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Abstract 
This paper introduces ToleRace, a runtime system that allows 
programs to detect and even tolerate asymmetric data races. 
Asymmetric races are race conditions where one thread correctly 
acquires and releases a lock for a shared variable while another 
thread improperly accesses the same variable. ToleRace provides 
approximate isolation in the critical sections of lock-based parallel 
programs by creating a local copy of each shared variable when 
entering a critical section, operating on the local copies, and prop-
agating the appropriate copies upon leaving the critical section. 
We start by characterizing all possible interleavings that can cause 
races and precisely describe the effect of ToleRace in each case. 
Then, we study the theoretical aspects of an oracle that knows 
exactly what type of interleaving has occurred. Finally, we present 
two software implementations of ToleRace and evaluate them on 
multithreaded applications from the SPLASH2 and PARSEC 
suites. Our implementation on top of a dynamic instrumentation 
tool, which works directly on executables and requires no source 
code modifications, incurs an overhead of a factor of two on aver-
age. Manually adding ToleRace to the source code of these appli-
cations results in an average overhead of 6.4 percent. 
 
Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging – Debugging aids, Diagnostics; 
D.1.3 [Programming Techniques]: Concurrent Programming – 
Parallel programming 
 
General Terms Reliability, Performance, Experimentation 
 
Keywords race detection and toleration; runtime support; dynamic 
instrumentation 
 
1. Introduction 
As general-purpose microprocessors move from a single core to 
multiple cores per chip, programming needs to migrate from se-
quential to parallel code if programs are to exploit more than one 
CPU. This software transition, however, has not been as easy and 
natural as the hardware counterpart has. Programmers find it diffi-
cult to write and reason about parallel programs. As a result, such 
programs are usually rife with errors, many of which are unheard-
of in sequential programs, e.g., atomicity violations and data rac-
es. Moreover, these errors are harder to deal with than sequential 
programming errors because of their non-deterministic nature. 
 
 
 
 
 
 

Finding a suitable model that addresses the programmability 
of parallel programs while keeping up with the performance ex-
pected of multi-core hardware is an active research area. Promis-
ing candidates include transactional memory [16] and the Galois 
system [21]. At present, lock-based parallel programs are still 
dominant, particularly those written in unsafe languages such as C 
or C++ with add-on libraries for threading and synchronization. 
There is also ongoing research [9] that aims to improve the rigor 
of this programming paradigm. 

Our work tackles race conditions in lock-based programs. In 
general, a race is defined as a condition where multiple threads 
access a shared memory location without synchronization and 
there is at least one write among the accesses. With proper syn-
chronization, lock-based programs adhere to the data-race-free 
model [4] where synchronization operations are made explicit by 
calls to specific library functions, e.g., pthread_mutex_lock in 
POSIX threads (pthreads). In this model, the hardware appears 
sequentially consistent with respect to the programs even though 
it may be weakly ordered in reality [2]. We are interested in 
asymmetric races, which occur when one thread correctly protects 
a shared variable using a lock while another thread accesses the 
same variable improperly due to a synchronization error (e.g., not 
taking a lock, taking the wrong lock, taking a lock late, etc.). 
 

Thread 1: 
// gScript is shared 
 
Lock(A); 
if (gScript == NULL) { 
   baseScript = default; 
} else { 
 
   baseScript = gScript; 
} 
UnLock(A); 

Thread 2: 
 
gScript = NULL; 

 
Figure 1. An asymmetric race. 

 
An example of an asymmetric race is shown in Figure 1. Here, 

Thread 1 correctly uses a critical section to protect its read ac-
cesses to the shared variable gScript. Thread 2 incorrectly 
updates gScript without a lock, thus creating a race. The race 
occurs infrequently, i.e., only when Thread 2’s update happens 
between the test for NULL and the else part of the conditional 
in Thread 1. Our reasons for focusing on asymmetric races are: 

1. They are common in software development projects. 
This conclusion comes from direct experience with developers in 
software houses like Microsoft. There are two reasons for this. 
First, usually a programmer’s local reasoning about concurrency, 
e.g., taking proper locks to protect shared variables, is correct. 
Errors due to taking wrong locks or no locks lie outside of the 
programmer’s code, for example, in third party libraries. Given 
that lock-based programs rely on convention, this phenomenon is 
understandable. The second reason has to do with legacy code. As 
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software evolves, assumptions about a piece of code may be inva-
lidated. For instance, a library may have been written assuming a 
single-threaded environment, but later the requirements change 
and multiple threads use it. An expedient response to this change 
is to demand that all clients wrap their calls to the library, acquir-
ing locks before entry and releasing them on exit. Because this 
solution requires that all clients be changed, races can be intro-
duced when clients fail to observe the proper locking discipline. 

 

Thread 1: 
 
K = x; 
flag = true; 

Thread 2: 
 
while (flag != true);
y = K; 

// K and flag are declared volatile 

 
Figure 2. User-defined synchronization. 

 
2. Symmetric races are usually benign. 

Because calls to synchronization operations are expensive, pro-
grammers often resort to lightweight user-defined synchronization 
as shown in Figure 2 where Threads 1 and 2 synchronize on the 
flag variable. In this situation, even though a race occurs by 
definition (the shared variable flag is accessed without explicit 
synchronization), it does not harm the program. Narayanasamy et 
al. [28] show other types of benign symmetric races, e.g., redun-
dant writes and disjoint bit manipulation. Their experience with 
Windows Vista and Internet Explorer indicates that these benign 
races are rather common.  

3. Programmers want to reason locally about the correctness 
of the critical sections in their code. 
Normally, local reasoning cannot be applied when considering the 
correctness of parallel programs with shared variables. Compo-
nents that are locally correct (e.g., use locks to protect a shared 
variable) are rendered incorrect by arbitrary code elsewhere in the 
application. With large development teams, it is typical for most 
of the code in an application to be outside the direct control of a 
particular programmer. What is worse, the source code of a library 
that contains a concurrency error may not be available at all. In 
such cases, the client of an incorrect library would be forced to 
program around the error in an ad hoc way. Our goal is to provide 
a tool that allows programmers to detect and respond to external 
concurrency errors in a structured and principled way with no 
changes to the external code. 

ToleRace is a runtime system that allows programs to contin-
ue executing in the presence of asymmetric races and possibly 
complete with a well-defined semantic. Inspired by the DieHard 
system [6], which probabilistically tolerates memory safety errors, 
ToleRace uses replication to detect and/or tolerate races. It pro-
vides an approximation of isolation in critical sections by creating 
local copies of shared variables when a critical section is entered, 
operating on the local copy while in the critical section, detecting 
conflicting changes to shared data when the critical section is 
exited, and propagating the appropriate copy when possible to 
hide the race. ToleRace allows a variety of implementations that 
range from software only, where races are only probabilistically 
detected and tolerated, to a combination of hardware and soft-
ware, where stronger guarantees are possible. In this paper, we 
focus on the fundamental properties of ToleRace and describe two 
possible software implementations. 

ToleRace can be compared to transactional memory (TM) 
[16]. The ToleRace mechanism outlined above is analogous to 
constructing a read-write set while executing in a transaction with 
a lazy versioning policy and lazily detecting conflicts to the set, 

i.e., just before the transaction commits. However, ToleRace is 
not based on optimistic synchronization as TM is; there is no no-
tion of abort-and-rollback, nor is there a need for contention man-
agement. Whereas handling side effect operations and nested 
transactions are still open issues with TM, ToleRace handles all 
I/O operations as well as overlapped critical sections transparent-
ly, preserving the semantics of the original lock-based program. 
While TM can provide isolation and tolerates races just as Tole-
Race does, it is not clear how TM can be applied to existing lock-
based codes. Converting from lock-based to transaction-based 
code is not trivial [8]. 

This paper makes the following contributions: 
• Comprehensive runtime management of races. ToleRace 

enables programs to tolerate races, which decreases the likelihood 
that the races will cause incorrect program behavior. Increasing a 
program’s tolerance to races reduces the need for the races to be 
debugged/patched. In instances where ToleRace cannot tolerate 
races, it detects them either precisely or with high probability, 
depending on the implementation. Note that there can be instances 
where ToleRace silently and correctly tolerates races without 
detecting them (cf. Section 3.1). 

• Precise detection. ToleRace only identifies races that actually 
happen at runtime. It detects a race when the critical section in 
which the race took place exits. 

• Programmer-centric local reasoning. ToleRace enables 
programmer tools to allow local reasoning about correctness and 
to facilitate a structured means of detecting and tolerating errors 
that are caused by code outside the programmer’s control. The 
programmer can control the overhead by selectively turning To-
leRace on or off for individual critical sections. This is useful for 
debugging, testing, and patching released executables. 

• Low overhead software implementation. We present two 
software implementations of ToleRace. Our general dynamic 
instrumentation-based approach incurs an overhead of a factor of 
two whereas our source-code based implementation incurs an 
overhead of 6.4% on average. 

 
2. Characterizing Asymmetric Races 
We denote as l() and u() the atomic functions that acquire and 
release a specific lock, respectively. We further denote as r() and 
w() two functions that read from and write to a specific variable. 
We first consider cases when a single variable is protected and 
accessed in a non-nested critical section. We then extend this 
theoretical framework to cover the cases involving multiple va-
riables and overlapped critical sections. We use l, u, r, and w to 
denote the fundamental functions over that specific variable, and 
we use x to denote a “don’t care” function that can be either a 
read or a write. r+ denotes a sequence of at least one read and r* 
indicates zero or more reads. The operators + and * are equally 
defined for writes. For a specific thread T1, we define the se-
quence of critical operations using the above operators and fun-
damental functions. For example, T1 = [l1r11w11r+12u1] denotes a 
thread that first locks a variable, then reads and writes exactly 
once, followed by at least one read before it unlocks the variable. 
The first digit in the operation index denotes the thread index and 
the second digit distinguishes between sequences of operations of 
the same type. We denote one possible interleaved execution of 
critical operations of two threads T1 = [l1r11w11r+12u1] and T2 = 
[w2] as the following sequence S = {l1r11w11w2r+12u1}. Sequence 
S specifies that the write from the second thread occurred between 
the first write and the second read in the first thread and thus 
causes a race condition. 



Table 1. Tabulating classes of race instances. Column marked “race” denotes whether the schedule T´1T2T´´1 results in a race. 
operation interleaving operation interleaving operation interleaving

T'1 T2 T''1 race T'1 T2 T''1 race T'1 T2 T''1 race
R+ r+ R+ false R+ wx* R+ true R+ r+wx* R+ true
R+ r+ WX* false R+ wx* WX* true R+ r+wx* WX* true
R+ r+ R+WX* false R+ wx* R+WX* true R+ r+wx* R+WX* true

WX* r+ R+ false WX* wx* R+ true WX* r+wx* R+ true
WX* r+ WX* true WX* wx* WX* false WX* r+wx* WX* true
WX* r+ R+WX* true WX* wx* R+WX* true WX* r+wx* R+WX* true

R+WX* r+ R+ false R+WX* wx* R+ true R+WX* r+wx* R+ true
R+WX* r+ WX* true R+WX* wx* WX* true R+WX* r+wx* WX* true
R+WX* r+ R+WX* true R+WX* wx* R+WX* true R+WX* r+wx* R+WX* true  

 
 To characterize asymmetric races, we consider all interleav-
ings between operations in a correctly synchronized thread and a 
second, unsynchronized thread. We then reduce the interleavings 
that result in races into four classes and consider how ToleRace 
handles each class. We assume a programming model with two 
types of threads: 

• a safe thread that consists of a single critical section, and 
• a non-safe thread that might access a shared variable but does 

not have a critical section or uses the wrong lock to guard it. 
 
 Definition 1. A race condition represents any one of all possi-
ble execution interleavings of a set of threads T = {T1…TN} 
where at least one of the threads in T is non-safe and at least one 
is safe, such that the final computation state after all threads have 
executed does not correspond to any case when all safe threads in 
T have executed in isolation. 
 
Note that this definition does not say anything about what happens 
to the values of shared variables in non-safe threads. Because non-
safe threads do not control their access to the values of shared 
variables, we assume they are written in such a way that they are 
able to tolerate arbitrary updates to these variables at any time. 
Because our solution focuses on tolerating and detecting asymme-
tric races, we consider an execution race free only with respect to 
the values of the shared variables in the safe threads. 
 Our definition is agnostic to the threads’ execution order. 
Thus, we assume that the programmer intended that the threads 
can be executed in any order, as long as they execute atomically 
with respect to their critical sections. 
 A thread (safe or non-safe) in T could execute but not affect 
the program’s computation state. In this case, we informally relax 
Definition 1 to accept execution schedules as correct where a sub-
set of the threads does not execute. 
 With the execution model defined above, ToleRace preserves 
the data-race-free-0 model semantics [22] when it tolerates all the 
occurring races. Such a model observes sequentially consistent 
execution for all synchronization operations while allowing the 
underlying hardware to be weakly ordered. 
 To understand how the safe and non-safe threads can interact, 
we exhaustively explore all interleavings where the non-safe 
thread T2 executes between operations in the safe thread T1. To 
simplify the analysis, we note that there are only three ways in 
which a sequence of operations by a single thread can interact 
with a single variable: by reading it only (r+), by setting its value 
regardless of its prior (wx*), and by setting its value based upon 
its prior (r+wx*). Operations that follow a write by a particular 
thread are important semantically but do not affect the inter-thread 
interactions. Also note that rw could occur in two versions: (i) w 
is dependent upon the value retrieved by r and (ii) w is not depen-
dent upon the value retrieved by r. Sequences where (ii) is true 

could be analyzed as independent manifestations of two sequences 
of type r+ and wx*. Sequences where (i) is true demand special 
attention; thus, in the remainder of this paper, when we specify a 
sequence rw issued by the same thread we assume (i). 
 Table 1 tabulates all possible interactions between a safe 
thread T1 and a non-safe thread T2. The safe thread is improperly 
intercepted by T2 at a position that slices the operations of T1 into 
two parts T´1 and T´´1. The table evaluates the outcome of this 
interaction exhaustively. We derive the following classification 
theorem from Table 1. 
 

Theorem 1. Race condition cases. A race between two threads 
occurs due to one of the following conditions: 
I. XwR = {l1x+1w2x*2r1u1}. This case specifies that any se-

quence of operations by T2 that starts with a write and occurs 
after any operation but before a read in T1 causes a race. 

II. WrW = {l1r*11w11x*1r+2r*12w12u1}. This case specifies that 
any sequence of reads by T2 when placed in-between two 
writes by T1 results in a race. 

III. RXwW = {l1r1x*1w2x*2w1u1}. When T1 starts with a read 
followed by an arbitrary sequence of operations, and T2 ex-
ecutes any sequence of operations that starts with a write just 
before T1 writes back to this variable, a race will occur. 

IV. XrwX = {l1x+11r+2w2x*2x12u1}. This case specifies that any 
sequence starting with a write based upon a prior by T2 caus-
es a race when interleaved between any two operations of T1. 

 With no effect on the generality of the theorem, in all se-
quences we assume that the last operation in T1, which completes 
the race condition, is the last operation in the critical section. 
 

Proof. Straightforward by combining cases from Table 1. □ 
 
There is previous work [24, 32] that also proposes enumera-

tion of possible interleavings. However, it does not focus on race 
toleration as we do. Section 3.1 describes how we employ the 
classification from Table 1 for this purpose. 
 

Theorem 2. Reduction of race conditions. Any race condition 
among K>2 threads can always be reduced to one of the I-IV 
cases of a race between two threads. 
 

Proof. Consider a single safe thread among K interacting 
threads. The K-1 non-safe threads impart intervening sequences of 
operations r+, wx*, or r+wx* to the safe thread. When these three 
sequences interleave, the resulting sequence still belongs to one of 
the three sequences. As far as the safe thread is concerned, no 
matter how many non-safe threads interact with it, it only ob-
serves the resulting intervening sequence. If such a sequence is 
one of the three sequences mentioned, it is as if it interacted with 



just a single non-safe thread, and the resulting race instances can 
be classified by Table 1. 

Now, consider multiple safe threads among the K interacting 
threads. Because safe threads, by definition, hold consistent lock-
ing for a given shared variable, only one can be in the critical 
section accessing this variable at a given time. This brings us back 
to the first case we just considered and completes the proof. □ 

 

 
(a) Without ToleRace     (b) With ToleRace 

 
Figure 3. ToleRace uses two additional copies of a variable to 

tolerate races. 
 
3. The ToleRace Oracle 
The core of our approach to managing the race condition cases 
specified in Theorem 1 is to replicate the protected shared state so 
that the thread that acquires a lock on the shared state has an ex-
clusive copy (see Figure 3). This thread continues reading from 
and/or writing to this copy until it releases the lock. When the 
lock is released, the ToleRace runtime can employ a variety of 
software and/or hardware mechanisms to determine which race, if 
any, has occurred. Possible outcomes range from tolerating the 
race completely to reporting that a race has occurred to executing 
a programmer-specific handler when an intolerable race is de-
tected. 
 Next, we study the effect of ToleRace on the cases described 
in Theorem 1, assuming an oracle determines which race has oc-
curred. 
 Initialization and Finalization: We assume that the binding of 
locks (xV) to shared variables (V) is known before the critical sec-
tion in T1 is entered and that storage for two additional copies (V', 
V'') of variable V has been allocated. After the lock is released, the 
storage for the two copies is deallocated. 
 Lock (Entry): When lock xV is acquired by T1, we copy V to V' 
and V'' (V''=V'=V) atomically. 
 Reads and Writes inside the Critical Section: ToleRace alters 
all instructions in the critical section of T1 to use V' instead of V. 
Thus, V' is the local copy of V for T1 that cannot be accessed by 
other threads due to a race. All other threads such as T2 are un-
changed and continue using V for all accesses. Copy V'' is not 
accessed by any thread until T1 exits the critical section. 
 Unlock (Exit): When T1 exits the critical section by releasing 
the acquired lock, ToleRace analyzes the content of V', the origi-
nal value V'', and the value V that could have been altered by other 
threads as a consequence of a race. Depending on the relationship 
of the values in {V, V', V''} and knowledge about the specific case 
in Theorem 1 that has occurred, ToleRace deploys a resolution 
function V = f(V, V', V'') that defines the value of V after T1 finish-

es its critical section. The resolution function is executed atomi-
cally in the oracle ToleRace. 
 
3.1 Tolerating and Detecting Races with the oracle ToleRace 
Combining the mechanism outlined above with the exhaustive 
interleavings enumerated in Table 1, we can reason about which 
cases ToleRace will tolerate. Assuming perfect knowledge of the 
specific race case that has occurred, Table 2 summarizes the defi-
nition of f and indicates the cases that ToleRace correctly tole-
rates. 

Because ToleRace can tolerate only some races of type IV, in 
Table 2 we subdivide this case into three sub-cases: 

IVA: RrwR={l1r+11r+2w2x*2r12u1}, 
IVB: WrwX={l1w1x*11r+2w2x*2x12u1}, and 
IVC: RrwW=XrwX – {RrwR ∪ WrwX} 

 The first column in Table 2 lists the race type based upon the 
classification from Theorem 1, the second column specifies 
whether V is equal to V'' at the point when f is called, the third 
column shows a resolution function f that allows ToleRace to 
tolerate the race, the fourth column indicates whether f provably 
succeeds in tolerating the race, and the fifth column presents π, 
the schedule of threads that ToleRace’s result represents. Table 2 
shows that the ToleRace oracle tolerates all races except se-
quences of the form RrwW with the resolution function f defined 
by Table 2. 
 

Table 2. Tabulating the outcome of f for each race type. 
race type V = V'' f (V, V', V'') tolerable π

I XwR false V true T1T2

II WrW true V' true T2T1

III RXwW false V true T1T2

IVA RrwR false V true T1T2

IVB WrwX false V' true T2T1

IVC RrwW false custom f ' maybe N/A  
 
 For races of type RrwW, the interleaving of reads and writes 
from T2 breaks the program’s sequential memory consistency. 
Here, T1 and the interleaved part of T2 both read the value of the 
shared variable once T1 has entered the critical section, execute in 
parallel, and then join at the exit of the critical section of T1. T1 
and T2 see the same value returned by the read, which would not 
be possible if T1 had executed its critical section in isolation. 

When functioning as a pure race detector, the oracle ToleRace 
inherently generates no false positives. When V ≠ V'', an asymme-
tric race has occurred by definition. It produces a false negative 
when: 

a) the last write in the intervening sequence writes the same 
value as the value in V''. This is the so called ABA problem. Sur-
prisingly, ToleRace tolerates this case as ABA is indistinguishable 
from AAB. 

b) there is a WrW race. Note that, while ToleRace cannot 
detect this race case, it can tolerate it. 
 
3.2 Multiple Variables and Nested Critical Sections 
So far, we have considered the oracle ToleRace in a multith-
readed, single-variable, and non-nested critical section context. 
We now extend this framework to handle general cases, which 
involve multiple variables and nested critical sections. The exten-
sion is straightforward. Local copies and the resolution function 
need to be made and executed atomically for multiple variables. 
The oracle ToleRace treats multiple variables as multiple in-
stances of a single variable. It resolves races on a per variable 



basis, and, thus, reconciling multiple variables is the same as mul-
tiple reconciliations of a single variable. Nested critical sections 
share their local copies with the outermost critical section. How-
ever, they have their own resolution function to resolve races for 
their protected variables. This extension to ToleRace has the fol-
lowing characteristic. 
 
Theorem 3. Sequentially inconsistent execution. In the general 
case of tolerating asymmetric races involving multiple variables 
and nested critical sections, ToleRace may reorder operations of 
a non-safe thread such that the operations do not follow their 
original program order. If there are dependencies among the 
operations that must be observed, this reordering is not serializa-
ble and ToleRace reverts to detection mode. 
 

The detailed proof is given in a technical report [19]. Here we 
give a sketch of the proof presenting the high-level idea. Note that 
the dependencies in Theorem 3 refer to data dependences, which 
occur when a write to a given variable depends on a read of 
another variable. 

We consider cases I through IVB from Table 2 where Tole-
Race tolerates races without a custom resolution function. Tole-
Race can schedule operations from the non-safe thread to have 
come before or after the critical section. Any intervening sequence 
r+ always appears to have come before the critical section (race 
type II) whereas the sequence wx* always appears after (race type 
I and III). For the r+wx* sequence, the schedule depends on the 
race type (after for IVA and before for IVB). 
 
Table 3. Enumeration of intervening sequences to P and Q. Trail-

ing x* and r+ of P sequence may overlap with Q sequence. 
P Q reordered by 

ToleRace
dependency 
from P to Q ToleRace action

r+ r+ No No Tolerate
wx* r+ Yes No Tolerate

r+wx* r+ If race IVA to P No Tolerate
r+ wx* No maybe Tolerate

wx* wx* No maybe Tolerate
r+wx* wx* No maybe Tolerate

r+ r+wx* No maybe Tolerate

wx* r+wx* If race IVB to Q maybe Detect if reordered, 
tolerate otherwise

r+wx* r+wx*
If race IVA to P and 

IVB to Q maybe Detect if reordered, 
tolerate otherwise  

 
Consider an asymmetric race involving two variables P and Q. 

Let a non-nested critical section protect both variables in a safe 
thread. In a non-safe thread, let an intervening sequence to P come 
before an intervening sequence to Q in program order, but the two 
can overlap each other. Table 3 enumerates all possible P and Q 
intervening combinations from the non-safe thread. The third 
column indicates whether ToleRace reorders the intervening oper-
ations to P and Q. This follows directly from the resolution func-
tion in Table 2 as just described. The fourth column lists if there is 
a dependency from P to Q. In general, when there is a write to Q 
and the accesses to P may contain a read, then Q may be depen-
dent on P, and, hence, the operations must observe program order. 
The fifth column shows the ToleRace action for each combina-
tion, which can be deduced directly from the result in columns 3 
and 4. ToleRace reverts to detection mode when it determines that 
there may be a dependency among variables and the resolution 
function allowed out-of-order execution. 

In general, we do not expect this extended framework to be 
invoked often. A recent study by Lu et al. [23] points out that the 
common cases for concurrency bugs, including races, involve 
only a single variable and no more than two threads. 
 
4. ToleRace Software Implementation 
This section presents a software implementation of ToleRace on 
top of an existing software instrumentation tool. The next section 
evaluates the performance of our implementation and demon-
strates that its overhead is reasonable. Although the oracle Tole-
Race framework allows for both software and hardware imple-
mentations, a software approach may be more appealing as it can 
be deployed immediately. Our software version makes all deci-
sions at runtime and does not perform any static program analysis. 
In this sense, it should give us an upper bound on the overhead. 
We expect other implementations to be more efficient. 
 
4.1 Pin Tools 
We chose to implement ToleRace on top of Pin [26], a dynamic 
instrumentation toolkit from Intel. Pin is available for a variety of 
operating systems and architectures, including x86 Linux and 
Windows platforms. The dynamic compilation and instrumenta-
tion nature of Pin allows us to identify critical sections and the 
shared variables they protect at runtime without static annotations. 
Moreover, Pin is stable and its performance compares favorably 
with other similar tools. 
 We now describe our x86 Linux Pin-ToleRace implementa-
tion for parallel pthreads-based programs in detail. Although our 
implementation is somewhat platform specific and the multith-
readed applications we use employ a specific thread library, we 
believe the framework described here generalizes to other plat-
forms and threading libraries. Pin-ToleRace supports statically 
and dynamically linked executables. As we are only interested in 
the critical sections of specific code regions, we assume informa-
tion is provided to ToleRace so that it can identify the code re-
gions in question. Note that, in the rest of this paper, the term user 
code refers to the code regions that are to be protected by Tole-
Race whereas library code refers to all other code (which does not 
have to reside in a library though it might). 
 
4.2 The General Pin-ToleRace Framework 
As the oracle ToleRace has complete knowledge of all the shared 
variables protected by a critical section, it can create the local 
copies as soon as the critical section is entered. Of course, such 
oracle knowledge may not be available in practice due to dynami-
cally allocated shared variables. Hence, our Pin-ToleRace imple-
mentation assumes no such knowledge and the shared variables 
associated with a particular critical section are always determined 
on the fly. Pin-ToleRace works directly on the executable; no 
source code is required. The notion of shared variables, thus, is 
redefined to that of shared memory locations. We conservatively 
assume that all memory accesses in a critical section touch shared 
memory locations except for those touching the thread local stack. 
We use the term safe memory to refer to the region of memory 
that holds the local copies of the shared memory. 
 The safe memory is initially empty. Once a running thread is 
detected to have entered a critical section, each executed instruc-
tion with a memory operand touching a shared location is instru-
mented; no instructions get instrumented outside of critical sec-
tions. The instrumentation code searches the safe memory region 
for a local copy of the shared memory that is being accessed. If 
found, the memory access is redirected to this copy. If not found, 



the analysis routine creates a new node in the safe memory. The 
node records the address, the original value and the current value 
of the shared memory location together with other metadata that 
we describe later. It serves as a local copy of this shared location 
that all subsequent accesses in this critical section will consult. 
When exiting from the critical section, Pin-ToleRace traverses the 
nodes in the safe memory region and compares the saved original 
value with the value in the corresponding true memory location. 
After taking the appropriate action to tolerate or detect a race, if 
any, it frees the nodes. 
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// Instrumentation Routine 
VOID Instruction(INS ins) { 
  if (call to pthread_mutex_lock && in user code) { 
    Insert analysis routine CSEnter 
  } 
  if (call to pthread_mutex_unlock && in user code) { 
    Insert analysis routine CSExit 
    Insert analysis routine for the resolution function 
  } 
  if (CSLevel[PIN_ThreadId()]>=1) { 
    if (non-stack accesses) { 
      Rewrite memory operands 
      Insert analysis routine to redirect accesses to the safe memory 
    } 
  } 
} 

 
Figure 4. Pin-ToleRace framework. 

 
4.3 Implementation Details 
This subsection describes the implementation of Pin-ToleRace, 
whose framework is shown pictorially in Figure 4. 
 
4.3.1 The Safe Memory Region 
As mentioned, the safe memory region is where the local copies 
of the shared memory locations reside. It contains three main data 
structures: the thread id (tid) lock mapping table, the safemem 
header, and the list of safemem nodes. The lock mapping table 
size is determined by the maximum number of threads allowed in 
the system. The other two are dynamic structures, and their con-
tent is alive as long as the execution proceeds through a critical 
section. The content is created by the first instruction that accesses 
a shared memory location. The role of each of these structures is 
explained next. 
 
4.3.2 Identifying Critical Sections 
A critical section is defined by a mutex variable and a pair of 
pthread_mutex_lock and pthread_mutex_unlock calls with the 
mutex variable as their argument. Pin-ToleRace instruments 
lock/unlock calls dynamically. When a lock routine is executed, it 
adds a call to the CSEnter analysis routine. The analysis routine 
increments the CSLevel counter and sets the respective entry in 
the tid-lock table by updating it with the thread id and lock varia-
ble argument passed to it. The CSLevel counter is a per thread 
counter that keeps track of the critical section nesting level. When 
an unlock call is encountered, a call to the CSExit routine is add-
ed, which decrements the CSLevel counter. A thread is executing 

inside a critical section if its CSLevel counter (CSLevel[tid]) is 
greater than or equal to one. Because Pin-ToleRace is only con-
cerned with user code (see earlier definition), we only instrument 
lock/unlock calls in the selected code regions. 
 
4.3.3 Instrumenting Accesses to Shared Memory Locations 
When an instruction is executed, Pin-ToleRace determines which 
thread it belongs to with the PIN_ThreadId() function. Then, it 
checks the value of CSLevel[tid] and whether the instruction is 
accessing a shared memory location. Instrumentation is enabled 
only when CSLevel[tid] is greater than zero. We ignore operands 
that access the local stack; all other locations are presumed to be 
shared, which includes all truly shared locations as well as some 
false locations such as private heap variables. Pin-ToleRace can-
not determine whether a particular heap location is shared, and, 
therefore, conservatively assumes all heap locations to be shared. 
Once we decide that an instruction accesses a shared location, we 
rewrite its memory operand. Note that some CISC instructions 
require multiple operands to be rewritten per instruction. The 
operand is converted from its current addressing mode to the base 
register addressing mode using one of Pin’s scratch registers. We 
instrument this instruction and pass the effective address of the 
memory operand to the analysis routine. The analysis routine 
determines which thread is executing it and searches the corres-
ponding safemem linked list using the effective address as the 
search key. If a match is found, the routine returns the address of 
the currentvalue field of the matching node. This address is 
written into the scratch register that is used as the base address 
register for the rewritten operand. If no match is found, the analy-
sis routine creates a new node and updates the origvalue and 
currentvalue fields with the true memory value obtained by 
dereferencing the effective address. (This performs the V''=V'=V 
operation.) It then returns the address of the currentvalue 
field like in the found case. Although the instrumentation routine 
is a callback routine that is called by multiple threads, it does not 
create a race as it is serialized under Pin. Any thread can instru-
ment code as long as it is executing in a critical section, and the 
same instrumented code will apply to all other threads. 
 
4.3.4 Critical Section Exit 
Before the call to the unlock routine at the critical section exit, we 
insert a call to an analysis routine that executes the resolution 
function. The associated lock variable is passed to this routine to 
handle nested critical sections. At this point, we resolve all race 
conditions to the shared memory locations accessed within the 
critical section according to Table 2. Section 4.4 provides more 
detail. After the race condition resolution, the safemem nodes 
are freed, provided that the current critical section is not nested 
and that there are no outstanding waits on condition variables (cf. 
Sections 4.3.6 and 4.3.8). 
 
4.3.5 Handling Partial Reads and Writes 
The address field in a safemem node is aligned to the native 
machine width. In case of IA-32, the last two bits are always zero. 
When an instruction accesses a safemem node with a size of less 
than 4 bytes, i.e., a byte or a short access, its memory operand 
address needs to be checked against a range of addresses. 
 
4.3.6 Nested and Overlapped Critical Sections 
The main component of the safe memory data structure that han-
dles nested and overlapped critical sections is the locklist in 



the safemem header. The locklist is maintained such that the 
head of the list always points to the most recent lock variable 
associated with the innermost critical section. This approach cor-
rectly associates shared memory accesses with the most recent 
lock variable acquired. 
 A critical section that executes inside another critical section 
never creates a new safemem list. Instead, it shares this structure 
with the outer critical section(s). If this were not so, the inner 
critical section could access stale memory values as the most up to 
date values might reside in another safe memory region. 
 Upon critical section exit, the resolution function selectively 
resolves races for the shared memory locations that are associated 
with the current lock variable. Recall from the previous section 
that the lock mutex variable is passed to the analysis routine. We 
traverse all safemem nodes, check for a matching lockvar 
value, resolve races for that particular node, and delete that node 
from the safemem list. The corresponding node in the lock list is 
also deleted. At this point, the shared memory associated with the 
matching lockvar becomes globally visible. If the locklist 
becomes empty, the safemem header is freed and the respective 
entry in the tid-lock table is reclaimed. 
 If the multithreaded program under consideration contains 
nested critical sections but none that overlap, we can simplify our 
scheme because there is no need for a list of lock variables. The 
current call to the unlock routine will correctly be matched with 
the most recent call to the lock routine. Shared memory accesses 
in the inner critical section can always be associated with the nest-
ing level given by CSLevel[tid] without the extra lock variable 
context. 

One subtlety with Pin-ToleRace involves a (non-nested) criti-
cal section that calls a function that is also called from outside any 
critical section. This creates a situation where the non-critical 
code in the called function is executed under a non-nested critical 
section whereas the code inside the critical sections receives an 
extra nesting level. A problem arises once the function’s code is 
no longer executed under any critical section as it may contain 
accesses to false locations whose addresses were redirected by the 
code instrumentation. Since there is no resolution routine, the 
content of the safe memory is never transferred to the true memo-
ry locations, which will likely crash the program. Our solution to 
this problem is to put a guard on the analysis code that only al-
lows it to perform the safe memory access when the CSLevel is 
greater than zero. Thus, when the function is executed outside a 
critical section, it will access the original memory locations. 

 
4.3.7 Routine Calls inside a Critical Section 
Function calls inside a critical section are handled correctly with 
the already described data structures of the safe memory. If a call 
passes a shared memory value on the stack, this shared value is 
correctly obtained from the safe memory region. Or, if the called 
function accesses shared memory locations, its accesses are redi-
rected to the safe memory. However, we must distinguish between 
a call to a user-defined and a call to a library routine. We only 
want to protect user code, and, therefore, do not want to redirect 
shared memory accesses in library code. Nevertheless, we cannot 
simply exclude accesses to the safe memory from libraries be-
cause a call to a library routine can pass pointers to shared va-
riables as arguments. To handle this case, we allow the library 
code to access the existing nodes in the safemem list but not to 
create new nodes. 
 

4.3.8 Handling Condition Variables 
In addition to lock and mutex variables that synchronize threads 
by controlling access to data, the pthreads library also supports the 
use of condition variables to synchronize threads based on a data 
value. A call to pthread_cond_wait with a condition variable and a 
mutex variable as arguments atomically unlocks the mutex varia-
ble and makes the thread wait for the value of the condition varia-
ble. A call to pthread_cond_signal with the corresponding condi-
tional variable wakes up one of the waiting threads. These two 
calls are instrumented with an analysis routine that increments and 
decrements, respectively, the global wait counter. 

Condition variables complicate ToleRace because they allow 
multiple threads to be in a critical section at the same time. When 
a new thread enters a critical section while some other threads are 
waiting, this new thread cannot simply create its own copy of the 
safe memory. Instead, it must share this copy with the waiting 
threads. Hence, whenever a thread enters the critical section and 
there is an outstanding conditional wait as indicated by the wait 
counter, Pin-ToleRace searches the tid-lock table for the lock 
variable, uses the safemem header associated with this lock varia-
ble, and increments the sharedsafemem field in the safemem 
header. When the thread updates or creates a node in the safemem 
list, it puts its tid on the node’s cond_wait_threadlist. 
When it exits the critical section, it checks whether it is the last 
thread to exit, and, if so, follows the normal exit procedure and 
frees the safemem list. Otherwise, it resolves races only on the 
locations it touched. If it was the only thread accessing this node, 
it deletes the node from the list. If the node has been accessed by 
multiple threads, the thread resolves any races for the node but 
leaves the node in the list and only deletes its tid from the node’s 
cond_wait_threadlist. If the thread needs to copy the 
value to the true memory, it must also update the origvalue 
field with the currentvalue. This ensures that when the re-
maining threads sharing this node resolve race conditions, they 
will not signal a false race. 
 
4.4 Tolerating and Detecting Races with Pin-ToleRace 
When Pin-ToleRace performs the resolution function, it knows 
the type of the first access to a shared location as this information 
is recorded in the origaccesstype field when the node is 
created. It also knows whether subsequent accesses to this loca-
tion included a write (write_aft_orig_accs field). There-
fore, Pin-ToleRace can determine the types of accesses that are 
involved in a race to this shared location. When it compares V 
with V'' and finds that V ≠ V'', the non-safe interleaving thread 
must contain a write. However, it cannot distinguish between the 
two write sequences, wx* and r+wx*. In some environments, the 
write sequence may be known, which enables Pin-ToleRace to 
tolerate all races that the oracle ToleRace can tolerate (see Table 
2). In general, however, Pin-ToleRace must conservatively as-
sume the worst case interleaving, i.e., r+wx*, which prevents it 
from tolerating type III races. Aside from this restriction, it tole-
rates the same race types as the oracle. 

As a race detector, Pin-ToleRace has the same properties as 
the oracle (cf. Section 3.1) except it introduces an additional false 
negative situation due to its non-atomic execution of the resolu-
tion function. This happens when immediately after the compari-
son of V and V'' returns equal, the intervening sequence writes to 
V. Given that the intervention must happen precisely at that mo-
ment, the probability of this occurring should be low. Pin-
ToleRace does tolerate races in this situation. To see this, let us
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Figure 5. Normalized execution time of Pin-ToleRace for scalar (a), static array (b) and dynamic array (c) for different iteration counts. 
 
revisit Table 2. It is sufficient to consider only race case IV as 
Pin-ToleRace assumes r+wx* for all intervening write sequences. 
In the absence of a race, when the safe thread operations contain 
only reads, Pin-ToleRace never writes the local copy back; when 
the operations start with a write, it always writes back the local 
copy. This effectively enforces schedule T1T2 and T2T1 and thus 
tolerates race types IVA and IVB, respectively, if they occurred. 
Only race type IVC remains problematic. 

 
5. Evaluation 
5.1 Benchmarks 
We use 13 applications from the SPLASH2 [33] and PARSEC [7] 
benchmark suites to evaluate Pin-ToleRace. We also developed 
three microbenchmarks to stress-test a program’s safe thread race 
toleration in the presence of non-safe threads. The microben-
chmarks are called scalar, static array, and dynamic array. 
 The eight programs from the SPLASH2 suite were chosen per 
the minimum set recommended by the suite’s guidelines. Four of 
the programs, cholesky, fft, lu, and radix, are kernels whereas the 
other four, barnes, ocean, radiosity, and water, are full applica-
tions. We replaced the SPLASH2 suite’s PARMAC macros with a 
pthreads library implementation. We use the default input for each 
program but increase the size to lengthen the runtime where ne-
cessary. 
 We selected the five programs from the newly released PAR-
SEC suite that use the pthreads library and define their critical 
sections by pthread_mutex_lock and pthread_mutex_unlock call 
pairs. One of these programs, dedup, is a kernel and the other 
four, facesim, ferret, fluidanimate, and x264, are real applications. 
The PARSEC suite aims to provide up-to-date multithreaded pro-
grams that focus on emerging workloads in recognition, mining, 
and synthesis. We use the simlarge inputs. 

 
5.2 System, Compiler, and Timing Measurement 
All benchmarks, including the microbenchmarks, are compiled 
and run on an Intel 32-bit system (IA-32) with a four-core 2.8 
GHz Pentium4-Xeon CPU with a 4-way associative 16 kB L1 
data cache per core, a 2 MB unified L2 cache, and 2 GB of main 
memory. The operating system is Red Hat Enterprise Linux Re-
lease 4 and the compiler is gcc version 3.4.6. We compiled the 
SPLASH2 and PARSEC programs per each suite’s guideline with 
the -O2 and -O3 optimization level, respectively. The microben-
chmarks use the -O3 optimization level. The system enforces 
memory alignment, which is necessary for Pin-ToleRace to func-
tion correctly (cf. Section 4.3.5). All timing measurements refer to 
the elapsed time as measured by the UNIX shell command time. 
 

5.3 Stress Test 
The stress tests demonstrate Pin-ToleRace’s ability to tolerate 
races of the form RXwW. In this type of race, the safe thread 
performs read-increment-write operations on some shared loca-
tions while the non-safe threads write random values to these 
locations. 
 In the program scalar, the safe thread increments a single 
shared location from zero to a given number of iterations. The 
entire incrementing loop resides in a single critical section. At the 
same time, several non-safe threads set this memory location to 
their thread id and then read the value back to compute its square. 
The programs static array and dynamic array perform the same 
function. However, instead of a single shared location, the safe 
thread increments all elements in a static array of size 10 and all 
elements in a 5x5 2-D dynamic array allocated on the heap, re-
spectively. The non-safe threads write their IDs to all of these 
shared locations. 

For these tests, we know that the non-safe threads will cause 
races that always begin with a write to a shared location. By 
monitoring all shared accesses to the safe memory region, Pin-
ToleRace determines that the safe thread reads and then writes to 
the shared locations. Once it identifies this RwxW type race, it 
can tolerate it by scheduling the non-safe thread’s action to have 
happened after the safe thread’s read-increment-write operations. 
Our test setup uses five non-safe threads and runs the three pro-
grams with 5M, 7.5M, and 10M iterations. In each experiment, we 
observe the correct values in all shared locations just before the 
critical section exit. We also see that after exiting from the critical 
section, the values of these shared locations change to the thread 
id of the non-safe thread that last ran. 

Figure 5 reports the overhead of Pin-ToleRace for tolerating 
these RXwW races. It is normalized to the runtime of the three 
programs under Pin with no instrumentation. We find that the 
overhead is largely constant with respect to the number of itera-
tions. Note that the native and Pin runs of all three programs suf-
fer from race conditions while the Pin-ToleRace runs have all 
their races correctly tolerated. 

For all three microbenchmarks, the overhead of Pin-ToleRace 
over native is very high—up to 80 times in the dynamic array 
case. The primary reason is that we are riding on the Pin over-
head. If we measure the overhead of Pin-ToleRace over Pin, the 
dynamic array benchmark incurs an overhead of about 4.5 times. 
While this is substantial, it should be noted that the microben-
chmarks almost always execute in a critical section, which is 
where all the Pin-ToleRace code resides. Moreover, because the 
safemem nodes are organized as a linked list, the linear search 
operation in the presence of many shared locations contributes 
greatly to the overhead. For example, going from scalar to static 



array more than doubles the overhead. In other words, these mi-
crobenchmarks reflect worst case scenarios as they are always 
busy tolerating races inside a critical section. The next section 
shows that real applications have critical section characteristics 
that are more benign and thus result in a much lower overhead. 

One additional point to note is that, with Pin-ToleRace, the 
overhead of tolerating a race is about the same as detecting a race. 
In both cases, all operations to the safe memory region are the 
same up to the critical section exit. At this time, if Pin-ToleRace 
decides to perform race detection, it reports the race on a particu-
lar shared location and terminates the application. If it decides to 
tolerate the race, it either leaves the state of the shared locations as 
it is or writes to them, depending on the type of race. Thus, the 
overhead of tolerating different types of races may differ slightly, 
but the difference should be small.  
 

Table 4. Critical section characteristics. 

unique
nested 

CS
total 

executed

dynamic 
number of 
instrs per 
CS (user)

% dynamic 
instrs in CS

cholesky 14 no 11,849 29 < 0.1%
fft 10 no 55 17 < 0.01%
lu 7 no 1,043 17 < 0.01%
radix 9 no 51 17 < 0.01%
barnes 10 no 1,098,771 94 0.18%
ocean 26 no 3,335 17 < 0.01%
radiosity 36 yes 1,739,512 18 0.11%
water-spatial 16 no 853 13 < 0.01%
dedup 7 yes 256,380 600 0.42%
facesim 5 yes 10,161 46 < 0.01%
ferret 4 yes 552,173 690 1.59%
fluidanimate 11 no 4,359,405 13 0.40%
x264 2 no 16,767 11 < 0.01%  

 
Table 5. Unique accesses to possibly shared locations per critical 

section by each thread. 
unique accesses
AVG STD

cholesky 4.78 0.38
fft 1.37 0.04
lu 2.99 0.01
radix 2.82 0.19
barnes 19.13 0.03
ocean 3.00 0.00
radiosity 4.92 0.23
water-spatial 2.62 0.01
dedup 80.87 3.52
facesim 7.70 1.14
ferret 72.89 33.83
fluidanimate 5.00 0.00
x264 2.16 0.02  

 
5.4 Real Applications 
This section characterizes the critical sections of the 13 bench-
marks and discusses the overhead of Pin-ToleRace on these pro-
grams. 
 
5.4.1 Critical Section Characterization 
For this study, we compiled the 13 benchmarks to use four pro-
cessors, which corresponds to the number of cores on our evalua-
tion platform. We then used Pin to collect the critical section sta-
tistics shown in Table 4. Note that we only study critical sections 
that reside in the user code, i.e., we exclude all library code. 

The second column of Table 4 shows that the number of 
unique critical sections per benchmark is quite small. radiosity 
tops the list with 36. All but two of the programs have 16 or fewer 
critical sections. Only four benchmarks, radiosity, dedup, facesim, 
and ferret, contain nested critical sections. Note that some of these 

nestings are statically non-nested. For example, a call inside a 
non-nested critical section to a function that contains a non-nested 
critical section dynamically results in nesting. The last column 
shows the total number of executed instructions within the critical 
sections. The numbers in this column exclude the instructions of 
any library routines called from the critical sections. All programs 
except ferret execute less than one percent of their dynamic user 
instructions in critical sections. 
 The fourth column of Table 4 shows the total number of ex-
ecuted critical sections. The counts range from under one hundred 
in fft and radix to over one million in barnes, radiosity, and flui-
danimate. The average number of instructions executed in user 
code per critical section is given in column five. Two benchmarks, 
dedup and ferret, stand out. Both execute over 600 instructions per 
critical section. barnes follows as a distant third at 94. These three 
benchmarks execute loops inside their critical sections. The rest of 
the programs execute fewer than 30 instructions per critical sec-
tion. Nevertheless, some of them have a high total dynamic in-
struction count inside critical sections, notably fluidanimate and 
radiosity whose small critical sections are being looped over. 

Next, we look at the critical sections from the point of view of 
Pin-ToleRace. Table 5 shows the average number of shared mem-
ory locations accessed per critical section execution by each 
benchmark. With the exception of ferret, this number is very uni-
form across the running threads as the standard deviations indi-
cate. Nine out of the 13 benchmarks perform fewer than five 
unique accesses. With so few accesses, Pin-ToleRace’s linked list 
structure in the safe memory should not be a performance bottle-
neck. However, in barnes and especially in dedup and facesim, the 
number of unique accesses to shared locations is quite high. With 
these programs, the linear search through the linked list structure 
can add considerably to the Pin-ToleRace overhead. Overall, the 
number of unique shared memory accesses seems to be in propor-
tion with the number of instructions executed per critical section. 
 
5.4.2 Pin-ToleRace Performance 
This section studies the overhead of Pin-ToleRace on our bench-
mark applications. Given the results of the previous subsection, 
we decided to investigate two implementations of the safe memo-
ry. One uses the linked list approach described earlier and the 
other uses a chained hash table with 128 entries. We choose this 
size to minimize the collisions in dedup and ferret. 

Figure 6 presents the results. The timing measurements are 
normalized to the native runtime. Note that this is different from 
the normalization we used for the stress tests. The second bar 
shows the pure Pin overhead without instrumentation for each 
program. The third and fourth bars indicate the overhead of Pin-
ToleRace with linked list and hash table implementations of the 
safe memory, respectively. On average, Pin-ToleRace incurs 
about a factor of two slowdown relative to the native runs and 
about 24% overhead relative to the Pin runs. We believe these 
performance degradations to be low enough to make Pin-
ToleRace deployable in production environments. Moreover, by 
adding static analysis or hardware support, it should be possible to 
reduce the overhead. 

As expected, the hash table implementation of the safe memo-
ry reduces the Pin-ToleRace overhead of barnes, dedup, and fer-
ret. Unfortunately, it increases the overhead of all the other pro-
grams. The reason is that the chained hash table is more expensive 
to initialize and free than the linked list. With the hash table 
scheme, there is a fixed minimum number of entries to process 
(proportional to the table size) whereas with the linked list 
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Figure 6. Normalized execution time of Pin-ToleRace. 
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Figure 7. Normalized execution time of ideal software ToleRace. 

 
there are only as many nodes as there are unique shared memory 
locations. Therefore, the hash table is only attractive when the 
execution in a critical section can amortize this overhead. Recall 
from the previous section that each of the three benchmarks for 
which the hash table implementation works better executes a rela-
tively large number of instructions and touches many unique 
shared memory locations inside the critical sections. The remain-
ing benchmarks have small critical sections, and each critical 
section execution does not touch many unique shared locations, 
making the linked list implementation better suited. 
 
5.4.3 Idealized Software ToleRace 
Suppose we have an oracle compiler that knows all the shared 
locations within a critical section. The performance overhead of a 
ToleRace implementation based on such a compiler presents a 
lower bound on what we can achieve in software. (Recall that Pin-
ToleRace infers all the shared memory locations on-the-fly, thus 
yielding an upper bound.) 
 To mimic the effect of such an oracle compiler, we manually 
modified the source code of our benchmarks after carefully study-
ing the critical sections and the shared variables in each of them. 
In a few critical sections, we could not precisely mimic the effect 
of the oracle compiler because of shared variables that are allo-
cated at runtime. In these instances, we instead mimic the me-
chanism used in Pin-ToleRace. Moreover, in barnes and radiosity, 
we only modified frequently executed critical sections that cumu-
latively account for 99% and 90% of all dynamic critical section 
executions, respectively. We believe that doing so should not 
significantly affect the overhead result. 

After we incorporated ToleRace into the critical sections, we 
recompiled and ran these applications. Figure 7 shows the over-

head results, which are normalized to the native execution time 
without ToleRace. The ideal software ToleRace incurs a 6.4% 
overhead on average across our benchmarks. ferret executes in-
side critical sections more often than other applications and has 
many runtime allocated shared variables. Consequently, it incurs 
the highest overhead. dedup, which has the second highest over-
head, has similar characteristics as ferret. Most of the applications, 
however, incur less than 1% overhead with the ideal software 
ToleRace. 
 
6. Related Work 
Related race-detection research includes both static and dynamic 
approaches. Static race detection relies on program analysis and 
either assumes existing programming languages (e.g., Java [27]) 
or defines new programming language semantics that help im-
prove the static detection of races (e.g., Cyclone [14]). Static 
analysis techniques face several challenges. First, because many 
of the techniques are based on some form of model checking [15], 
they are computationally expensive and issues of scalability arise. 
Second, the conservative and approximate nature of the analysis 
creates the potential for many false positives. RacerX [12] and 
Houdini/rcc [13] address these issues by combining traditional 
static analysis with heuristics and statistical ranking to identify the 
most probable races. One inherent drawback of static analysis for 
race detection is that asymmetric races can occur in contexts 
where the source code for the component containing the error is 
not available for examination. 

Eraser is a dynamic race detection system based on lock-sets 
[31]. Experience with this approach has shown that the overhead 
of maintaining the locksets is high and that false positives can be 
problematic. Subsequent approaches extend locksets with hap-



pens-before analysis [3]. Combining locksets with a happens-
before scheme results in higher precision dynamic race detectors 
[10, 11, 29, 34]. Even with refinements, the execution overhead of 
these approaches is typically larger than a factor of two. As we 
have seen, previous work focuses primarily on detecting data 
races rather than tolerating them. The ToleRace detection tech-
nique is distinct from the lockset and happens-before algorithms. 
Focusing only on asymmetric races allows ToleRace to take a 
transaction-like approach to race detection and toleration, which 
significantly reduces the overhead of dynamic race detection. 

Dynamic race detection approaches have also been adopted by 
Intel’s Thread Checker [18] and Sun’s Thread Analyzer [17], 
which are commercial tools capable of locating data races in con-
current programs. Both tools suffer from a high memory footprint 
and runtime overhead and are, thus, primarily used for software 
testing. 

Atomicity violation is another important class of concurrency 
errors. It can be addressed statically [5] or dynamically. The 
AVIO system [24] belongs to the latter category and enumerates 
erroneous access interleavings similar to our asymmetric race 
interleavings. However, it only looks at single load/store pairs and 
not sequences of accesses. Without hardware support, the over-
head of AVIO is very high, which makes it suitable only for test 
environments. The work by Lucia et al. [25] offers to tolerate 
some degree of atomicity violation with implicit atomicity by 
grouping consecutive memory operations into atomic blocks. 

Vaziri et al. [32] classify harmful interleavings into 11 catego-
ries, which is more than the six race cases (with case IV subdi-
vided) we considered. The extra categories address high-level data 
races at the object granularity. Their approach to race detection 
requires source-code annotation and targets safe language envi-
ronments. 

Kiena et al. [20] propose two schemes to dynamically heal da-
ta races for Java programs. In one scheme, they reduce the proba-
bility of races happening by forcing threads that are about to cause 
racy accesses to yield. This is done at the byte-code level through 
yield() calls. In the other scheme, they add extra locks to some 
common code patterns that are likely to result in races. 

Concurrent to our work, Rajamani et al. [30] propose a run-
time system called Isolator that enforces isolation through page 
protection. The idea is to protect the pages containing shared va-
riables (that are protected by a lock) so that accesses to them can 
be intercepted. Then, accesses to those variables that observe the 
proper locking discipline are redirected to a local copy of the cor-
responding page. Any improper access will be to the original page 
and hence raise a page protection fault. Similarly, Abadi et al. [1] 
use page-level protection to guarantee strong atomicity in soft-
ware transactional memory. 

 
7. Summary 
We introduce ToleRace, a novel runtime system that uses data 
replication for detecting and tolerating concurrency errors in lock-
based multithreaded programs. ToleRace addresses asymmetric 
races, where one use of a shared variable is correctly protected 
with locks while other uses are not. We present a theoretical 
framework as well as two software implementations. Our evalua-
tion indicates that real applications can run on top of software 
ToleRace with acceptable overhead. 
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