariants for applications. DAIKON [14] keeps track of
common invariants and relationships among variables in a
program based on the dynamic execution of the program.
This information is then presented to the programmer,
who then decides if the invariants derived reveal bugs
(defects) in the application. DIDUCE [1] applies the same
underlying technique as DAIKON for long-running
applications but in a more automated fashion. Engler et al.
[4] find commonly occurring patterns in the source code
of an operating system kernel and report deviations in
these patterns as bugs. While these techniques have been
effectively used in finding software defects, they cannot
be applied to runtime error-detection in applications.
C-Cured [7] is a system to protect programs from memory
errors using a combination of static checking and runtime
assertions wherever static checks fail. While C-cured is
effective in detecting software errors that violate memory
safety, it cannot detect runtime errors resulting from
hardware transient faults or software errors that do not
violate memory safety.
The only general way to detect runtime-errors is for the
programmer to put assertions in the code, as demonstrated
by [2]. Saib [3] shows how assertions can increase the
reliability of a software program. Zenha-Rela et al. [20]
evaluate the coverage provided by programmer-specified
assertions in combination with generic techniques such as
control-flow checking [27] and Algorithm Based Fault-
Tolerance [25]. They find that assertions can significantly
complement the coverage provided by generic fault-
tolerance techniques.
Voas and Miller [8] provide a general methodology for
inserting assertions in programs to maximize error-
detection coverage. This method uses programmer
knowledge of the application combined with fault-
injection to guide the assertion derivation and placement
processes. Hiller et al. [18] propose generic classes of
detectors for embedded applications but require
programmer intervention to choose the correct class of
detector for each location. Further, the placement of these
detectors is based on fault-injection into the application
[19]. Maxion and Tan [26] characterize the space of
anomaly-based error detectors and provide a theoretical
formulation to benchmark error detectors.

4 Error Detector Format
In this paper, an error detector is an assertion based on
the value of a single variable of the program at a specific
location in its static code. A detector for a variable is
placed immediately after the instruction that writes to the
variable. Since a detector is placed in the static code, it is
invoked each time the program location at which the
detector is placed is executed.
Consider the sample code fragment in Table 1. Assume
that the detector placement methodology has identified
variable k as the critical variable to be checked within the

loop. Although this example illustrates a simple loop, our
technique is general and does not depend on the structure
of the source program.
In the code sample, variable k is initialized at the
beginning of the loop and incremented by 1 within the
loop. Within the loop, the value of k is dependent on its
value in the previous iteration. Hence, the rule for k can
be written as “either the current value of k is zero, or it is
greater than the previous value of k by 1.” We refer to the
current value of the detector variable k as ki and the
previous value as ki-1. Thus, the detector can be expressed
in the form: (ki – ki-1 == 1) or (ki == 0).

Table 1: Example code fragment
void foo() {
 int k = 0;
 for (; k<N; k++) {
 ….
 }
}

Construction of Detectors. By the above example, a
generated set of assertions can be constructed for a target
variable by observing the dynamic evolution of the
variable over time. A detector consists of a rule
describing the allowed values of the variable at the
selected location in the program, and an exception
condition to cover correct values that do not fall into the
rule. If the detector rule fails, then the exception condition
is checked, and if this also fails, the detector flags an
error. Detector rules can belong to one of six generic
classes and are parameterized for the variable checked, as
shown in Table 2.

These rule classes are broadly based on common
observations about the behavior of variables in the
program. Note that, in all cases, the detector involves only
the values of the variable in the current invocation and/or
the previous invocation of the detector.

The exception condition involves equality constraints on
the current and previous values of the variable, as well as
logical combinations (such as and, or) of two of these
constraints. The equality constraints take the following
forms: (1) ai == d, where d is a constant parameter;
(2) ai-1== d, where d is a constant parameter; and (3)
ai==ai-1. From these three exception constraints, eight
unique exception conditions can be formed that are
logically consistent; for example, the exception condition
(ai==1 and ai==2) is logically inconsistent, as ai cannot
take two different values at the same time.

To summarize, for the example involving the loop index
variable k, discussed at the beginning of this section, the
rule class is Constant-Difference of 1, and the exception
condition is (ki == 0).

Table 2: Generic rule classes and their descriptions
Class
Name Generic Rule (ai , ai-1) Description

Constant (ai == c)
The value of the variable
in the current invocation of
the detector is a constant
given by parameter c.

Alternate
((ai == x and ai-1== y))

or
(ai == y and ai-1== x)

The value of the variable
in the current and previous
invocations of the detector
varies between
parameters x and y
alternately.

Constant-
Difference (ai - ai-1 == c)

The value of the variable
in the current invocation of
the detector differs from its
value in the previous
invocation by a constant c.

Bounded-
Difference (min <= ai - ai-1 <= max)

The difference between
the values of the variable
in the previous and current
invocations of the detector
lies between min and max.

Multi-
Value ai є { x, y, … }

The value of the variable
in the current invocation of
the detector is one of x, y,

Bounded-
Range (min <= ai <= max)

The value of the variable
in the current invocation of
the detector lies between
the parameters min and
max.

5 Dynamic Derivation of Detectors
This section describes our overall methodology for
automatically deriving the detectors based on the dynamic
trace of values produced during the application’s
execution. By automatic derivation, we mean the
determination of the rule and the exception condition for
each of the variables targeted for error detection. The
basic steps are as follows:
1. The program points at which detectors are placed

(both variables and locations) are chosen based on
the Dynamic Dependence Graph (DDG) of the
program as shown in [9].

2. The program is instrumented to record the run-time
evolution of the values of detector variables at their
respective locations, and executed over multiple
inputs to obtain dynamic-traces of the checked
values.

3. The dynamic traces of the checked values obtained
are analyzed to choose a set of detectors (both rule
class and exception condition) that matches the
observed values.

4. A probabilistic model is applied to the set of chosen
detectors to find the best detector for a given
location. The best detector is characterized in terms
of its tightness and execution cost of the detector.

5.1 Detector Tightness and Execution Cost
A qualitative notion of tightness of a detector was first
introduced in [8]. However, we define tightness in a
precise, mathematical sense as the probability that a
detector detects an erroneous value of the variable it
checks. In mathematical terms, the tightness is the
probability that the detector detects an error, given that
there is an error in the value of the variable that it checks.
The coverage of the detector, on the other hand, is the
probability that the detector detects an error given that
there is an error in any value used in the program. Hence
the coverage also depends on the probability of an error to
propagate to the detector variable.
To characterize the tightness of a detector, we need to
consider both the rule and the exception condition. The
tightness also depends on the parameters of the detector
and the distribution of the observed correct stream of data
values. For a detector to allow an incorrect value to go
undetected, either the rule or the exception condition or
both must evaluate to true for the value. There are a total
of four mutually exclusive cases in which the original and
erroneous values each belong to the rule and exception
condition, respectively (see Table 3).
Table 3: Probability values for computing tightness

Symbol Explanation
P(R | R) Probability that an error in a value that originally

belonged to the rule (in a correct execution) also
causes the incorrect value to belong to the rule.

P(R | X) Probability that an error in a value that originally
belonged to the exception condition (in a correct
execution) causes the incorrect value to belong to the
rule.

P(X | R) Probability that an error in a value that originally
belonged to the rule (in a correct execution) causes
the incorrect value to belong to the exception
condition.

P(X | X) Probability that an error in a value that originally
belonged to the exception condition (in a correct
execution) causes the incorrect value to belong to the
exception.

The tightness of a detector is defined as (1 – P(I)), where
P(I) is the probability of an incorrect value passing
through the detector. This can be expressed using the
terms in Table 3 as:
P(I) = P(R) [P(R | R) + P(X | R)] + P(X) [P(R |

X) + P(X | X)] (1)
where P(R) is the probability of the value belonging to the
rule, and the P(X) is the probability of the value
belonging to the exception condition.
The computation of tightness can be automated, since
there are only a limited number of rule-exception pairs.
There are six types of rule classes and eight types of
exception conditions, leading to a total of 48 rule-
exception pairs. These can be pre-computed based on the
parameters of the detector as well as on the frequency of

elements in the observed data stream. The following
example illustrates how tightness is computed for a
detector.
Example. Consider a detector in which the rule belongs
to the class Bounded-Range with parameters min = 5 and
max = 100 and that the exception condition is of the form
(ai==0). We assume that the distribution of errors in the
detector variable is uniform across the range of all
possible values the variable can take (say, N). We also
assume that the errors are independent, that an error in the
current value of the variable is not affected by an error in
the previous value of the variable, and that errors in one
detector location are independent of errors in another
detector location. These are optimistic assumptions, and
the tightness is an upper bound on the coverage of the
detector.
Table 4 shows the computed probability values for this
detector in terms of N and other parameters. Substituting
these in equation (1), we find:
P(I) = P(R) [95/N + 1/N] + P(X) [96/N + 0] = (96/N)

[P(R) + P(X)] = 96/N
as P(R) + P(X) = 1 { since the value must satisfy either

the rule or the exception condition }
Now, assume that instead of the rule being of the
BoundedRange class, it belongs to the Constant class
(with parameter 5). Let us assume that the exception
condition is the same as before. For this detector,

P(R|R) = 0, P(R|X) = 1/N,
P(X|X) = 0 and P(X|R) = 1/N

Substituting in equation (1), yields
P(I) = P(R) [0 + 1/N] + P(X) [1/N + 0]= (1/N)[P(R) +

P(X)]= 1/N
Note that the probability of a missed error in the first
detector is 96 times more than the probability of a missed
error in the second detector. Hence, the tightness of the
first detector is correspondingly much less than the
tightness of the second detector (as expected based on
intuition).
The above model is used only to compare the relative
tightness of the detectors, and not to compute the actual
probabilities (which may be very small). Also, though the
tightness of the detector is expressed in terms of N, it gets
eliminated in the comparison among different detectors
for the same variable/location.
Execution Cost. The execution cost of a detector is the
amortized additional computation involved in invoking
the detector over multiple values observed at the detector
point. The execution cost of a detector is calculated as the
number of basic arithmetic and comparison operations
that must be executed in order for a correct value to be
validated by the detector. An operation usually
corresponds to a single assembly language instruction.
Note that the execution cost is computed in the case when
the value is correct.

Table 4: Probability values for detector “Bounded-
Range (5, 100) except: (ai==0)”

Symbol Probability
Value

Explanation

P (R | R) (95 / N) Each rule value can turn into any of the
other 95 rule values (with equal
probability).

P (R | X) (96 / N)

An exception value can turn into one of 96
rule values.

 P (X | R) (1 / N) A rule value can incorrectly satisfy the
exception condition if it turns into 0.

P (X | X) 0 An exception value cannot change into
another exception value, as there is only
one value permitted by the exception
condition.

5.2 Detector Derivation Algorithm
To derive the detector, the rule class corresponding to the
detector is chosen and the associated exception condition
is formed. The algorithm to derive a detector for a
particular variable and location is given below. We refer
to the evolution of a program variable over time as the
stream of values for that variable.
1. To derive the rule, the rule classes in Table 2 are each

tried in sequence against the observed value stream to
find which of the rule classes satisfy the observed
values. The parameters of the rule are learned based
on appropriate samples (for each rule class) from the
observed stream. For each rule class, multiple rules
are generated depending on the parameters learned.

2. For each rule derived, the associated exception
condition is derived based on the values in the stream
that do not satisfy the rule. Each of the values that do
not satisfy the rule is used as a seed for generating
exception conditions for that rule. If it is not possible
to learn an exception condition for the observed
value, the current rule is discarded and the next rule
is tried in the set of rules derived.

3. For each rule-exception pair generated, the tightness
and execution cost of the detector is calculated. The
detector with the maximum tightness to execution
cost ratio is chosen as the final detector for that
location. The entire procedure is repeated for each
detector location.

6 Coverage of Derived Detectors
This section describes the coverage of the derived
detectors using fault-injection experiments. These results
are independent of the actual implementation of the
detectors (whether in hardware or in software).

6.1 Experimental Set-up and Workload
The applications used to evaluate the detectors are the
Siemens suite of programs [21]. The Siemens programs
considered are replace (which performs pattern matching
and replacement) schedule, schedule2 (which are priority
schedulers), print_tokens, print_tokens2 (which perform

lexical analysis) and tot_info, (which computes statistics
over input data). These are C programs consisting of a
few hundred lines of C code and are each equipped with
extensive test suites which are used to derive the dynamic
detectors.
The detector derivation and fault-injection experiments
were done using a modified version of the Simple-scalar
simulator [12]. The simulator allows fine-grained tracing
of the application and studying its behavior under faults
such as hangs, crashes, fail silence violations. We
modified the simulator to map the outcome of the
simulated program to the real world, as explained in [9].
The experiment is divided into four parts as follows:
1) Placement of detectors and instrumentation of
code. The dynamic instruction trace of the program is
obtained and the Dynamic Dependence Graph (DDG) is
constructed from the trace. The points at which detectors
(both variables and locations) must be placed are chosen
based on our previous work [9]. For each application, up
to 100 detector points are chosen by the analysis, which
correspond to less than 5% of static instructions in the
assembly code of the benchmark programs (excluding
libraries).
2) Deriving the detectors based on training set. The
simulator records the values of the selected variables at
the detector locations for representative inputs. The
dynamic values obtained are used to derive the detectors
based on the algorithm in Section 5. The training set
consists of 200 inputs, which are randomly sampled from
a test suite consisting of 1000 inputs for each program.
3) Fault-injections and coverage estimation. Fault-
injection experiments are performed by flipping single
bits in data-values chosen at random from the set of all
data values produced during the course of the program’s
execution. After injecting the fault, the data values at the
detector locations are recorded and the outcome of the
simulated program is classified as to type of data
violation. The values recorded at the detector locations
are then checked by the derived detectors to assess
coverage. The coverage of a detector is expressed in terms
of the type of program failure it detects i.e. a detector is
said to detect a program crash if the program would have
crashed had the detector not detected the error. Each
application is executed over 10 inputs chosen from those
used in the training phase. For each input, 1000 locations
are chosen at random from the data values produced by
the application. A fault-injection run consists of a single
bit-flip in the one of these locations. For each application-
input combination, 5000 fault-injection runs are
performed (5 runs per location).
4) Computation of false positives. The application
code instrumented with the derived detectors is executed
for all 1000 inputs, including the 200 inputs that were
used for training. No faults are injected in these runs. If
any one of the derived detectors detects an error, then that

input is considered to be a false positive as the detectors
flag an error even when there was no (injected) error.

6.2 Coverage versus Number of Detectors
The coverage of the detectors derived using the algorithm
in Section 5 is evaluated using fault-injections. Figure 2,
Figure 3 and Figure 4 show the coverage for crashes, fail-
silence violations (fsv) and hangs obtained for the target
applications as a function of the number of detectors
placed in the application.
The coverage for each type of failure increases as the
number of detectors increases, but less than linearly, as
there is an overlap among the errors detected by the
detectors. However, the error coverage of the derived
detectors depends on the type of failure and for 100
detectors placed in the code; the coverage obtained for
each type of failure is summarized in Table 5.

Crash Coverage (Derived Detectors)

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

Number of Detectors

replace schedule schedule2
print_tokens print_tokens2 tot_info

Figure 2: Crash coverage of derived detectors
FSV Coverage (Derived Detectors)

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

Number of Detectors

replace schedule schedule2
print_tokens print_tokens2 tot_info

Figure 3: FSV coverage of derived detectors

 Hang coverage (Derived Detectors)

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Number of Detectors

replace schedule schedule2
print_tokens print_tokens2 tot_info

Figure 4: Hang coverage of derived detectors

Table 5: Coverage results for derived detectors

Type of Failure Minimum Coverage Maximum
Coverage

Program Crash 45% (print_tokens) 65% (tot_info)
Fail-Silent Violation 25% (schedule2) 75% (tot_info)

Program Hang 0% (print_tokens2) 55% (replace)

Figure 5 shows the percentage of total manifested errors
that are detected by the derived detectors. The derived
detectors can detect 50% to 75% of the errors that are
manifested in the application. This is because the majority
of errors that manifest in an application are crashes (70-
75%) and the rest are fail-silent violations (20-30%) and
hangs (0-5%).

 Manifested Errors Coverage (Derived Detectors)

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120
Number of Detectors

replace schedule schedule2
print_tokens print_tokens2 tot_info

Figure 5: Total error coverage for derived detectors
The results for coverage are for any error that occurs in
the data values used by the program, and not just for
errors that occur in the detector locations. For example, if
even a single bit-flip occurs in a single instance of any
data value used in the program, and this error results in a
program crash, hang or fail-silence violation, then one of
the 100 detectors placed will detect the error 50-75 % of
the time. Note also that 100 detector locations correspond
to less than 5% of program locations in the static
assembly code of the benchmark programs.
In comparison, Hiller et al. [18] report a coverage of 80%
with 7 assertions for (random) errors that cause failure in
their embedded system application. However, in the study
about 2000 errors are injected into the system during a
short period of 40 seconds, and if one of their executable
assertions detects one of the errors in this period, it is
considered a successful detection. In contrast, we inject
only a single error in each run. Furthermore, 7 out of 24
signals for detection in the embedded system considered
(about 30% of the system size) are targeted, whereas we
place detectors in just 5% of the instructions in the
applications considered.

6.3 False Positives
False positives can occur when a detector flags an error
even if there is no error in the application. A false positive
for an input can occur when the values at the detector
points for this input do not obey the detector’s rule and
exception condition learned from the training inputs.

The training set for learning the detectors consists of 200
inputs and the false positives are computed across all
1000 inputs for each application. No faults were injected
in these runs. If even a single detector detects an error for
a particular input, that input is treated as a false positive.
Figure 6 presents the percentage of false positives for
each of the target applications across 1000 inputs. From
the figure, the following may be observed:
• For all applications the false positives are no more

than 2.5% (with 100 detectors). For the replace,
schedule2, print_tokens and print_tokens2
applications, the false positives observed are less than
1%. For the schedule and tot_info application, the
false positive rate is around 2%.

• While the number of false positives increases as the
number of detectors increases, it reaches a plateau as
the number of detectors is increased beyond 50. This
suggests that inserting more detectors in the
application code can increase coverage without
increasing the percentage of false positives.

False Positives (training set = 200 inputs)

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120
Number of Detectors

replace schedule schedule2 print_tokens print_tokens2 tot_info
Figure 6: Percentage of false positives for 1000 inputs

of each application
When a detector raises an alarm, we need to determine
that an error was really present. If the error was caused by
a transient fault (focus of this paper), then it is likely to be
wiped out when the program is re-executed [22]. If on the
other hand, the error was a false positive and hence, a
characteristic of the input given to the program, it will be
present in the re-executed version of the program, and the
detector will raise an alarm again. In this case, the alarm
can be ignored, and the program can continue.
Thus, the impact of a false positive is essentially a loss in
performance due to re-execution overhead. Since the
percentage of false positives is less than 2.5%, the
overhead of re-execution is small. It is possible to reduce
the overhead further by using fine-grained, processor-
level checkpointing and restarting scheme similar to the
one proposed in [11].

6.4 Effect of Training Set Size
• The results reported so far were for coverage and
false positives of the derived detectors using training set
of 200 inputs from a total of 1000 inputs for each
benchmark application. In this section, we consider the
effects of varying the size of the training set from 100
inputs to 300 inputs. In these experiments, the number of

detectors is fixed at 100 and the error-detection coverage
and false positives are evaluated for each application.

False-Positives

0

1

2

3

4

5

6

replace schedule schedule2 print_tokens print_tokens2 tot_info

Application

P
e
rc

e
n

ta
g

e

inputs 100 inputs 200 inputs 300
Figure 7: Effect of training set size on false positives

Crash Coverage

0

10

20

30

40

50

60

70

80

replace schedule schedule2 print_tokens print_tokens2 tot_info

Application

P
e
rc

en
ta

g
e

inputs 100 inputs 200 inputs 300
Figure 8: Effect of training set size on crash coverage

FSV Coverage

0

10

20

30

40

50

60

70

80

90

replace schedule schedule2 print_tokens print_tokens2 tot_info

Application

P
e
rc

e
n

ta
g

e

inputs 100 inputs 200 inputs 300
Figure 9: Effect of training set size on FSV

Hang Coverage

0

10

20

30

40

50

60

replace schedule schedule2 print_tokens print_tokens2 tot_info

Application

P
e
rc

e
n

ta
g

e

inputs 100 inputs 200 inputs 300
Figure 10: Effect of training set size on hang coverage
The results are shown in Figures 7, 8, 9 and 10 and are
summarized as follows:
• The false positives decrease from 5% to 2% as the
training set size is increased from 100 inputs to 200
inputs, and to less than 1% for 300 inputs, for all
applications, except tot_info (1.5%.).
• The coverage for crashes and hangs remain constant
as the training set size increases (Figure 8, Figure 10),
except in the case of tot_info where the coverage first
decreases from 100 to 200 inputs and then remains
constant from 200 to 300 inputs (for crashes and hangs).

The coverage for fail-silent violations decreases
marginally as the size of the training set increases from
100 inputs to 300 inputs (Figure 9) This decrease is less
than 2% for all benchmarks except tot_info (5%).
Thus, increasing the training set size from 100 to 200
decreases the false positives significantly, while
increasing it from 200 to 300 does not have as large an
impact on false positives. The impact on coverage from
increasing the training set size is minimal. Hence, in this
paper we choose a training set size of 200, which
corresponds to 20% of the inputs used for each program.

7 Hardware Implementation of Detectors
The output of the algorithm to derive detectors is a list of
detectors and their associated parameters (see Section 5).
This list is used as an input to synthesize hardware
modules which implement the detectors. The hardware
implementation of error detectors chosen in the design
stage encompasses two steps: (i) instrumentation of the
target software application with special instructions to
invoke the hardware checkers, and (ii) generation of the
Error Detector Module (EDM), a piece of customized
hardware to check at run-time the execution of the
program, and flag a signal when one of the detectors fires.
These two phases are carried out at compile time, before
the application is executed, but can also be executed at
application load time. Given the application code (in an
intermediate representation, such as assembly code), an
automated design flow delivers the instrumented
application code and the hardware description of the Error
Detector Module tailored for the target application. The
target processor description (a DLX-like processor in the
current implementation [23]) and the configuration
information are used to extract (from the main pipeline of
the processor) the signals that are needed by the hardware
Error Detector Module.
In this paper, we discuss the hardware implementation of
the Error Detector Module in context of the Reliability
and Security Engine (RSE) framework [13]. The RSE is a
reconfigurable processor-level framework that can
provide a variety of reliability features according to the
needs and constraints imposed by the user or the
application [13]. The RSE Framework hosts (1) RSE
modules, such as the Error Detector module, providing
reliability and security services and (2) the RSE Interface,
which provides a standard, well defined, and extendible
interface between the modules and the main processor
pipeline. The interface collects the intermediate pipeline
signals and converts it to the format required by the
hardware modules. The application interfaces with the
modules (and hence to the Error Detector Module) using
special instructions called CHECK instructions.
Each detector in the list of detectors derived in the design
phases is characterized by the following attributes: (1)
location in terms of the Program Counter value, (2)
processor registers to check, and (3) detector class and
exception parameters. Multiple CHECK instructions are

used to load the specific parameters (i.e., rule class and
exception condition) for the detectors into hardware and
enable/disable the module.

7.1 Detailed Description of the EDM
In this section, we describe the overall architecture of the
Error Detector Module (EDM) referring to Figure 11. We
assume that the required signals are provided through an
interface to the processor similar to the RSE interface
described in 7. The components in the Error Detector
Module are described below:
Shadow Register File (SRF) keeps track of current and
last values of the microprocessor’s registers checked by
the detectors (i.e., ai and ai-1, whereas a is a generic
register). This component delivers the required values ai
and ai-1 when a detector is executed as required by the
expressions reported in Table 1. Note that only the values
of registers checked by any detector have to be stored in
the SRF. When a new value regValue is written at time i
by the processor in the register R of the processor file
(pointed by the value regSel), a copy of the new value Ri
is stored in the SRF, keeping also the value Ri-1. Since not
all registers of the processor architecture have to be
checked by detectors, a mapping between the physical
addresses of the microprocessor registers and the logical
addresses of the corresponding registers in the SRF is
kept in the block Phys2Log.

Figure 11: Architectural diagram of synthesized

processor with detection modules
Detector Table stores the information needed for a
detector. The Detector Table grows with the number of
detectors needed by an application. It is implemented by
the following component: (1) comparators checking the
current PC against the PCs triggering the active detectors;
(2) a RAM hosting the parameters of rules and
exceptions. When a detector is triggered by the current
PC, the Detector Table selects (1) the register R that has
to be checked from the SRF forcing the values Ri-1 and
Ri-1 to be placed on the 2 data-path busses, and (2)
activates the Rule and Exception Checkers to compute the
detector conditions, and the Error Signal Computation
flags the Violation Detection signal to indicate a detected
malfunctioning.

Rule and Exception Checkers are the data-paths used to
carry out the computation of the detector rules and
exception conditions. A number of checker components
are instantiated to perform the required computations
according to the rule classes and exceptions needed by an
application. Note that the set of checkers instantiated is
equal to the number of detector classes and not to the
number of detectors for an application.

7.2 Hardware Implementation Results
The proposed design of the DLX processor, the RSE
Interface, and the Error Detector Modules for different
applications were synthesized using Xilinx ISE 7.1 tools
targeting a Xilinx Virtex-E FPGA. The Xilinx Virtex
series of FPGAs consists mainly of several type of logic
cells: (1) 4-input Look-Up Tables (LUTs), statically
programmed during the bootstrap with the configuration
bit-stream, (2) flip-flops (FFs), storage elements in the
user-visible system state, and (3) Block RAM (BRAMs),
memory blocks that can store up to 4096 bits. Four LUTs
and four FFs form a logic unit called a Slice.
Area and Clock Period Overhead. Table 6 reports the
synthesis results in terms of area (i.e., FFs, LUTs, BRAM
and total Slices) and minimum clock frequency, for the
reference DLX processor and the complete RSE Interface.
The area overhead (with respect to the single superscalar
DLX processor) of the single EDM is about 30%, while
the area overhead of the complete (including the RSE
Interface EDM) is about 45%. We also find that the
increase in clock period time is about 5% with the EDM
and the RSE combined

Table 6: Area and timing overheads

 FFs LUTs BRAMs Slices
Clk

Period
[ns]

DLX
Processor

4873 16395 0 9526 58.8

 RSE
Interface

2465 2329 0 1420 2.01

8 Conclusions and Future Work
This paper proposes a novel technique for preventing a
wide range of data errors from corrupting the execution of
a generic application. This technique consists of an
automated methodology to derive fine-grained,
application-specific error detectors using an algorithm
based on dynamic traces of application execution. A set of
error detector classes, parameters, and locations are
derived to maximize the error detection coverage for a
target application. The paper also presents an automatic
framework for synthesizing the detectors in hardware to
enable low-overhead run-time checking of the application
execution. The coverage of the derived detectors is
evaluated using fault-injection, and the hardware
implementation of the detectors is synthesized to obtain
area and performance overheads.

Future work will involve building more comprehensive
detector classes and using source-level information from
the programs to derive detectors

Acknowledgments
This work was supported in part by the US Office of Naval
Research, the Defense Advanced Research Projects Agency
(MURI Grant N00014-01-1-0576), the Gigascale Systems
Research Center (GSRC/MARCO), NSF grants CNS-0406351,
and CNS-05-24695.

References
1. S.Hangal and M. Lam, Tracking down software bugs using

automatic anomaly detection, Proc. 24th International
Conference on Software Engineering (ICSE), pp. 291-301,
2002.

2. Andrews, D., Using executable assertions for testing and
fault tolerance, Proc. 9th Fault-Tolerant Computing
Symposium (FTCS), pp. 20-22, 1979.

3. Saib S.H., Executable assertions: An aid to reliable
software, Proc. 11th Asilomar Conference on Circuits,
Systems, and Computers, pp. 227-281, 1978.

4. D. Engler, D.Y. Chen, S. Hallem, A. Chou,, B. Chelf.,
Bugs as deviant behavior: A general approach to inferring
errors in system code, Proc, Eighteenth ACM Symposium
on Operating Systems Principles (SOSP), pp 57-72, 2001.

5. W. R. Bush, J. D. Pincus and D. J. Sielaff., A static
analyzer for finding dynamic programming errors,
Software: Practice and Experience, 30(7), pp. 775-802,
2000.

6. D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint: A
tool for using specifications to check code. In Proc. ACM
SIGSOFT '94 Symposium on the Foundations of Software
Engineering, pages 87-96, December 1994

7. J. Condit, M. Harren, S. McPeak, G. Necula, and W.
Weimer. CCured in the real world. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pp. 232--244, June 2003.

8. J. Voas and K. Miller, Putting assertions in their place, in
Proc. of the International Symposium on Software
Reliability Engineering (ISSRE), November, 1994.

9. K.Pattabiraman, Z.Kalbarczyk, and R.K. Iyer, Application-
based metrics for strategic placement of detectors Proc.
11th International Symposium on Pacific Rim Dependable
Computing (PRDC), pp. 75-82, December, 2005

10. S. Chandra, and P. Chen. How Fail-Stop are Faulty
Programs?, Proc. 28th Annual International Symposium on
Fault-Tolerant Computing (FTCS), pp. 240-249, June
1998..

11. N. J. Wang and S. J. Patel, ReStore: Symptom-based soft
error detection in microprocessors, Proc. International
Conference on Dependable Systems and Networks, pages
30-39, June 2005.

12. Doug C. Burger, Todd M. Austin, and Steve Bennett.
Evaluating future microprocessors the simplescalar tool
set., Technical Report 1308, Computer Sciences
Department, University of Wisconsin--Madison, July 1996.

13. N. Nakka, J.Xu, Z.Kalbarczyk, R.K. Iyer., An architectural
framework for providing reliability and security support,
Proc. Intl. Conference on Dependable Systems and
Networks (DSN), pages: 585-594, 2004.

14. Michael D. Ernst, Jake Cockrell, William G. Griswold, and
David Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2):1-25, 2001

15. C. Basile, L. Wang, Z. Kalbarczyk and R.K Iyer., Group
communication protocols under errors, Symposium on
Reliable Distributed Systems (SRDS), pp 35, 2003.

16. S. Chandra and P. M. Chen. Whither Generic Recovery
from Application Faults? A Fault Study Using Open Source
Software. Proc. International Conference on Dependable
Systems and Networks (DSN), pages 97-106, 2000.

17. W. Gu, Z. Kalbarczyk, R.K. Iyer, Z. Yang,
Characterization of Linux Kernel Behavior under Errors,
Proc. International Conference on Dependable Systems
and Networks (DSN'03), pp. 459-468, June 2003.

18. M. Hiller, Executable detectors for detecting data errors in
embedded control systems, Proc. International Conference
on Dependable Systems and Networks (DSN), pp. 24-33,
2000.

19. M. Hiller, A. Jhumka, and N. Suri. On the placement of
software mechanisms for detection of data errors. In Proc.
Intlernational Conference on Dependable Systems and
Networks (DSN), pages 135-144, 2002.

20. M. Zenha Rela, H. Madeira, J.G. Silva, Experimental
evaluation of the fail-silent behavior in programs with
consistency checks, Proc. 26th Fault-Tolerance Computing
Symposium, (FTCS), pp. 415-424, 1996.

21. M. Hutchins, H. Foster, T. Goradia, T. Ostrand,
Experiments of the effectiveness of dataflow- and control-
flow-based test adequacy criteria, Proc. International
Conference of Software Engineering (ICSE), pp. 191-200,
1994.

22. I. Lee and R. K. Iyer, Software Dependability in the
Tandem GUARDIAN System, IEEE Trans. on Software
Engineering, Vol. 21, No. 5, pp. 455-467, May 1995.

23. J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publ., 1996.

24. C. Flanagan, K. R. M. Leino, M. Lillibridge, C. Nelson, J.
Saxe, and R. Stata. Extended static checking for Java, In
Proc. ACM SIGPLAN Conference on. Programming
Languages Design and Implementation (PLDI), pages 234-
245, 2002.

25. K. Huang, J. Abraham, Algorithm-based fault tolerance for
matrix operations, IEEE Trans. on Computers, C-33, pp.
518-528, 1984.

26. R.A.Maxion, M.C. Tan, Anomaly detection in embedded
systems, IEEE Trans. on Computers, 51(2), pages 108-120,
2002

27. Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy, and J.A.
Abraham, Design and evaluation of system-level checks for
on-line control flow error detection, IEEE Trans. on
Parallel and Distributed Systems, vol. 10, no. 6, pp. 627-
641, June 1999.

