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Abstract - This paper proposes a novel technique for 
preventing a wide range of data errors from corrupting 
the execution of applications. The proposed technique 
enables automated derivation of fine-grained, 
application-specific error detectors. An algorithm based 
on dynamic traces of application execution is developed 
for extracting the set of error detector classes, 
parameters, and locations in order to maximize the error 
detection coverage for a target application. The paper 
also presents an automatic framework for synthesizing the 
set of detectors in hardware to enable low-overhead run-
time checking of the application execution. Coverage 
(evaluated using fault injection) of the error detectors 
derived using the proposed methodology, the additional 
hardware resources needed, and performance overhead 
for several benchmark programs are also reported.  

1 Introduction 
This paper presents a technique to derive and implement 
error detectors that protect programs from data errors. 
These are errors that cause a divergence in data values 
from those in an error-free execution of the program. Data 
errors can cause the program to crash, hang, or produce 
incorrect output (fail-silent violations). Such errors can 
result from incorrect computation, and they would not be 
caught by generic techniques such as ECC in memory.  
It is common practice for developers to write assertions in 
programs for debugging and error-detection purposes. For 
example, Andrews [2] discusses the use of executable 
assertions (checks for data reasonableness) to support 
testing and fault-tolerance. Chandra et al. [16] uses 
analysis of open-source data to show that application-
specific knowledge is vital in detecting and recovering 
from many kinds of application errors.  
Many static and dynamic analysis tools (Prefix[5], LCLint  
[6], Daikon[14]) have been proposed to find bugs in 
programs. However, these tools are not geared toward 
detecting runtime errors. To detect runtime errors, we 
need mechanisms that can provide high-coverage, low-
latency (rapid) error detection to: (i) preempt uncontrolled 
system crash/hang and (ii) prevent propagation of 
erroneous data and limit the extent of the (potential) 
damage. Eliminating chances for an error to propagate is 
essential because programs, upon encountering an error 
that could eventually lead to a crash, may execute for 
billions of cycles before crashing [17]. During this time, 
the program can exhibit unpredictable behavior, such as 
writing a corrupted state to a checkpoint [10] or sending a 

corrupted message to another process [15] (in a 
distributed environment).  
A technique to detect runtime errors was proposed by 
Hiller et al. [18], who insert assertions in an embedded 
application based on the high-level behavior of its signals. 
They facilitate the programmer in inserting assertions by 
means of well-defined classes of detectors. In a 
companion paper, they also describe how to place 
assertions by performing extensive fault-injection 
experiments [19]. While this technique is successful if the 
programmer has extensive knowledge of the application 
and if fault-injection can be performed, it is desirable to 
enable deriving detectors without such knowledge and 
inserting them in strategic locations without performing 
fault-injection.  
Our goal is to devise detectors that preemptively capture 
errors that affect the application and to do so in an 
automated way without requiring programmer 
intervention or fault-injection into the system. In this 
paper, the term detectors refers to executable assertions 
that are automatically derived based on the dynamic 
behavior of the application. 
In earlier work, we introduced and evaluated a 
methodology to place detectors in application code to 
maximize error-detection coverage [9]. That methodology 
chooses both the program variable and the program 
location at which the detector must be placed without 
requiring fault-injection into the program. For a large-
application such as gcc, we showed that by placing 
detectors at 10 program points according to the 
methodology described in the paper, it is possible to 
obtain coverage of up to 80 % (for crash failures). It was 
assumed that if an error propagated to a variable chosen 
for placing a detector, then there existed some mechanism 
that would detect the error in that variable (ideal 
detector). 
In this paper, we derive the executable assertions that 
effectively constitute the specific detectors for the chosen 
variables (in practice). The method proposed for 
automated derivation of error detectors is based on 
analysis of data values produced during the course of a 
program execution for a set of representative inputs. Error 
detectors corresponding to each variable and location 
(chosen according to the detector placement methodology 
in [9]) are learned based on pre-determined generic 
classes of rules. The derived detectors continuously 



monitor the application at run-time, checking for the 
presence of errors.  
The detectors derived can be implemented either in 
software or hardware. Hardware implementation is 
essential to ensure low-overhead error detection without 
sacrificing coverage. An automatic process for converting 
the detectors from an abstract representation into a 
hardware implementation is outlined.  
The proposed methodology is applied to derive detectors 
for several benchmark programs. Experimental evaluation 
of coverage (assessed via random fault injection into 
application data), the additional hardware resources 
needed, and performance overheads indicate the 
following: (1) The derived detectors detect between 50 
and 75% of errors that are manifested at the application 
level when 100 detectors are placed in the application 
code (corresponding to about 5% of application code). (2) 
False positives (detectors flag an error when no error is 
present) are less than 2.5% for the benchmarks 
considered. (3) Hardware implementation of the detectors 
results in a performance overhead of less than 5%, with 
acceptable area and power overheads. 

2 Approach and Fault-Model 
 The derivation and implementation of the error detectors 
in hardware and software consists of four main phases, 
depicted in Figure 1. The analysis and design phases are 
related to the derivation of the detectors, while the 
synthesis and checking phases are related to the 
implementation and use of the detectors at runtime. 

 
Figure 1: Steps in derivation and implementation of 
error detectors 

During the analysis phase, the program locations and 
variables for placing detectors to maximize coverage are 
identified, based on the execution of the code and the 
Dynamic Dependence Graph (DDG) of the program. This 
approach is based on the technique proposed in [9] and 
does not require fault-injection into the program to choose 
the detector variables and locations. Rather, it uses 
metrics such as the fanouts and lifetimes of nodes in the 
DDG to place the detectors. 
The program code is then instrumented to record the 
values of the chosen variables at the locations selected for 
detector placement. The recorded values are used during 

the design phase to derive the best detector that matches 
the observed values for the variable, based on 
predetermined generic detector classes (see Section 5). 
After this stage, the detectors can either be integrated into 
application code as software assertions or implemented in 
hardware. The coverage of the derived detectors is 
quantified in the context of benchmark applications 
executing on an enhanced version of the Simplescalar 
simulator [12] (see Section 6). This applies both to 
software and hardware implementation of the detectors. 
The synthesis phase converts the generated assertions into 
an HDL (Hardware Description Language) representation 
that is synthesized in hardware. It also inserts special 
instructions in the application code to invoke and 
configure the hardware detectors. This is explained in 
Section 7. Finally, during the checking phase, the custom 
hardware detectors are deployed in the system to provide 
low-overhead, concurrent run-time error detection for the 
application. When a detector detects a deviation from the 
application’s behavior learned during the design phase, it 
flags this as an error in the application. 
The Fault Model. The fault model adopted in this study 
covers errors in the data values used during the program 
execution. This includes faults in: (1) the instruction 
stream that result either in the wrong op-code being 
executed or in the wrong registers being read or written 
by the instruction, (2) the functional units of the processor 
which result in incorrect computations, (3) the instruction 
fetch and decode units, which result in an incorrect 
instruction being fetched or decoded (4) the memory and 
data bus, which cause wrong values to be fetched or 
written in memory and/or the processor register file. Note 
that these errors would not be detected by techniques such 
as ECC in memory. 
The fault-model also represents certain types of software 
errors that result in data-value corruptions such as: (1) 
synchronization errors or race conditions that result in 
corruptions of data values due to incorrect sequencing of 
operations, (2) memory corruption errors, e.g., buffer-
overflows and dangling pointer references that can cause 
arbitrary data values to be overwritten in memory, and (3) 
use of un-initialized or incorrectly initialized values 
(along infrequently executed paths), as these could result 
in the use of unpredictable values depending on the 
platform and environment. These are residual errors that 
are present even in well tested code, and do not manifest 
in common usage of the program, but in the rare cases 
that they do, are hard to detect.  

3 Related Work 
A number of tools have been proposed to find bugs in 
programs based on static analysis, such as Prefix [5], 
LCLint [6] and ESC/Java [24]. These tools require the 
programmer to specify invariants about the program that 
are then verified by static techniques such as theorem-
proving or symbolic execution.  



Tools have also been proposed to automatically derive 
invariants for applications. DAIKON [14] keeps track of 
common invariants and relationships among variables in a 
program based on the dynamic execution of the program. 
This information is then presented to the programmer, 
who then decides if the invariants derived reveal bugs 
(defects) in the application. DIDUCE [1] applies the same 
underlying technique as DAIKON for long-running 
applications but in a more automated fashion. Engler et al. 
[4] find commonly occurring patterns in the source code 
of an operating system kernel and report deviations in 
these patterns as bugs. While these techniques have been 
effectively used in finding software defects, they cannot 
be applied to runtime error-detection in applications.  
C-Cured [7] is a system to protect programs from memory 
errors using a combination of static checking and runtime 
assertions wherever static checks fail. While C-cured is 
effective in detecting software errors that violate memory 
safety, it cannot detect runtime errors resulting from 
hardware transient faults or software errors that do not 
violate memory safety. 
The only general way to detect runtime-errors is for the 
programmer to put assertions in the code, as demonstrated 
by [2].  Saib [3] shows how assertions can increase the 
reliability of a software program. Zenha-Rela et al. [20] 
evaluate the coverage provided by programmer-specified 
assertions in combination with generic techniques such as 
control-flow checking [27] and Algorithm Based Fault-
Tolerance [25]. They find that assertions can significantly 
complement the coverage provided by generic fault-
tolerance techniques.  
Voas and Miller [8] provide a general methodology for 
inserting assertions in programs to maximize error-
detection coverage.  This method uses programmer 
knowledge of the application combined with fault-
injection to guide the assertion derivation and placement 
processes. Hiller et al. [18] propose generic classes of 
detectors for embedded applications but require 
programmer intervention to choose the correct class of 
detector for each location. Further, the placement of these 
detectors is based on fault-injection into the application 
[19]. Maxion and Tan [26] characterize the space of 
anomaly-based error detectors and provide a theoretical 
formulation to benchmark error detectors. 

4 Error Detector Format 
In this paper, an error detector is an assertion based on 
the value of a single variable of the program at a specific 
location in its static code. A detector for a variable is 
placed immediately after the instruction that writes to the 
variable. Since a detector is placed in the static code, it is 
invoked each time the program location at which the 
detector is placed is executed. 
Consider the sample code fragment in Table 1. Assume 
that the detector placement methodology has identified 
variable k as the critical variable to be checked within the 

loop. Although this example illustrates a simple loop, our 
technique is general and does not depend on the structure 
of the source program.  
In the code sample, variable k is initialized at the 
beginning of the loop and incremented by 1 within the 
loop. Within the loop, the value of k is dependent on its 
value in the previous iteration. Hence, the rule for k can 
be written as “either the current value of k is zero, or it is 
greater than the previous value of k by 1.” We refer to the 
current value of the detector variable k as ki and the 
previous value as ki-1. Thus, the detector can be expressed 
in the form: (ki – ki-1 == 1) or (ki == 0). 

Table 1: Example code fragment 
void foo() { 
         int k = 0;   
         for (; k<N; k++) { 
       …. 
      } 
} 

Construction of Detectors. By the above example, a 
generated set of assertions can be constructed for a target 
variable by observing the dynamic evolution of the 
variable over time. A detector consists of a rule 
describing the allowed values of the variable at the 
selected location in the program, and an exception 
condition to cover correct values that do not fall into the 
rule. If the detector rule fails, then the exception condition 
is checked, and if this also fails, the detector flags an 
error. Detector rules can belong to one of six generic 
classes and are parameterized for the variable checked, as 
shown in Table 2.  

These rule classes are broadly based on common 
observations about the behavior of variables in the 
program. Note that, in all cases, the detector involves only 
the values of the variable in the current invocation and/or 
the previous invocation of the detector. 

The exception condition involves equality constraints on 
the current and previous values of the variable, as well as 
logical combinations (such as and, or) of two of these 
constraints. The equality constraints take the following 
forms: (1) ai == d, where d is a constant parameter;  
(2) ai-1== d, where d is a constant parameter; and (3) 
ai==ai-1. From these three exception constraints, eight 
unique exception conditions can be formed that are 
logically consistent; for example, the exception condition 
(ai==1 and ai==2) is logically inconsistent, as ai cannot 
take two different values at the same time.  

To summarize, for the example involving the loop index 
variable k, discussed at the beginning of this section, the 
rule class is Constant-Difference of 1, and the exception 
condition is (ki == 0). 



Table 2: Generic rule classes and their descriptions  
Class 
Name Generic Rule (ai , ai-1) Description 

Constant ( ai == c ) 
The value of the variable 
in the current invocation of 
the detector is a constant     
given by parameter c.  

Alternate 
(( ai == x and ai-1== y )) 

or  
( ai == y and ai-1== x ) 

The value of the variable 
in the current and previous 
invocations of the detector 
varies between 
parameters x and y 
alternately. 

Constant-
Difference  ( ai - ai-1 == c ) 

The value of the variable 
in the current invocation of 
the detector differs from its 
value in the previous 
invocation by a constant c. 

Bounded-
Difference ( min <= ai - ai-1 <= max ) 

The difference between 
the values of the variable 
in the previous and current 
invocations of the detector 
lies between min and max. 

Multi-
Value ai є { x, y, … } 

The value of the variable 
in the current invocation of 
the detector is one of x, y,  

Bounded-
Range ( min <= ai  <= max ) 

The value of the variable 
in the current invocation of 
the detector lies between 
the parameters min and 
max. 

5 Dynamic Derivation of Detectors 
This section describes our overall methodology for 
automatically deriving the detectors based on the dynamic 
trace of values produced during the application’s 
execution. By automatic derivation, we mean the 
determination of the rule and the exception condition for 
each of the variables targeted for error detection. The 
basic steps are as follows:  
1. The program points at which detectors are placed 

(both variables and locations) are chosen based on 
the Dynamic Dependence Graph (DDG) of the 
program as shown in [9].  

2. The program is instrumented to record the run-time 
evolution of the values of detector variables at their 
respective locations, and executed over multiple 
inputs to obtain dynamic-traces of the checked 
values.  

3. The dynamic traces of the checked values obtained 
are analyzed to choose a set of detectors (both rule 
class and exception condition) that matches the 
observed values.  

4. A probabilistic model is applied to the set of chosen 
detectors to find the best detector for a given 
location. The best detector is characterized in terms 
of its tightness and execution cost of the detector.  

5.1 Detector Tightness and Execution Cost 
A qualitative notion of tightness of a detector was first 
introduced in [8]. However, we define tightness in a 
precise, mathematical sense as the probability that a 
detector detects an erroneous value of the variable it 
checks. In mathematical terms, the tightness is the 
probability that the detector detects an error, given that 
there is an error in the value of the variable that it checks. 
The coverage of the detector, on the other hand, is the 
probability that the detector detects an error given that 
there is an error in any value used in the program. Hence 
the coverage also depends on the probability of an error to 
propagate to the detector variable.  
To characterize the tightness of a detector, we need to 
consider both the rule and the exception condition. The 
tightness also depends on the parameters of the detector 
and the distribution of the observed correct stream of data 
values. For a detector to allow an incorrect value to go 
undetected, either the rule or the exception condition or 
both must evaluate to true for the value. There are a total 
of four mutually exclusive cases in which the original and 
erroneous values each belong to the rule and exception 
condition, respectively (see Table 3).  
Table 3: Probability values for computing tightness 

Symbol Explanation 
P( R | R ) Probability that an error in a value that originally 

belonged to the rule (in a correct execution) also 
causes the incorrect value to belong to the rule. 

P( R | X ) Probability that an error in a value that originally 
belonged to the exception condition (in a correct 
execution) causes the incorrect value to belong to the 
rule. 

P( X | R ) Probability that an error in a value that originally 
belonged to the rule (in a correct execution) causes 
the incorrect value to belong to the exception 
condition. 

P( X | X ) Probability that an error in a value that originally 
belonged to the exception condition (in a correct 
execution) causes the incorrect value to belong to the 
exception. 

The tightness of a detector is defined as (1 – P(I)), where 
P(I) is the probability of an incorrect value passing 
through the detector. This can be expressed using the 
terms in Table 3 as: 
P(I) =  P( R ) [ P( R | R ) + P( X | R ) ] + P( X ) [ P( R | 

X) + P( X | X ) ]                                  (1) 
where P(R) is the probability of the value belonging to the 
rule, and the P(X) is the probability of the value 
belonging to the exception condition. 
The computation of tightness can be automated, since 
there are only a limited number of rule-exception pairs. 
There are six types of rule classes and eight types of 
exception conditions, leading to a total of 48 rule-
exception pairs. These can be pre-computed based on the 
parameters of the detector as well as on the frequency of 



elements in the observed data stream. The following 
example illustrates how tightness is computed for a 
detector. 
Example. Consider a detector in which the rule belongs 
to the class Bounded-Range with parameters min = 5 and 
max = 100 and that the exception condition is of the form 
(ai==0). We assume that the distribution of errors in the 
detector variable is uniform across the range of all 
possible values the variable can take (say, N). We also 
assume that the errors are independent, that an error in the 
current value of the variable is not affected by an error in 
the previous value of the variable, and that errors in one 
detector location are independent of errors in another 
detector location. These are optimistic assumptions, and 
the tightness is an upper bound on the coverage of the 
detector. 
Table 4 shows the computed probability values for this 
detector in terms of N and other parameters. Substituting 
these in equation (1), we find: 
P(I) = P(R) [ 95/N + 1/N ] + P(X) [96/N + 0 ] = (96/N) 

[ P(R) + P(X) ] = 96/N 
as P(R) + P(X) = 1 { since the value must satisfy either 

the rule or the exception condition } 
Now, assume that instead of the rule being of the 
BoundedRange class, it belongs to the Constant class 
(with parameter 5). Let us assume that the exception 
condition is the same as before. For this detector,  

P(R|R) = 0, P(R|X) = 1/N,  
P(X|X) = 0 and P(X|R) = 1/N 

Substituting in equation (1), yields 
P(I) = P(R) [ 0 + 1/N ] + P(X) [1/N + 0 ]= (1/N)[ P(R) + 

P(X) ]= 1/N 
Note that the probability of a missed error in the first 
detector is 96 times more than the probability of a missed 
error in the second detector. Hence, the tightness of the 
first detector is correspondingly much less than the 
tightness of the second detector (as expected based on 
intuition). 
The above model is used only to compare the relative 
tightness of the detectors, and not to compute the actual 
probabilities (which may be very small). Also, though the 
tightness of the detector is expressed in terms of N, it gets 
eliminated in the comparison among different detectors 
for the same variable/location.  
Execution Cost. The execution cost of a detector is the 
amortized additional computation involved in invoking 
the detector over multiple values observed at the detector 
point. The execution cost of a detector is calculated as the 
number of basic arithmetic and comparison operations 
that must be executed in order for a correct value to be 
validated by the detector. An operation usually 
corresponds to a single assembly language instruction.  
Note that the execution cost is computed in the case when 
the value is correct. 

Table 4: Probability values for detector “Bounded-
Range (5, 100) except: (ai==0)” 

Symbol Probability 
Value 

Explanation 

P (R | R) ( 95 / N ) Each rule value can turn into any of the 
other 95 rule values (with equal 
probability). 

P (R | X) ( 96 / N )  
 

An exception value can turn into one of 96 
rule values.  

 P (X | R) ( 1 / N )  A rule value can incorrectly satisfy the 
exception condition if it turns into 0. 

P (X | X) 0 An exception value cannot change into 
another exception value, as there is only 
one value permitted by the exception 
condition. 

5.2 Detector Derivation Algorithm 
To derive the detector, the rule class corresponding to the 
detector is chosen and the associated exception condition 
is formed. The algorithm to derive a detector for a 
particular variable and location is given below. We refer 
to the evolution of a program variable over time as the 
stream of values for that variable. 
1. To derive the rule, the rule classes in Table 2 are each 

tried in sequence against the observed value stream to 
find which of the rule classes satisfy the observed 
values. The parameters of the rule are learned based 
on appropriate samples (for each rule class) from the 
observed stream. For each rule class, multiple rules 
are generated depending on the parameters learned.   

2. For each rule derived, the associated exception 
condition is derived based on the values in the stream 
that do not satisfy the rule. Each of the values that do 
not satisfy the rule is used as a seed for generating 
exception conditions for that rule. If it is not possible 
to learn an exception condition for the observed 
value, the current rule is discarded and the next rule 
is tried in the set of rules derived.  

3. For each rule-exception pair generated, the tightness 
and execution cost of the detector is calculated. The 
detector with the maximum tightness to execution 
cost ratio is chosen as the final detector for that 
location. The entire procedure is repeated for each 
detector location. 

6 Coverage of Derived Detectors 
This section describes the coverage of the derived 
detectors using fault-injection experiments. These results 
are independent of the actual implementation of the 
detectors (whether in hardware or in software). 

6.1 Experimental Set-up and Workload   
The applications used to evaluate the detectors are the 
Siemens suite of programs [21]. The Siemens programs 
considered are replace (which performs pattern matching 
and replacement) schedule, schedule2 (which are priority 
schedulers), print_tokens, print_tokens2 (which perform 



lexical analysis) and tot_info, (which computes statistics 
over input data). These are C programs consisting of a 
few hundred lines of C code and are each equipped with 
extensive test suites which are used to derive the dynamic 
detectors.  
The detector derivation and fault-injection experiments 
were done using a modified version of the Simple-scalar 
simulator [12]. The simulator allows fine-grained tracing 
of the application and studying its behavior under faults 
such as hangs, crashes, fail silence violations. We 
modified the simulator to map the outcome of the 
simulated program to the real world, as explained in [9]. 
The experiment is divided into four parts as follows: 
1) Placement of detectors and instrumentation of 
code. The dynamic instruction trace of the program is 
obtained and the Dynamic Dependence Graph (DDG) is 
constructed from the trace. The points at which detectors 
(both variables and locations) must be placed are chosen 
based on our previous work [9]. For each application, up 
to 100 detector points are chosen by the analysis, which 
correspond to less than 5% of static instructions in the 
assembly code of the benchmark programs (excluding 
libraries). 
2) Deriving the detectors based on training set. The 
simulator records the values of the selected variables at 
the detector locations for representative inputs. The 
dynamic values obtained are used to derive the detectors 
based on the algorithm in Section 5. The training set 
consists of 200 inputs, which are randomly sampled from 
a test suite consisting of 1000 inputs for each program.  
3) Fault-injections and coverage estimation. Fault-
injection experiments are performed by flipping single 
bits in data-values chosen at random from the set of all 
data values produced during the course of the program’s 
execution. After injecting the fault, the data values at the 
detector locations are recorded and the outcome of the 
simulated program is classified as to type of data 
violation. The values recorded at the detector locations 
are then checked by the derived detectors to assess 
coverage. The coverage of a detector is expressed in terms 
of the type of program failure it detects i.e. a detector is 
said to detect a program crash if the program would have 
crashed had the detector not detected the error. Each 
application is executed over 10 inputs chosen from those 
used in the training phase. For each input, 1000 locations 
are chosen at random from the data values produced by 
the application. A fault-injection run consists of a single 
bit-flip in the one of these locations. For each application-
input combination, 5000 fault-injection runs are 
performed (5 runs per location). 
4) Computation of false positives.  The application 
code instrumented with the derived detectors is executed 
for all 1000 inputs, including the 200 inputs that were 
used for training. No faults are injected in these runs. If 
any one of the derived detectors detects an error, then that 

input is considered to be a false positive as the detectors 
flag an error even when there was no (injected) error.  

6.2 Coverage versus Number of Detectors 
The coverage of the detectors derived using the algorithm 
in Section 5 is evaluated using fault-injections.  Figure 2, 
Figure 3 and Figure 4 show the coverage for crashes, fail- 
silence violations (fsv) and hangs obtained for the target 
applications as a function of the number of detectors 
placed in the application.  
The coverage for each type of failure increases as the 
number of detectors increases, but less than linearly, as 
there is an overlap among the errors detected by the 
detectors. However, the error coverage of the derived 
detectors depends on the type of failure and for 100 
detectors placed in the code; the coverage obtained for 
each type of failure is summarized in Table 5. 
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Figure 2: Crash coverage of derived detectors 
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Figure 3: FSV coverage of derived detectors 
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Figure 4: Hang coverage of derived detectors 



Table 5: Coverage results for derived detectors 

Type of Failure Minimum Coverage Maximum 
Coverage 

Program Crash 45% (print_tokens) 65% (tot_info) 
Fail-Silent Violation 25% (schedule2) 75% (tot_info) 

Program Hang 0% (print_tokens2) 55% (replace) 

Figure 5 shows the percentage of total manifested errors 
that are detected by the derived detectors. The derived 
detectors can detect 50% to 75% of the errors that are 
manifested in the application. This is because the majority 
of errors that manifest in an application are crashes (70-
75%) and the rest are fail-silent violations (20-30%) and 
hangs (0-5%). 
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Figure 5: Total error coverage for derived detectors 
The results for coverage are for any error that occurs in 
the data values used by the program, and not just for 
errors that occur in the detector locations. For example, if 
even a single bit-flip occurs in a single instance of any 
data value used in the program, and this error results in a 
program crash, hang or fail-silence violation, then one of 
the 100 detectors placed will detect the error 50-75 % of 
the time. Note also that 100 detector locations correspond 
to less than 5% of program locations in the static 
assembly code of the benchmark programs. 
In comparison, Hiller et al. [18] report a coverage of 80% 
with 7 assertions for (random) errors that cause failure in 
their embedded system application. However, in the study 
about 2000 errors are injected into the system during a 
short period of 40 seconds, and if one of their executable 
assertions detects one of the errors in this period, it is 
considered a successful detection. In contrast, we inject 
only a single error in each run. Furthermore, 7 out of 24 
signals for detection in the embedded system considered 
(about 30% of the system size) are targeted, whereas we 
place detectors in just 5% of the instructions in the 
applications considered. 

6.3 False Positives 
False positives can occur when a detector flags an error 
even if there is no error in the application. A false positive 
for an input can occur when the values at the detector 
points for this input do not obey the detector’s rule and 
exception condition learned from the training inputs.  

The training set for learning the detectors consists of 200 
inputs and the false positives are computed across all 
1000 inputs for each application. No faults were injected 
in these runs. If even a single detector detects an error for 
a particular input, that input is treated as a false positive. 
Figure 6 presents the percentage of false positives for 
each of the target applications across 1000 inputs. From 
the figure, the following may be observed:  
• For all applications the false positives are no more 

than 2.5% (with 100 detectors). For the replace, 
schedule2, print_tokens and print_tokens2 
applications, the false positives observed are less than 
1%. For the schedule and tot_info application, the 
false positive rate is around 2%. 

• While the number of false positives increases as the 
number of detectors increases, it reaches a plateau as 
the number of detectors is increased beyond 50. This 
suggests that inserting more detectors in the 
application code can increase coverage without 
increasing the percentage of false positives.  
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Figure 6: Percentage of false positives for 1000 inputs 

of each application 
When a detector raises an alarm, we need to determine 
that an error was really present. If the error was caused by 
a transient fault (focus of this paper), then it is likely to be 
wiped out when the program is re-executed [22]. If on the 
other hand, the error was a false positive and hence, a 
characteristic of the input given to the program, it will be 
present in the re-executed version of the program, and the 
detector will raise an alarm again. In this case, the alarm 
can be ignored, and the program can continue.  
Thus, the impact of a false positive is essentially a loss in 
performance due to re-execution overhead.  Since the 
percentage of false positives is less than 2.5%, the 
overhead of re-execution is small. It is possible to reduce 
the overhead further by using fine-grained, processor-
level checkpointing and restarting scheme similar to the 
one proposed in [11]. 

6.4 Effect of Training Set Size  
• The results reported so far were for coverage and 
false positives of the derived detectors using training set 
of 200 inputs from a total of 1000 inputs for each 
benchmark application. In this section, we consider the 
effects of varying the size of the training set from 100 
inputs to 300 inputs. In these experiments, the number of 



detectors is fixed at 100 and the error-detection coverage 
and false positives are evaluated for each application.  
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Figure 10: Effect of training set size on hang coverage 
The results are shown in Figures 7, 8, 9 and 10 and are 
summarized as follows: 
• The false positives decrease from 5% to 2% as the 
training set size is increased from 100 inputs to 200 
inputs, and to less than 1% for 300 inputs, for all 
applications, except tot_info (1.5%.). 
• The coverage for crashes and hangs remain constant 
as the training set size increases (Figure 8, Figure 10), 
except in the case of tot_info where the coverage first 
decreases from 100 to 200 inputs and then remains 
constant from 200 to 300 inputs (for crashes and hangs). 

The coverage for fail-silent violations decreases 
marginally as the size of the training set increases from 
100 inputs to 300 inputs (Figure 9) This decrease is less 
than 2% for all benchmarks except tot_info (5%). 
Thus, increasing the training set size from 100 to 200 
decreases the false positives significantly, while 
increasing it from 200 to 300 does not have as large an 
impact on false positives. The impact on coverage from 
increasing the training set size is minimal. Hence, in this 
paper we choose a training set size of 200, which 
corresponds to 20% of the inputs used for each program. 

7 Hardware Implementation of Detectors 
The output of the algorithm to derive detectors is a list of 
detectors and their associated parameters (see Section 5). 
This list is used as an input to synthesize hardware 
modules which implement the detectors. The hardware 
implementation of error detectors chosen in the design 
stage encompasses two steps: (i) instrumentation of the 
target software application with special instructions to 
invoke the hardware checkers, and (ii) generation of the 
Error Detector Module (EDM), a piece of customized 
hardware to check at run-time the execution of the 
program, and flag a signal when one of the detectors fires. 
These two phases are carried out at compile time, before 
the application is executed, but can also be executed at 
application load time. Given the application code (in an 
intermediate representation, such as assembly code), an 
automated design flow delivers the instrumented 
application code and the hardware description of the Error 
Detector Module tailored for the target application. The 
target processor description (a DLX-like processor in the 
current implementation [23]) and the configuration 
information are used to extract (from the main pipeline of 
the processor) the signals that are needed by the hardware 
Error Detector Module. 
In this paper, we discuss the hardware implementation of 
the Error Detector Module in context of the Reliability 
and Security Engine (RSE) framework [13]. The RSE is a 
reconfigurable processor-level framework that can 
provide a variety of reliability features according to the 
needs and constraints imposed by the user or the 
application [13]. The RSE Framework hosts (1) RSE 
modules, such as the Error Detector module, providing 
reliability and security services and (2) the RSE Interface, 
which provides a standard, well defined, and extendible 
interface between the modules and the main processor 
pipeline. The interface collects the intermediate pipeline 
signals and converts it to the format required by the 
hardware modules. The application interfaces with the 
modules (and hence to the Error Detector Module) using 
special instructions called CHECK instructions. 
Each detector in the list of detectors derived in the design 
phases is characterized by the following attributes: (1) 
location in terms of the Program Counter value, (2) 
processor registers to check, and (3) detector class and 
exception parameters. Multiple CHECK instructions are 



used to load the specific parameters (i.e., rule class and 
exception condition) for the detectors into hardware and 
enable/disable the module.  

7.1 Detailed Description of the EDM 
In this section, we describe the overall architecture of the 
Error Detector Module (EDM) referring to Figure 11. We 
assume that the required signals are provided through an 
interface to the processor similar to the RSE interface 
described in 7. The components in the Error Detector 
Module are described below: 
Shadow Register File (SRF) keeps track of current and 
last values of the microprocessor’s registers checked by 
the detectors (i.e., ai and ai-1, whereas a is a generic 
register). This component delivers the required values ai 
and ai-1 when a detector is executed as required by the 
expressions reported in Table 1. Note that only the values 
of registers checked by any detector have to be stored in 
the SRF. When a new value regValue is written at time i 
by the processor in the register R of the processor file 
(pointed by the value regSel), a copy of the new value Ri 
is stored in the SRF, keeping also the value Ri-1. Since not 
all registers of the processor architecture have to be 
checked by detectors, a mapping between the physical 
addresses of the microprocessor registers and the logical 
addresses of the corresponding registers in the SRF is 
kept in the block Phys2Log.  

 
Figure 11: Architectural diagram of synthesized 

processor with detection modules 
Detector Table stores the information needed for a 
detector. The Detector Table grows with the number of 
detectors needed by an application. It is implemented by 
the following component: (1) comparators checking the 
current PC against the PCs triggering the active detectors; 
(2) a RAM hosting the parameters of rules and 
exceptions. When a detector is triggered by the current 
PC, the Detector Table selects (1) the register R that has 
to be checked from the SRF forcing the values Ri-1 and 
Ri-1 to be placed on the 2 data-path busses, and (2) 
activates the Rule and Exception Checkers to compute the 
detector conditions, and the Error Signal Computation 
flags the Violation Detection signal to indicate a detected 
malfunctioning. 

Rule and Exception Checkers are the data-paths used to 
carry out the computation of the detector rules and 
exception conditions. A number of checker components 
are instantiated to perform the required computations 
according to the rule classes and exceptions needed by an 
application. Note that the set of checkers instantiated is 
equal to the number of detector classes and not to the 
number of detectors for an application.  

7.2 Hardware Implementation Results 
The proposed design of the DLX processor, the RSE 
Interface, and the Error Detector Modules for different 
applications were synthesized using Xilinx ISE 7.1 tools 
targeting a Xilinx Virtex-E FPGA. The Xilinx Virtex 
series of FPGAs consists mainly of several type of logic 
cells: (1) 4-input Look-Up Tables (LUTs), statically 
programmed during the bootstrap with the configuration 
bit-stream, (2) flip-flops (FFs), storage elements in the 
user-visible system state, and (3) Block RAM (BRAMs), 
memory blocks that can store up to 4096 bits. Four LUTs 
and four FFs form a logic unit called a Slice.  
Area and Clock Period Overhead. Table 6 reports the 
synthesis results in terms of area (i.e., FFs, LUTs, BRAM 
and total Slices) and minimum clock frequency, for the 
reference DLX processor and the complete RSE Interface. 
The area overhead (with respect to the single superscalar 
DLX processor) of the single EDM is about 30%, while 
the area overhead of the complete (including the RSE 
Interface EDM) is about 45%.  We also find that the 
increase in clock period time is about 5% with the EDM 
and the RSE combined 

Table 6: Area and timing overheads 

 FFs LUTs BRAMs Slices 
Clk 

Period 
[ns] 

DLX 
Processor 

4873 16395 0 9526 58.8 

 RSE 
Interface 

2465 2329 0 1420 2.01 

8 Conclusions and Future Work 
This paper proposes a novel technique for preventing a 
wide range of data errors from corrupting the execution of 
a generic application. This technique consists of an 
automated methodology to derive fine-grained, 
application-specific error detectors using an algorithm 
based on dynamic traces of application execution. A set of 
error detector classes, parameters, and locations are 
derived to maximize the error detection coverage for a 
target application. The paper also presents an automatic 
framework for synthesizing the detectors in hardware to 
enable low-overhead run-time checking of the application 
execution. The coverage of the derived detectors is 
evaluated using fault-injection, and the hardware 
implementation of the detectors is synthesized to obtain 
area and performance overheads.  



Future work will involve building more comprehensive 
detector classes and using source-level information from 
the programs to derive detectors 
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