
Detecting and Tolerating Asymmetric Races

Paruj Ratanaworabhan
Cornell University

paruj@csl.cornell.edu
Martin Burtscher

The University of Texas at Austin
burtscher@ices.utexas.edu

Darko Kirovski and Benjamin Zorn
Microsoft Research

{darkok, zorn}@microsoft.com

Rahul Nagpal
Indian Institute of Science
rahul@csa.iisc.ernet.edu

Karthik Pattabiraman
University of Illinois at Urbana-Champaign

pattabir@uiuc.edu

Abstract
This paper introduces ToleRace, a runtime system that allows
programs to detect and even tolerate asymmetric data races.
Asymmetric races are race conditions where one thread correctly
acquires and releases a lock for a shared variable while another
thread improperly accesses the same variable. ToleRace provides
approximate isolation in the critical sections of lock-based parallel
programs by creating a local copy of each shared variable when
entering a critical section, operating on the local copies, and prop-
agating the appropriate copies upon leaving the critical section.
We start by characterizing all possible interleavings that can cause
races and precisely describe the effect of ToleRace in each case.
Then, we study the theoretical aspects of an oracle that knows
exactly what type of interleaving has occurred. Finally, we present
two software implementations of ToleRace and evaluate them on
multithreaded applications from the SPLASH2 and PARSEC
suites. Our implementation on top of a dynamic instrumentation
tool, which works directly on executables and requires no source
code modifications, incurs an overhead of a factor of two on aver-
age. Manually adding ToleRace to the source code of these appli-
cations results in an average overhead of 6.4 percent.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging – Debugging aids, Diagnostics;
D.1.3 [Programming Techniques]: Concurrent Programming –
Parallel programming

General Terms Reliability, Performance, Experimentation

Keywords race detection and toleration; runtime support; dynamic
instrumentation

1. Introduction
As general-purpose microprocessors move from a single core to
multiple cores per chip, programming needs to migrate from se-
quential to parallel code if programs are to exploit more than one
CPU. This software transition, however, has not been as easy and
natural as the hardware counterpart has. Programmers find it diffi-
cult to write and reason about parallel programs. As a result, such
programs are usually rife with errors, many of which are unheard-
of in sequential programs, e.g., atomicity violations and data rac-
es. Moreover, these errors are harder to deal with than sequential
programming errors because of their non-deterministic nature.

Finding a suitable model that addresses the programmability
of parallel programs while keeping up with the performance ex-
pected of multi-core hardware is an active research area. Promis-
ing candidates include transactional memory [16] and the Galois
system [21]. At present, lock-based parallel programs are still
dominant, particularly those written in unsafe languages such as C
or C++ with add-on libraries for threading and synchronization.
There is also ongoing research [9] that aims to improve the rigor
of this programming paradigm.

Our work tackles race conditions in lock-based programs. In
general, a race is defined as a condition where multiple threads
access a shared memory location without synchronization and
there is at least one write among the accesses. With proper syn-
chronization, lock-based programs adhere to the data-race-free
model [4] where synchronization operations are made explicit by
calls to specific library functions, e.g., pthread_mutex_lock in
POSIX threads (pthreads). In this model, the hardware appears
sequentially consistent with respect to the programs even though
it may be weakly ordered in reality [2]. We are interested in
asymmetric races, which occur when one thread correctly protects
a shared variable using a lock while another thread accesses the
same variable improperly due to a synchronization error (e.g., not
taking a lock, taking the wrong lock, taking a lock late, etc.).

Thread 1:
// gScript is shared

Lock(A);
if (gScript == NULL) {
 baseScript = default;
} else {

 baseScript = gScript;
}
UnLock(A);

Thread 2:

gScript = NULL;

Figure 1. An asymmetric race.

An example of an asymmetric race is shown in Figure 1. Here,

Thread 1 correctly uses a critical section to protect its read ac-
cesses to the shared variable gScript. Thread 2 incorrectly
updates gScript without a lock, thus creating a race. The race
occurs infrequently, i.e., only when Thread 2’s update happens
between the test for NULL and the else part of the conditional
in Thread 1. Our reasons for focusing on asymmetric races are:

1. They are common in software development projects.
This conclusion comes from direct experience with developers in
software houses like Microsoft. There are two reasons for this.
First, usually a programmer’s local reasoning about concurrency,
e.g., taking proper locks to protect shared variables, is correct.
Errors due to taking wrong locks or no locks lie outside of the
programmer’s code, for example, in third party libraries. Given
that lock-based programs rely on convention, this phenomenon is
understandable. The second reason has to do with legacy code. As

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distri-
buted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PPoPP’09 February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright © 2009 ACM 978-1-60558-397-6/09/02…$5.00.

software evolves, assumptions about a piece of code may be inva-
lidated. For instance, a library may have been written assuming a
single-threaded environment, but later the requirements change
and multiple threads use it. An expedient response to this change
is to demand that all clients wrap their calls to the library, acquir-
ing locks before entry and releasing them on exit. Because this
solution requires that all clients be changed, races can be intro-
duced when clients fail to observe the proper locking discipline.

Thread 1:

K = x;
flag = true;

Thread 2:

while (flag != true);
y = K;

// K and flag are declared volatile

Figure 2. User-defined synchronization.

2. Symmetric races are usually benign.

Because calls to synchronization operations are expensive, pro-
grammers often resort to lightweight user-defined synchronization
as shown in Figure 2 where Threads 1 and 2 synchronize on the
flag variable. In this situation, even though a race occurs by
definition (the shared variable flag is accessed without explicit
synchronization), it does not harm the program. Narayanasamy et
al. [28] show other types of benign symmetric races, e.g., redun-
dant writes and disjoint bit manipulation. Their experience with
Windows Vista and Internet Explorer indicates that these benign
races are rather common.

3. Programmers want to reason locally about the correctness
of the critical sections in their code.
Normally, local reasoning cannot be applied when considering the
correctness of parallel programs with shared variables. Compo-
nents that are locally correct (e.g., use locks to protect a shared
variable) are rendered incorrect by arbitrary code elsewhere in the
application. With large development teams, it is typical for most
of the code in an application to be outside the direct control of a
particular programmer. What is worse, the source code of a library
that contains a concurrency error may not be available at all. In
such cases, the client of an incorrect library would be forced to
program around the error in an ad hoc way. Our goal is to provide
a tool that allows programmers to detect and respond to external
concurrency errors in a structured and principled way with no
changes to the external code.

ToleRace is a runtime system that allows programs to contin-
ue executing in the presence of asymmetric races and possibly
complete with a well-defined semantic. Inspired by the DieHard
system [6], which probabilistically tolerates memory safety errors,
ToleRace uses replication to detect and/or tolerate races. It pro-
vides an approximation of isolation in critical sections by creating
local copies of shared variables when a critical section is entered,
operating on the local copy while in the critical section, detecting
conflicting changes to shared data when the critical section is
exited, and propagating the appropriate copy when possible to
hide the race. ToleRace allows a variety of implementations that
range from software only, where races are only probabilistically
detected and tolerated, to a combination of hardware and soft-
ware, where stronger guarantees are possible. In this paper, we
focus on the fundamental properties of ToleRace and describe two
possible software implementations.

ToleRace can be compared to transactional memory (TM)
[16]. The ToleRace mechanism outlined above is analogous to
constructing a read-write set while executing in a transaction with
a lazy versioning policy and lazily detecting conflicts to the set,

i.e., just before the transaction commits. However, ToleRace is
not based on optimistic synchronization as TM is; there is no no-
tion of abort-and-rollback, nor is there a need for contention man-
agement. Whereas handling side effect operations and nested
transactions are still open issues with TM, ToleRace handles all
I/O operations as well as overlapped critical sections transparent-
ly, preserving the semantics of the original lock-based program.
While TM can provide isolation and tolerates races just as Tole-
Race does, it is not clear how TM can be applied to existing lock-
based codes. Converting from lock-based to transaction-based
code is not trivial [8].

This paper makes the following contributions:
• Comprehensive runtime management of races. ToleRace

enables programs to tolerate races, which decreases the likelihood
that the races will cause incorrect program behavior. Increasing a
program’s tolerance to races reduces the need for the races to be
debugged/patched. In instances where ToleRace cannot tolerate
races, it detects them either precisely or with high probability,
depending on the implementation. Note that there can be instances
where ToleRace silently and correctly tolerates races without
detecting them (cf. Section 3.1).

• Precise detection. ToleRace only identifies races that actually
happen at runtime. It detects a race when the critical section in
which the race took place exits.

• Programmer-centric local reasoning. ToleRace enables
programmer tools to allow local reasoning about correctness and
to facilitate a structured means of detecting and tolerating errors
that are caused by code outside the programmer’s control. The
programmer can control the overhead by selectively turning To-
leRace on or off for individual critical sections. This is useful for
debugging, testing, and patching released executables.

• Low overhead software implementation. We present two
software implementations of ToleRace. Our general dynamic
instrumentation-based approach incurs an overhead of a factor of
two whereas our source-code based implementation incurs an
overhead of 6.4% on average.

2. Characterizing Asymmetric Races
We denote as l() and u() the atomic functions that acquire and
release a specific lock, respectively. We further denote as r() and
w() two functions that read from and write to a specific variable.
We first consider cases when a single variable is protected and
accessed in a non-nested critical section. We then extend this
theoretical framework to cover the cases involving multiple va-
riables and overlapped critical sections. We use l, u, r, and w to
denote the fundamental functions over that specific variable, and
we use x to denote a “don’t care” function that can be either a
read or a write. r+ denotes a sequence of at least one read and r*
indicates zero or more reads. The operators + and * are equally
defined for writes. For a specific thread T1, we define the se-
quence of critical operations using the above operators and fun-
damental functions. For example, T1 = [l1r11w11r+12u1] denotes a
thread that first locks a variable, then reads and writes exactly
once, followed by at least one read before it unlocks the variable.
The first digit in the operation index denotes the thread index and
the second digit distinguishes between sequences of operations of
the same type. We denote one possible interleaved execution of
critical operations of two threads T1 = [l1r11w11r+12u1] and T2 =
[w2] as the following sequence S = {l1r11w11w2r+12u1}. Sequence
S specifies that the write from the second thread occurred between
the first write and the second read in the first thread and thus
causes a race condition.

Table 1. Tabulating classes of race instances. Column marked “race” denotes whether the schedule T´1T2T´´1 results in a race.
operation interleaving operation interleaving operation interleaving

T'1 T2 T''1 race T'1 T2 T''1 race T'1 T2 T''1 race
R+ r+ R+ false R+ wx* R+ true R+ r+wx* R+ true
R+ r+ WX* false R+ wx* WX* true R+ r+wx* WX* true
R+ r+ R+WX* false R+ wx* R+WX* true R+ r+wx* R+WX* true

WX* r+ R+ false WX* wx* R+ true WX* r+wx* R+ true
WX* r+ WX* true WX* wx* WX* false WX* r+wx* WX* true
WX* r+ R+WX* true WX* wx* R+WX* true WX* r+wx* R+WX* true

R+WX* r+ R+ false R+WX* wx* R+ true R+WX* r+wx* R+ true
R+WX* r+ WX* true R+WX* wx* WX* true R+WX* r+wx* WX* true
R+WX* r+ R+WX* true R+WX* wx* R+WX* true R+WX* r+wx* R+WX* true

 To characterize asymmetric races, we consider all interleav-
ings between operations in a correctly synchronized thread and a
second, unsynchronized thread. We then reduce the interleavings
that result in races into four classes and consider how ToleRace
handles each class. We assume a programming model with two
types of threads:

• a safe thread that consists of a single critical section, and
• a non-safe thread that might access a shared variable but does

not have a critical section or uses the wrong lock to guard it.

 Definition 1. A race condition represents any one of all possi-
ble execution interleavings of a set of threads T = {T1…TN}
where at least one of the threads in T is non-safe and at least one
is safe, such that the final computation state after all threads have
executed does not correspond to any case when all safe threads in
T have executed in isolation.

Note that this definition does not say anything about what happens
to the values of shared variables in non-safe threads. Because non-
safe threads do not control their access to the values of shared
variables, we assume they are written in such a way that they are
able to tolerate arbitrary updates to these variables at any time.
Because our solution focuses on tolerating and detecting asymme-
tric races, we consider an execution race free only with respect to
the values of the shared variables in the safe threads.
 Our definition is agnostic to the threads’ execution order.
Thus, we assume that the programmer intended that the threads
can be executed in any order, as long as they execute atomically
with respect to their critical sections.
 A thread (safe or non-safe) in T could execute but not affect
the program’s computation state. In this case, we informally relax
Definition 1 to accept execution schedules as correct where a sub-
set of the threads does not execute.
 With the execution model defined above, ToleRace preserves
the data-race-free-0 model semantics [22] when it tolerates all the
occurring races. Such a model observes sequentially consistent
execution for all synchronization operations while allowing the
underlying hardware to be weakly ordered.
 To understand how the safe and non-safe threads can interact,
we exhaustively explore all interleavings where the non-safe
thread T2 executes between operations in the safe thread T1. To
simplify the analysis, we note that there are only three ways in
which a sequence of operations by a single thread can interact
with a single variable: by reading it only (r+), by setting its value
regardless of its prior (wx*), and by setting its value based upon
its prior (r+wx*). Operations that follow a write by a particular
thread are important semantically but do not affect the inter-thread
interactions. Also note that rw could occur in two versions: (i) w
is dependent upon the value retrieved by r and (ii) w is not depen-
dent upon the value retrieved by r. Sequences where (ii) is true

could be analyzed as independent manifestations of two sequences
of type r+ and wx*. Sequences where (i) is true demand special
attention; thus, in the remainder of this paper, when we specify a
sequence rw issued by the same thread we assume (i).
 Table 1 tabulates all possible interactions between a safe
thread T1 and a non-safe thread T2. The safe thread is improperly
intercepted by T2 at a position that slices the operations of T1 into
two parts T´1 and T´´1. The table evaluates the outcome of this
interaction exhaustively. We derive the following classification
theorem from Table 1.

Theorem 1. Race condition cases. A race between two threads
occurs due to one of the following conditions:
I. XwR = {l1x+1w2x*2r1u1}. This case specifies that any se-

quence of operations by T2 that starts with a write and occurs
after any operation but before a read in T1 causes a race.

II. WrW = {l1r*11w11x*1r+2r*12w12u1}. This case specifies that
any sequence of reads by T2 when placed in-between two
writes by T1 results in a race.

III. RXwW = {l1r1x*1w2x*2w1u1}. When T1 starts with a read
followed by an arbitrary sequence of operations, and T2 ex-
ecutes any sequence of operations that starts with a write just
before T1 writes back to this variable, a race will occur.

IV. XrwX = {l1x+11r+2w2x*2x12u1}. This case specifies that any
sequence starting with a write based upon a prior by T2 caus-
es a race when interleaved between any two operations of T1.

 With no effect on the generality of the theorem, in all se-
quences we assume that the last operation in T1, which completes
the race condition, is the last operation in the critical section.

Proof. Straightforward by combining cases from Table 1. □

There is previous work [24, 32] that also proposes enumera-

tion of possible interleavings. However, it does not focus on race
toleration as we do. Section 3.1 describes how we employ the
classification from Table 1 for this purpose.

Theorem 2. Reduction of race conditions. Any race condition
among K>2 threads can always be reduced to one of the I-IV
cases of a race between two threads.

Proof. Consider a single safe thread among K interacting
threads. The K-1 non-safe threads impart intervening sequences of
operations r+, wx*, or r+wx* to the safe thread. When these three
sequences interleave, the resulting sequence still belongs to one of
the three sequences. As far as the safe thread is concerned, no
matter how many non-safe threads interact with it, it only ob-
serves the resulting intervening sequence. If such a sequence is
one of the three sequences mentioned, it is as if it interacted with

just a single non-safe thread, and the resulting race instances can
be classified by Table 1.

Now, consider multiple safe threads among the K interacting
threads. Because safe threads, by definition, hold consistent lock-
ing for a given shared variable, only one can be in the critical
section accessing this variable at a given time. This brings us back
to the first case we just considered and completes the proof. □

(a) Without ToleRace (b) With ToleRace

Figure 3. ToleRace uses two additional copies of a variable to

tolerate races.

3. The ToleRace Oracle
The core of our approach to managing the race condition cases
specified in Theorem 1 is to replicate the protected shared state so
that the thread that acquires a lock on the shared state has an ex-
clusive copy (see Figure 3). This thread continues reading from
and/or writing to this copy until it releases the lock. When the
lock is released, the ToleRace runtime can employ a variety of
software and/or hardware mechanisms to determine which race, if
any, has occurred. Possible outcomes range from tolerating the
race completely to reporting that a race has occurred to executing
a programmer-specific handler when an intolerable race is de-
tected.
 Next, we study the effect of ToleRace on the cases described
in Theorem 1, assuming an oracle determines which race has oc-
curred.
 Initialization and Finalization: We assume that the binding of
locks (xV) to shared variables (V) is known before the critical sec-
tion in T1 is entered and that storage for two additional copies (V',
V'') of variable V has been allocated. After the lock is released, the
storage for the two copies is deallocated.
 Lock (Entry): When lock xV is acquired by T1, we copy V to V'
and V'' (V''=V'=V) atomically.
 Reads and Writes inside the Critical Section: ToleRace alters
all instructions in the critical section of T1 to use V' instead of V.
Thus, V' is the local copy of V for T1 that cannot be accessed by
other threads due to a race. All other threads such as T2 are un-
changed and continue using V for all accesses. Copy V'' is not
accessed by any thread until T1 exits the critical section.
 Unlock (Exit): When T1 exits the critical section by releasing
the acquired lock, ToleRace analyzes the content of V', the origi-
nal value V'', and the value V that could have been altered by other
threads as a consequence of a race. Depending on the relationship
of the values in {V, V', V''} and knowledge about the specific case
in Theorem 1 that has occurred, ToleRace deploys a resolution
function V = f(V, V', V'') that defines the value of V after T1 finish-

es its critical section. The resolution function is executed atomi-
cally in the oracle ToleRace.

3.1 Tolerating and Detecting Races with the oracle ToleRace
Combining the mechanism outlined above with the exhaustive
interleavings enumerated in Table 1, we can reason about which
cases ToleRace will tolerate. Assuming perfect knowledge of the
specific race case that has occurred, Table 2 summarizes the defi-
nition of f and indicates the cases that ToleRace correctly tole-
rates.

Because ToleRace can tolerate only some races of type IV, in
Table 2 we subdivide this case into three sub-cases:

IVA: RrwR={l1r+11r+2w2x*2r12u1},
IVB: WrwX={l1w1x*11r+2w2x*2x12u1}, and
IVC: RrwW=XrwX – {RrwR ∪ WrwX}

 The first column in Table 2 lists the race type based upon the
classification from Theorem 1, the second column specifies
whether V is equal to V'' at the point when f is called, the third
column shows a resolution function f that allows ToleRace to
tolerate the race, the fourth column indicates whether f provably
succeeds in tolerating the race, and the fifth column presents π,
the schedule of threads that ToleRace’s result represents. Table 2
shows that the ToleRace oracle tolerates all races except se-
quences of the form RrwW with the resolution function f defined
by Table 2.

Table 2. Tabulating the outcome of f for each race type.
race type V = V'' f (V, V', V'') tolerable π

I XwR false V true T1T2

II WrW true V' true T2T1

III RXwW false V true T1T2

IVA RrwR false V true T1T2

IVB WrwX false V' true T2T1

IVC RrwW false custom f ' maybe N/A

 For races of type RrwW, the interleaving of reads and writes
from T2 breaks the program’s sequential memory consistency.
Here, T1 and the interleaved part of T2 both read the value of the
shared variable once T1 has entered the critical section, execute in
parallel, and then join at the exit of the critical section of T1. T1
and T2 see the same value returned by the read, which would not
be possible if T1 had executed its critical section in isolation.

When functioning as a pure race detector, the oracle ToleRace
inherently generates no false positives. When V ≠ V'', an asymme-
tric race has occurred by definition. It produces a false negative
when:

a) the last write in the intervening sequence writes the same
value as the value in V''. This is the so called ABA problem. Sur-
prisingly, ToleRace tolerates this case as ABA is indistinguishable
from AAB.

b) there is a WrW race. Note that, while ToleRace cannot
detect this race case, it can tolerate it.

3.2 Multiple Variables and Nested Critical Sections
So far, we have considered the oracle ToleRace in a multith-
readed, single-variable, and non-nested critical section context.
We now extend this framework to handle general cases, which
involve multiple variables and nested critical sections. The exten-
sion is straightforward. Local copies and the resolution function
need to be made and executed atomically for multiple variables.
The oracle ToleRace treats multiple variables as multiple in-
stances of a single variable. It resolves races on a per variable

basis, and, thus, reconciling multiple variables is the same as mul-
tiple reconciliations of a single variable. Nested critical sections
share their local copies with the outermost critical section. How-
ever, they have their own resolution function to resolve races for
their protected variables. This extension to ToleRace has the fol-
lowing characteristic.

Theorem 3. Sequentially inconsistent execution. In the general
case of tolerating asymmetric races involving multiple variables
and nested critical sections, ToleRace may reorder operations of
a non-safe thread such that the operations do not follow their
original program order. If there are dependencies among the
operations that must be observed, this reordering is not serializa-
ble and ToleRace reverts to detection mode.

The detailed proof is given in a technical report [19]. Here we
give a sketch of the proof presenting the high-level idea. Note that
the dependencies in Theorem 3 refer to data dependences, which
occur when a write to a given variable depends on a read of
another variable.

We consider cases I through IVB from Table 2 where Tole-
Race tolerates races without a custom resolution function. Tole-
Race can schedule operations from the non-safe thread to have
come before or after the critical section. Any intervening sequence
r+ always appears to have come before the critical section (race
type II) whereas the sequence wx* always appears after (race type
I and III). For the r+wx* sequence, the schedule depends on the
race type (after for IVA and before for IVB).

Table 3. Enumeration of intervening sequences to P and Q. Trail-

ing x* and r+ of P sequence may overlap with Q sequence.
P Q reordered by

ToleRace
dependency
from P to Q ToleRace action

r+ r+ No No Tolerate
wx* r+ Yes No Tolerate

r+wx* r+ If race IVA to P No Tolerate
r+ wx* No maybe Tolerate

wx* wx* No maybe Tolerate
r+wx* wx* No maybe Tolerate

r+ r+wx* No maybe Tolerate

wx* r+wx* If race IVB to Q maybe Detect if reordered,
tolerate otherwise

r+wx* r+wx*
If race IVA to P and

IVB to Q maybe Detect if reordered,
tolerate otherwise

Consider an asymmetric race involving two variables P and Q.

Let a non-nested critical section protect both variables in a safe
thread. In a non-safe thread, let an intervening sequence to P come
before an intervening sequence to Q in program order, but the two
can overlap each other. Table 3 enumerates all possible P and Q
intervening combinations from the non-safe thread. The third
column indicates whether ToleRace reorders the intervening oper-
ations to P and Q. This follows directly from the resolution func-
tion in Table 2 as just described. The fourth column lists if there is
a dependency from P to Q. In general, when there is a write to Q
and the accesses to P may contain a read, then Q may be depen-
dent on P, and, hence, the operations must observe program order.
The fifth column shows the ToleRace action for each combina-
tion, which can be deduced directly from the result in columns 3
and 4. ToleRace reverts to detection mode when it determines that
there may be a dependency among variables and the resolution
function allowed out-of-order execution.

In general, we do not expect this extended framework to be
invoked often. A recent study by Lu et al. [23] points out that the
common cases for concurrency bugs, including races, involve
only a single variable and no more than two threads.

4. ToleRace Software Implementation
This section presents a software implementation of ToleRace on
top of an existing software instrumentation tool. The next section
evaluates the performance of our implementation and demon-
strates that its overhead is reasonable. Although the oracle Tole-
Race framework allows for both software and hardware imple-
mentations, a software approach may be more appealing as it can
be deployed immediately. Our software version makes all deci-
sions at runtime and does not perform any static program analysis.
In this sense, it should give us an upper bound on the overhead.
We expect other implementations to be more efficient.

4.1 Pin Tools
We chose to implement ToleRace on top of Pin [26], a dynamic
instrumentation toolkit from Intel. Pin is available for a variety of
operating systems and architectures, including x86 Linux and
Windows platforms. The dynamic compilation and instrumenta-
tion nature of Pin allows us to identify critical sections and the
shared variables they protect at runtime without static annotations.
Moreover, Pin is stable and its performance compares favorably
with other similar tools.
 We now describe our x86 Linux Pin-ToleRace implementa-
tion for parallel pthreads-based programs in detail. Although our
implementation is somewhat platform specific and the multith-
readed applications we use employ a specific thread library, we
believe the framework described here generalizes to other plat-
forms and threading libraries. Pin-ToleRace supports statically
and dynamically linked executables. As we are only interested in
the critical sections of specific code regions, we assume informa-
tion is provided to ToleRace so that it can identify the code re-
gions in question. Note that, in the rest of this paper, the term user
code refers to the code regions that are to be protected by Tole-
Race whereas library code refers to all other code (which does not
have to reside in a library though it might).

4.2 The General Pin-ToleRace Framework
As the oracle ToleRace has complete knowledge of all the shared
variables protected by a critical section, it can create the local
copies as soon as the critical section is entered. Of course, such
oracle knowledge may not be available in practice due to dynami-
cally allocated shared variables. Hence, our Pin-ToleRace imple-
mentation assumes no such knowledge and the shared variables
associated with a particular critical section are always determined
on the fly. Pin-ToleRace works directly on the executable; no
source code is required. The notion of shared variables, thus, is
redefined to that of shared memory locations. We conservatively
assume that all memory accesses in a critical section touch shared
memory locations except for those touching the thread local stack.
We use the term safe memory to refer to the region of memory
that holds the local copies of the shared memory.
 The safe memory is initially empty. Once a running thread is
detected to have entered a critical section, each executed instruc-
tion with a memory operand touching a shared location is instru-
mented; no instructions get instrumented outside of critical sec-
tions. The instrumentation code searches the safe memory region
for a local copy of the shared memory that is being accessed. If
found, the memory access is redirected to this copy. If not found,

the analysis routine creates a new node in the safe memory. The
node records the address, the original value and the current value
of the shared memory location together with other metadata that
we describe later. It serves as a local copy of this shared location
that all subsequent accesses in this critical section will consult.
When exiting from the critical section, Pin-ToleRace traverses the
nodes in the safe memory region and compares the saved original
value with the value in the corresponding true memory location.
After taking the appropriate action to tolerate or detect a race, if
any, it frees the nodes.

locklist
safemem
sharedsafemem

tid
outermost lock

variable
0 xxxxxx
1 0x3deeaabb
2 0x3f112244
3 0x3deeaabb
: :
: :
N xxxxxx

0x3deeaabb
1

Safe Memory Region

tid-lock table

safemem header

safemem list

cond_wait_threadlist
next
lockvar
write_aft_orig_accs
currentvalue
origaccesstype
origvalue
address

// Instrumentation Routine
VOID Instruction(INS ins) {
 if (call to pthread_mutex_lock && in user code) {
 Insert analysis routine CSEnter
 }
 if (call to pthread_mutex_unlock && in user code) {
 Insert analysis routine CSExit
 Insert analysis routine for the resolution function
 }
 if (CSLevel[PIN_ThreadId()]>=1) {
 if (non-stack accesses) {
 Rewrite memory operands
 Insert analysis routine to redirect accesses to the safe memory
 }
 }
}

Figure 4. Pin-ToleRace framework.

4.3 Implementation Details
This subsection describes the implementation of Pin-ToleRace,
whose framework is shown pictorially in Figure 4.

4.3.1 The Safe Memory Region
As mentioned, the safe memory region is where the local copies
of the shared memory locations reside. It contains three main data
structures: the thread id (tid) lock mapping table, the safemem
header, and the list of safemem nodes. The lock mapping table
size is determined by the maximum number of threads allowed in
the system. The other two are dynamic structures, and their con-
tent is alive as long as the execution proceeds through a critical
section. The content is created by the first instruction that accesses
a shared memory location. The role of each of these structures is
explained next.

4.3.2 Identifying Critical Sections
A critical section is defined by a mutex variable and a pair of
pthread_mutex_lock and pthread_mutex_unlock calls with the
mutex variable as their argument. Pin-ToleRace instruments
lock/unlock calls dynamically. When a lock routine is executed, it
adds a call to the CSEnter analysis routine. The analysis routine
increments the CSLevel counter and sets the respective entry in
the tid-lock table by updating it with the thread id and lock varia-
ble argument passed to it. The CSLevel counter is a per thread
counter that keeps track of the critical section nesting level. When
an unlock call is encountered, a call to the CSExit routine is add-
ed, which decrements the CSLevel counter. A thread is executing

inside a critical section if its CSLevel counter (CSLevel[tid]) is
greater than or equal to one. Because Pin-ToleRace is only con-
cerned with user code (see earlier definition), we only instrument
lock/unlock calls in the selected code regions.

4.3.3 Instrumenting Accesses to Shared Memory Locations
When an instruction is executed, Pin-ToleRace determines which
thread it belongs to with the PIN_ThreadId() function. Then, it
checks the value of CSLevel[tid] and whether the instruction is
accessing a shared memory location. Instrumentation is enabled
only when CSLevel[tid] is greater than zero. We ignore operands
that access the local stack; all other locations are presumed to be
shared, which includes all truly shared locations as well as some
false locations such as private heap variables. Pin-ToleRace can-
not determine whether a particular heap location is shared, and,
therefore, conservatively assumes all heap locations to be shared.
Once we decide that an instruction accesses a shared location, we
rewrite its memory operand. Note that some CISC instructions
require multiple operands to be rewritten per instruction. The
operand is converted from its current addressing mode to the base
register addressing mode using one of Pin’s scratch registers. We
instrument this instruction and pass the effective address of the
memory operand to the analysis routine. The analysis routine
determines which thread is executing it and searches the corres-
ponding safemem linked list using the effective address as the
search key. If a match is found, the routine returns the address of
the currentvalue field of the matching node. This address is
written into the scratch register that is used as the base address
register for the rewritten operand. If no match is found, the analy-
sis routine creates a new node and updates the origvalue and
currentvalue fields with the true memory value obtained by
dereferencing the effective address. (This performs the V''=V'=V
operation.) It then returns the address of the currentvalue
field like in the found case. Although the instrumentation routine
is a callback routine that is called by multiple threads, it does not
create a race as it is serialized under Pin. Any thread can instru-
ment code as long as it is executing in a critical section, and the
same instrumented code will apply to all other threads.

4.3.4 Critical Section Exit
Before the call to the unlock routine at the critical section exit, we
insert a call to an analysis routine that executes the resolution
function. The associated lock variable is passed to this routine to
handle nested critical sections. At this point, we resolve all race
conditions to the shared memory locations accessed within the
critical section according to Table 2. Section 4.4 provides more
detail. After the race condition resolution, the safemem nodes
are freed, provided that the current critical section is not nested
and that there are no outstanding waits on condition variables (cf.
Sections 4.3.6 and 4.3.8).

4.3.5 Handling Partial Reads and Writes
The address field in a safemem node is aligned to the native
machine width. In case of IA-32, the last two bits are always zero.
When an instruction accesses a safemem node with a size of less
than 4 bytes, i.e., a byte or a short access, its memory operand
address needs to be checked against a range of addresses.

4.3.6 Nested and Overlapped Critical Sections
The main component of the safe memory data structure that han-
dles nested and overlapped critical sections is the locklist in

the safemem header. The locklist is maintained such that the
head of the list always points to the most recent lock variable
associated with the innermost critical section. This approach cor-
rectly associates shared memory accesses with the most recent
lock variable acquired.
 A critical section that executes inside another critical section
never creates a new safemem list. Instead, it shares this structure
with the outer critical section(s). If this were not so, the inner
critical section could access stale memory values as the most up to
date values might reside in another safe memory region.
 Upon critical section exit, the resolution function selectively
resolves races for the shared memory locations that are associated
with the current lock variable. Recall from the previous section
that the lock mutex variable is passed to the analysis routine. We
traverse all safemem nodes, check for a matching lockvar
value, resolve races for that particular node, and delete that node
from the safemem list. The corresponding node in the lock list is
also deleted. At this point, the shared memory associated with the
matching lockvar becomes globally visible. If the locklist
becomes empty, the safemem header is freed and the respective
entry in the tid-lock table is reclaimed.
 If the multithreaded program under consideration contains
nested critical sections but none that overlap, we can simplify our
scheme because there is no need for a list of lock variables. The
current call to the unlock routine will correctly be matched with
the most recent call to the lock routine. Shared memory accesses
in the inner critical section can always be associated with the nest-
ing level given by CSLevel[tid] without the extra lock variable
context.

One subtlety with Pin-ToleRace involves a (non-nested) criti-
cal section that calls a function that is also called from outside any
critical section. This creates a situation where the non-critical
code in the called function is executed under a non-nested critical
section whereas the code inside the critical sections receives an
extra nesting level. A problem arises once the function’s code is
no longer executed under any critical section as it may contain
accesses to false locations whose addresses were redirected by the
code instrumentation. Since there is no resolution routine, the
content of the safe memory is never transferred to the true memo-
ry locations, which will likely crash the program. Our solution to
this problem is to put a guard on the analysis code that only al-
lows it to perform the safe memory access when the CSLevel is
greater than zero. Thus, when the function is executed outside a
critical section, it will access the original memory locations.

4.3.7 Routine Calls inside a Critical Section
Function calls inside a critical section are handled correctly with
the already described data structures of the safe memory. If a call
passes a shared memory value on the stack, this shared value is
correctly obtained from the safe memory region. Or, if the called
function accesses shared memory locations, its accesses are redi-
rected to the safe memory. However, we must distinguish between
a call to a user-defined and a call to a library routine. We only
want to protect user code, and, therefore, do not want to redirect
shared memory accesses in library code. Nevertheless, we cannot
simply exclude accesses to the safe memory from libraries be-
cause a call to a library routine can pass pointers to shared va-
riables as arguments. To handle this case, we allow the library
code to access the existing nodes in the safemem list but not to
create new nodes.

4.3.8 Handling Condition Variables
In addition to lock and mutex variables that synchronize threads
by controlling access to data, the pthreads library also supports the
use of condition variables to synchronize threads based on a data
value. A call to pthread_cond_wait with a condition variable and a
mutex variable as arguments atomically unlocks the mutex varia-
ble and makes the thread wait for the value of the condition varia-
ble. A call to pthread_cond_signal with the corresponding condi-
tional variable wakes up one of the waiting threads. These two
calls are instrumented with an analysis routine that increments and
decrements, respectively, the global wait counter.

Condition variables complicate ToleRace because they allow
multiple threads to be in a critical section at the same time. When
a new thread enters a critical section while some other threads are
waiting, this new thread cannot simply create its own copy of the
safe memory. Instead, it must share this copy with the waiting
threads. Hence, whenever a thread enters the critical section and
there is an outstanding conditional wait as indicated by the wait
counter, Pin-ToleRace searches the tid-lock table for the lock
variable, uses the safemem header associated with this lock varia-
ble, and increments the sharedsafemem field in the safemem
header. When the thread updates or creates a node in the safemem
list, it puts its tid on the node’s cond_wait_threadlist.
When it exits the critical section, it checks whether it is the last
thread to exit, and, if so, follows the normal exit procedure and
frees the safemem list. Otherwise, it resolves races only on the
locations it touched. If it was the only thread accessing this node,
it deletes the node from the list. If the node has been accessed by
multiple threads, the thread resolves any races for the node but
leaves the node in the list and only deletes its tid from the node’s
cond_wait_threadlist. If the thread needs to copy the
value to the true memory, it must also update the origvalue
field with the currentvalue. This ensures that when the re-
maining threads sharing this node resolve race conditions, they
will not signal a false race.

4.4 Tolerating and Detecting Races with Pin-ToleRace
When Pin-ToleRace performs the resolution function, it knows
the type of the first access to a shared location as this information
is recorded in the origaccesstype field when the node is
created. It also knows whether subsequent accesses to this loca-
tion included a write (write_aft_orig_accs field). There-
fore, Pin-ToleRace can determine the types of accesses that are
involved in a race to this shared location. When it compares V
with V'' and finds that V ≠ V'', the non-safe interleaving thread
must contain a write. However, it cannot distinguish between the
two write sequences, wx* and r+wx*. In some environments, the
write sequence may be known, which enables Pin-ToleRace to
tolerate all races that the oracle ToleRace can tolerate (see Table
2). In general, however, Pin-ToleRace must conservatively as-
sume the worst case interleaving, i.e., r+wx*, which prevents it
from tolerating type III races. Aside from this restriction, it tole-
rates the same race types as the oracle.

As a race detector, Pin-ToleRace has the same properties as
the oracle (cf. Section 3.1) except it introduces an additional false
negative situation due to its non-atomic execution of the resolu-
tion function. This happens when immediately after the compari-
son of V and V'' returns equal, the intervening sequence writes to
V. Given that the intervention must happen precisely at that mo-
ment, the probability of this occurring should be low. Pin-
ToleRace does tolerate races in this situation. To see this, let us

scalar

0

0.2

0.4

0.6

0.8

1

1.2

5M 7.5M 10M

Native Pin Pin-Tolerace

static array

0

0.5

1

1.5

2

2.5

3

5M 7.5M 10M

Native Pin Pin-Tolerace

dynamic array

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

5M 7.5M 10M

Native Pin Pin-Tolerace
 (a) (b) (c)

Figure 5. Normalized execution time of Pin-ToleRace for scalar (a), static array (b) and dynamic array (c) for different iteration counts.

revisit Table 2. It is sufficient to consider only race case IV as
Pin-ToleRace assumes r+wx* for all intervening write sequences.
In the absence of a race, when the safe thread operations contain
only reads, Pin-ToleRace never writes the local copy back; when
the operations start with a write, it always writes back the local
copy. This effectively enforces schedule T1T2 and T2T1 and thus
tolerates race types IVA and IVB, respectively, if they occurred.
Only race type IVC remains problematic.

5. Evaluation
5.1 Benchmarks
We use 13 applications from the SPLASH2 [33] and PARSEC [7]
benchmark suites to evaluate Pin-ToleRace. We also developed
three microbenchmarks to stress-test a program’s safe thread race
toleration in the presence of non-safe threads. The microben-
chmarks are called scalar, static array, and dynamic array.
 The eight programs from the SPLASH2 suite were chosen per
the minimum set recommended by the suite’s guidelines. Four of
the programs, cholesky, fft, lu, and radix, are kernels whereas the
other four, barnes, ocean, radiosity, and water, are full applica-
tions. We replaced the SPLASH2 suite’s PARMAC macros with a
pthreads library implementation. We use the default input for each
program but increase the size to lengthen the runtime where ne-
cessary.
 We selected the five programs from the newly released PAR-
SEC suite that use the pthreads library and define their critical
sections by pthread_mutex_lock and pthread_mutex_unlock call
pairs. One of these programs, dedup, is a kernel and the other
four, facesim, ferret, fluidanimate, and x264, are real applications.
The PARSEC suite aims to provide up-to-date multithreaded pro-
grams that focus on emerging workloads in recognition, mining,
and synthesis. We use the simlarge inputs.

5.2 System, Compiler, and Timing Measurement
All benchmarks, including the microbenchmarks, are compiled
and run on an Intel 32-bit system (IA-32) with a four-core 2.8
GHz Pentium4-Xeon CPU with a 4-way associative 16 kB L1
data cache per core, a 2 MB unified L2 cache, and 2 GB of main
memory. The operating system is Red Hat Enterprise Linux Re-
lease 4 and the compiler is gcc version 3.4.6. We compiled the
SPLASH2 and PARSEC programs per each suite’s guideline with
the -O2 and -O3 optimization level, respectively. The microben-
chmarks use the -O3 optimization level. The system enforces
memory alignment, which is necessary for Pin-ToleRace to func-
tion correctly (cf. Section 4.3.5). All timing measurements refer to
the elapsed time as measured by the UNIX shell command time.

5.3 Stress Test
The stress tests demonstrate Pin-ToleRace’s ability to tolerate
races of the form RXwW. In this type of race, the safe thread
performs read-increment-write operations on some shared loca-
tions while the non-safe threads write random values to these
locations.
 In the program scalar, the safe thread increments a single
shared location from zero to a given number of iterations. The
entire incrementing loop resides in a single critical section. At the
same time, several non-safe threads set this memory location to
their thread id and then read the value back to compute its square.
The programs static array and dynamic array perform the same
function. However, instead of a single shared location, the safe
thread increments all elements in a static array of size 10 and all
elements in a 5x5 2-D dynamic array allocated on the heap, re-
spectively. The non-safe threads write their IDs to all of these
shared locations.

For these tests, we know that the non-safe threads will cause
races that always begin with a write to a shared location. By
monitoring all shared accesses to the safe memory region, Pin-
ToleRace determines that the safe thread reads and then writes to
the shared locations. Once it identifies this RwxW type race, it
can tolerate it by scheduling the non-safe thread’s action to have
happened after the safe thread’s read-increment-write operations.
Our test setup uses five non-safe threads and runs the three pro-
grams with 5M, 7.5M, and 10M iterations. In each experiment, we
observe the correct values in all shared locations just before the
critical section exit. We also see that after exiting from the critical
section, the values of these shared locations change to the thread
id of the non-safe thread that last ran.

Figure 5 reports the overhead of Pin-ToleRace for tolerating
these RXwW races. It is normalized to the runtime of the three
programs under Pin with no instrumentation. We find that the
overhead is largely constant with respect to the number of itera-
tions. Note that the native and Pin runs of all three programs suf-
fer from race conditions while the Pin-ToleRace runs have all
their races correctly tolerated.

For all three microbenchmarks, the overhead of Pin-ToleRace
over native is very high—up to 80 times in the dynamic array
case. The primary reason is that we are riding on the Pin over-
head. If we measure the overhead of Pin-ToleRace over Pin, the
dynamic array benchmark incurs an overhead of about 4.5 times.
While this is substantial, it should be noted that the microben-
chmarks almost always execute in a critical section, which is
where all the Pin-ToleRace code resides. Moreover, because the
safemem nodes are organized as a linked list, the linear search
operation in the presence of many shared locations contributes
greatly to the overhead. For example, going from scalar to static

array more than doubles the overhead. In other words, these mi-
crobenchmarks reflect worst case scenarios as they are always
busy tolerating races inside a critical section. The next section
shows that real applications have critical section characteristics
that are more benign and thus result in a much lower overhead.

One additional point to note is that, with Pin-ToleRace, the
overhead of tolerating a race is about the same as detecting a race.
In both cases, all operations to the safe memory region are the
same up to the critical section exit. At this time, if Pin-ToleRace
decides to perform race detection, it reports the race on a particu-
lar shared location and terminates the application. If it decides to
tolerate the race, it either leaves the state of the shared locations as
it is or writes to them, depending on the type of race. Thus, the
overhead of tolerating different types of races may differ slightly,
but the difference should be small.

Table 4. Critical section characteristics.

unique
nested

CS
total

executed

dynamic
number of
instrs per
CS (user)

% dynamic
instrs in CS

cholesky 14 no 11,849 29 < 0.1%
fft 10 no 55 17 < 0.01%
lu 7 no 1,043 17 < 0.01%
radix 9 no 51 17 < 0.01%
barnes 10 no 1,098,771 94 0.18%
ocean 26 no 3,335 17 < 0.01%
radiosity 36 yes 1,739,512 18 0.11%
water-spatial 16 no 853 13 < 0.01%
dedup 7 yes 256,380 600 0.42%
facesim 5 yes 10,161 46 < 0.01%
ferret 4 yes 552,173 690 1.59%
fluidanimate 11 no 4,359,405 13 0.40%
x264 2 no 16,767 11 < 0.01%

Table 5. Unique accesses to possibly shared locations per critical

section by each thread.
unique accesses
AVG STD

cholesky 4.78 0.38
fft 1.37 0.04
lu 2.99 0.01
radix 2.82 0.19
barnes 19.13 0.03
ocean 3.00 0.00
radiosity 4.92 0.23
water-spatial 2.62 0.01
dedup 80.87 3.52
facesim 7.70 1.14
ferret 72.89 33.83
fluidanimate 5.00 0.00
x264 2.16 0.02

5.4 Real Applications
This section characterizes the critical sections of the 13 bench-
marks and discusses the overhead of Pin-ToleRace on these pro-
grams.

5.4.1 Critical Section Characterization
For this study, we compiled the 13 benchmarks to use four pro-
cessors, which corresponds to the number of cores on our evalua-
tion platform. We then used Pin to collect the critical section sta-
tistics shown in Table 4. Note that we only study critical sections
that reside in the user code, i.e., we exclude all library code.

The second column of Table 4 shows that the number of
unique critical sections per benchmark is quite small. radiosity
tops the list with 36. All but two of the programs have 16 or fewer
critical sections. Only four benchmarks, radiosity, dedup, facesim,
and ferret, contain nested critical sections. Note that some of these

nestings are statically non-nested. For example, a call inside a
non-nested critical section to a function that contains a non-nested
critical section dynamically results in nesting. The last column
shows the total number of executed instructions within the critical
sections. The numbers in this column exclude the instructions of
any library routines called from the critical sections. All programs
except ferret execute less than one percent of their dynamic user
instructions in critical sections.
 The fourth column of Table 4 shows the total number of ex-
ecuted critical sections. The counts range from under one hundred
in fft and radix to over one million in barnes, radiosity, and flui-
danimate. The average number of instructions executed in user
code per critical section is given in column five. Two benchmarks,
dedup and ferret, stand out. Both execute over 600 instructions per
critical section. barnes follows as a distant third at 94. These three
benchmarks execute loops inside their critical sections. The rest of
the programs execute fewer than 30 instructions per critical sec-
tion. Nevertheless, some of them have a high total dynamic in-
struction count inside critical sections, notably fluidanimate and
radiosity whose small critical sections are being looped over.

Next, we look at the critical sections from the point of view of
Pin-ToleRace. Table 5 shows the average number of shared mem-
ory locations accessed per critical section execution by each
benchmark. With the exception of ferret, this number is very uni-
form across the running threads as the standard deviations indi-
cate. Nine out of the 13 benchmarks perform fewer than five
unique accesses. With so few accesses, Pin-ToleRace’s linked list
structure in the safe memory should not be a performance bottle-
neck. However, in barnes and especially in dedup and facesim, the
number of unique accesses to shared locations is quite high. With
these programs, the linear search through the linked list structure
can add considerably to the Pin-ToleRace overhead. Overall, the
number of unique shared memory accesses seems to be in propor-
tion with the number of instructions executed per critical section.

5.4.2 Pin-ToleRace Performance
This section studies the overhead of Pin-ToleRace on our bench-
mark applications. Given the results of the previous subsection,
we decided to investigate two implementations of the safe memo-
ry. One uses the linked list approach described earlier and the
other uses a chained hash table with 128 entries. We choose this
size to minimize the collisions in dedup and ferret.

Figure 6 presents the results. The timing measurements are
normalized to the native runtime. Note that this is different from
the normalization we used for the stress tests. The second bar
shows the pure Pin overhead without instrumentation for each
program. The third and fourth bars indicate the overhead of Pin-
ToleRace with linked list and hash table implementations of the
safe memory, respectively. On average, Pin-ToleRace incurs
about a factor of two slowdown relative to the native runs and
about 24% overhead relative to the Pin runs. We believe these
performance degradations to be low enough to make Pin-
ToleRace deployable in production environments. Moreover, by
adding static analysis or hardware support, it should be possible to
reduce the overhead.

As expected, the hash table implementation of the safe memo-
ry reduces the Pin-ToleRace overhead of barnes, dedup, and fer-
ret. Unfortunately, it increases the overhead of all the other pro-
grams. The reason is that the chained hash table is more expensive
to initialize and free than the linked list. With the hash table
scheme, there is a fixed minimum number of entries to process
(proportional to the table size) whereas with the linked list

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

cholesky fft lu radix barnes ocean radiosity water-
spatial

dedup facesim ferret fluidanimate x264 GMEAN

Native w/ Pin w/ Pin-ToleRace w/ Hash Pin-ToleRace

Figure 6. Normalized execution time of Pin-ToleRace.

0%

20%

40%

60%

80%

100%

120%

140%

160%

cholesky fft lu radix barnes ocean radiosity water-
spatial

dedup facesim ferret fluidanimate x264 GMEAN

Native w/ Ideal ToleRace

Figure 7. Normalized execution time of ideal software ToleRace.

there are only as many nodes as there are unique shared memory
locations. Therefore, the hash table is only attractive when the
execution in a critical section can amortize this overhead. Recall
from the previous section that each of the three benchmarks for
which the hash table implementation works better executes a rela-
tively large number of instructions and touches many unique
shared memory locations inside the critical sections. The remain-
ing benchmarks have small critical sections, and each critical
section execution does not touch many unique shared locations,
making the linked list implementation better suited.

5.4.3 Idealized Software ToleRace
Suppose we have an oracle compiler that knows all the shared
locations within a critical section. The performance overhead of a
ToleRace implementation based on such a compiler presents a
lower bound on what we can achieve in software. (Recall that Pin-
ToleRace infers all the shared memory locations on-the-fly, thus
yielding an upper bound.)
 To mimic the effect of such an oracle compiler, we manually
modified the source code of our benchmarks after carefully study-
ing the critical sections and the shared variables in each of them.
In a few critical sections, we could not precisely mimic the effect
of the oracle compiler because of shared variables that are allo-
cated at runtime. In these instances, we instead mimic the me-
chanism used in Pin-ToleRace. Moreover, in barnes and radiosity,
we only modified frequently executed critical sections that cumu-
latively account for 99% and 90% of all dynamic critical section
executions, respectively. We believe that doing so should not
significantly affect the overhead result.

After we incorporated ToleRace into the critical sections, we
recompiled and ran these applications. Figure 7 shows the over-

head results, which are normalized to the native execution time
without ToleRace. The ideal software ToleRace incurs a 6.4%
overhead on average across our benchmarks. ferret executes in-
side critical sections more often than other applications and has
many runtime allocated shared variables. Consequently, it incurs
the highest overhead. dedup, which has the second highest over-
head, has similar characteristics as ferret. Most of the applications,
however, incur less than 1% overhead with the ideal software
ToleRace.

6. Related Work
Related race-detection research includes both static and dynamic
approaches. Static race detection relies on program analysis and
either assumes existing programming languages (e.g., Java [27])
or defines new programming language semantics that help im-
prove the static detection of races (e.g., Cyclone [14]). Static
analysis techniques face several challenges. First, because many
of the techniques are based on some form of model checking [15],
they are computationally expensive and issues of scalability arise.
Second, the conservative and approximate nature of the analysis
creates the potential for many false positives. RacerX [12] and
Houdini/rcc [13] address these issues by combining traditional
static analysis with heuristics and statistical ranking to identify the
most probable races. One inherent drawback of static analysis for
race detection is that asymmetric races can occur in contexts
where the source code for the component containing the error is
not available for examination.

Eraser is a dynamic race detection system based on lock-sets
[31]. Experience with this approach has shown that the overhead
of maintaining the locksets is high and that false positives can be
problematic. Subsequent approaches extend locksets with hap-

pens-before analysis [3]. Combining locksets with a happens-
before scheme results in higher precision dynamic race detectors
[10, 11, 29, 34]. Even with refinements, the execution overhead of
these approaches is typically larger than a factor of two. As we
have seen, previous work focuses primarily on detecting data
races rather than tolerating them. The ToleRace detection tech-
nique is distinct from the lockset and happens-before algorithms.
Focusing only on asymmetric races allows ToleRace to take a
transaction-like approach to race detection and toleration, which
significantly reduces the overhead of dynamic race detection.

Dynamic race detection approaches have also been adopted by
Intel’s Thread Checker [18] and Sun’s Thread Analyzer [17],
which are commercial tools capable of locating data races in con-
current programs. Both tools suffer from a high memory footprint
and runtime overhead and are, thus, primarily used for software
testing.

Atomicity violation is another important class of concurrency
errors. It can be addressed statically [5] or dynamically. The
AVIO system [24] belongs to the latter category and enumerates
erroneous access interleavings similar to our asymmetric race
interleavings. However, it only looks at single load/store pairs and
not sequences of accesses. Without hardware support, the over-
head of AVIO is very high, which makes it suitable only for test
environments. The work by Lucia et al. [25] offers to tolerate
some degree of atomicity violation with implicit atomicity by
grouping consecutive memory operations into atomic blocks.

Vaziri et al. [32] classify harmful interleavings into 11 catego-
ries, which is more than the six race cases (with case IV subdi-
vided) we considered. The extra categories address high-level data
races at the object granularity. Their approach to race detection
requires source-code annotation and targets safe language envi-
ronments.

Kiena et al. [20] propose two schemes to dynamically heal da-
ta races for Java programs. In one scheme, they reduce the proba-
bility of races happening by forcing threads that are about to cause
racy accesses to yield. This is done at the byte-code level through
yield() calls. In the other scheme, they add extra locks to some
common code patterns that are likely to result in races.

Concurrent to our work, Rajamani et al. [30] propose a run-
time system called Isolator that enforces isolation through page
protection. The idea is to protect the pages containing shared va-
riables (that are protected by a lock) so that accesses to them can
be intercepted. Then, accesses to those variables that observe the
proper locking discipline are redirected to a local copy of the cor-
responding page. Any improper access will be to the original page
and hence raise a page protection fault. Similarly, Abadi et al. [1]
use page-level protection to guarantee strong atomicity in soft-
ware transactional memory.

7. Summary
We introduce ToleRace, a novel runtime system that uses data
replication for detecting and tolerating concurrency errors in lock-
based multithreaded programs. ToleRace addresses asymmetric
races, where one use of a shared variable is correctly protected
with locks while other uses are not. We present a theoretical
framework as well as two software implementations. Our evalua-
tion indicates that real applications can run on top of software
ToleRace with acceptable overhead.

Acknowledgement
We would like to thank the anonymous reviewers for their in-
sightful comments on this paper. The Fusion and M3 groups in the

Computer Systems Laboratory at Cornell University provided
some of the computing resources used to obtain the results for this
work. James Cownie and Gregory Lueck were very helpful with
the Pin and Thread Checker tools. Emery Berger, Chen Ding,
Manuel Fahndrich, Tim Harris, Sriram Rajamani, Ganesan Rama-
lingam, and Jason Yang gave useful comments and suggestions
during the development of ToleRace. Martin Burtscher is sup-
ported by NSF grants 0833162, 0719966, 0702353, 0615240,
0541193 as well as grants from IBM and Intel. Paruj Ratanawo-
rabhan is supported by DOE grant DE-FG02-06ER25722.

References
[1] M. Abadi, T. Harris and M. Mehrara, Transactional memory

with strong atomicity using off-the-shelf memory protection
hardware, Proceeding of the 14th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming
Raleigh, NC, 2009.

[2] S. V. Adve and M. D. Hill, Weak Ordering - A New Defini-
tion, Proceedings of the 17th Annual International Sympo-
sium on Computer Architecture, 1990, pp. 2-14.

[3] S. V. Adve, M. D. Hill, B. P. Miller and R. H. B. Netzer,
Detecting data races on weak memory systems, ISCA '91:
Proceedings of the 18th Annual International Symposium on
Computer Architecture, ACM Press, New York, NY, USA,
1991, pp. 234-243.

[4] S. V. Adve, V. S. Pai, P. Ranganathan and A.-S. H., Recent
Advances in Memory Consistency Models for Hardware
Shared-Memory Multiprocessors, Proceedings of the IEEE,
special issue on distributed shared-memory, 87 (1999), pp.
445-455.

[5] R. Agarwal, A. Sasturkar, L. Wang and S. Stoller, Optimized
Run-Time Race Detection and Atomicity Checking Using
Partial Discovered Types, Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering, 2005, pp. 233-242.

[6] E. D. Berger and B. G. Zorn, DieHard: probabilistic memory
safety for unsafe languages, ACM SIGPLAN Notices, 41
(2006), pp. 158-168.

[7] C. Bienia, S. Kumar, J. Singh and K. Li, The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations, Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, 2008.

[8] C. Blundell, C. Lewis and M. Martin, Deconstructing Trans-
actional Semantics: The Subtleties of Atomicity, Fourth An-
nual Workshop on Duplicating, Deconstructing, and De-
bunking, Madison, Wisconsin, 2005.

[9] H. Boehm, Foundations of the C++ Concurrency Memory
Model, Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation,
2008.

[10] R. Callahan and J.-D. Choi, Hybrid Dynamic Data Race
Detection, ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ACM Press, New York,
NY, 2003.

[11] T. Elmas, S. Qadeer and S. Tasiran, Goldilocks: Efficiently
Computing the Happens-Before Relation Using Locksets, in
K. Havelund, N. Manuel, G. Rosu and B. Wolff, eds.,
FATES/RV, Springer, 2006, pp. 193-208.

[12] D. R. Engler and K. Ashcraft, RacerX: effective, static detec-
tion of race conditions and deadlocks, SOSP '03: Proceed-
ings of the 20th ACM Symposium on Operating Systems
Principles, 2003, pp. 237-252.

[13] C. Flanagan and S. N. Freund, Detecting race conditions in
large programs, PASTE '01: Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, ACM Press, New York,
NY, USA, 2001, pp. 90-96.

[14] D. Grossman, Type-safe multithreading in cyclone, TLDI '03:
Proceedings of the 2003 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementa-
tion, ACM Press, New York, NY, USA, 2003, pp. 13-25.

[15] T. A. Henzinger, R. Jhala and R. Majumdar, Race checking
by context inference, PLDI '04: Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language De-
sign and Implementation, ACM Press, New York, NY, USA,
2004, pp. 1-13.

[16] M. Herlihy and J. E. B. Moss, Transactional memory: archi-
tectural support for lock-free data structures, ISCA '93: Pro-
ceedings of the 20th Annual International Symposium on
Computer Architecture, ACM Press, New York, NY, USA,
1993, pp. 289-300.

[17] http://developers.sun.com/sunstudio/downloads/ssx/tha/.
[18] http://www.intel.com/cd/software/products/asmo-

na/eng/286406.htm.
[19] D. Kirovski, B. Zorn, R. Nagpal and K. Pattabiraman, An

Oracle for Tolerating and Detecting Asymmetric Races, Mi-
crosoft Research Technical Report MSR-TR-2007-122, Mi-
crosoft Research, 2007.

[20] B. Krena, Z. Letko, R. Tzoref, S. Ur and T. Vojnar, Healing
Data Races On-The-Fly, Proceedings of the 2007 ACM
Workshop on Parallel and Distributed Systems: Testing and
Debugging, London, UK, 2007.

[21] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K.
Bala and P. Chew, Optimistic Parallelism Requires Abstrac-
tions, Programming Language Design and Implementation,
San Diego, CA, 2007.

[22] L. Lamport, How to Make a Correct Multiprocess Program
Execute Correctly on a Multiprocessor, IEEE Transactions
on Computers, 46 (1997), pp. 779-782.

[23] S. Lu, S. Park, E. Seo and Y. Zhou, Learning from Mistakes -
A Comprehensive Study on Real World Concurrency Bug
Characteristics, The 13th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, Seattle, WA, 2008.

[24] S. Lu, J. Tucek, F. Qin and Y. Zhou, AVIO: detecting ato-
micity violations via access interleaving invariants, AS-
PLOS-XII: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and
Operating Systems, ACM Press, New York, NY, USA, 2006,
pp. 37-48.

[25] B. Lucia, J. Devietti, K. Strauss and L. Ceze, Atom-Aid: De-
tecting and Surviving Atomicity Violations, The 35th Interna-
tional Symposium on Computer Architecture, Beijing, China,
2008.

[26] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi and K. Hazelwood, Pin: building
customized program analysis tools with dynamic instrumen-
tation, In Proceedings of the 2005 ACM SIGPLAN Confe-
rence on Programming Language Design and Implementa-
tion, Chicago, IL, USA, 2005.

[27] M. Naik, A. Aiken and J. Whaley, Effective static race detec-
tion for Java, PLDI '06: Proceedings of the 2006 ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, ACM Press, New York, NY, USA, 2006,
pp. 308-319.

[28] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards and B.
Calder, Automatically Classifying Benign and Harmful Data
Races Using Replay Analysis, International Conference on
Programming Language Design and Implementation, 2007.

[29] E. Pozniansky and A. Schuster, Efficient on-the-fly data race
detection in multithreaded C++ programs, PPoPP '03: Pro-
ceedings of the 9th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ACM Press, New
York, NY, USA, 2003, pp. 179-190.

[30] S. Rajamani, G. Ramalingam, V. Ranganath and K. Vaswani,
ISOLATOR: Dynamically Ensuring Isolation in Concurrent
Programs, Proceedings of the Symposium on Architectural
Support for Programming Languages and Operating Sys-
tems, 2009.

[31] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T. E.
Anderson, Eraser: A Dynamic Data Race Detector for Multi-
Threaded Programs, SOSP, 1997, pp. 27-37.

[32] M. Vaziri, F. Tip and J. Dolby, Associating Synchronization
Constraints with Data in an Object-Oriented Language, The
33rd Annual Symposium on Principles of Programming Lan-
guages, Charleston, SC, 2006.

[33] S. Woo, M. Ohara, E. Torrie, J. Singh and A. Gupta, The
SPLASH-2 Programs: Characterization and Methodological
Considerations, In Proceedings of the 22nd International
Symposium on Computer Architecture, Santa Margherita Li-
gure, Italy, 1995.

[34] Y. Yu, T. Rodeheffer and W. Chen, RaceTrack: efficient
detection of data race conditions via adaptive tracking,
SOSP '03: Proceedings of the 20th ACM Symposium on Op-
erating Systems Principles, Brighton, UK, 2005, pp. 221-
234.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

