

Application-Based Metrics for Strategic Placement of Detectors

Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K. Iyer

Center for Reliable and High-Performance Computing,

Coordinated Sciences Laboratory,

University of Illinois at Urbana-Champaign

{pattabir, kalbarcz, rkiyer}@uiuc.edu

Abstract

The goal of this study is to provide low-latency detection and

prevent error propagation due to value errors. This paper

introduces metrics to guide the strategic placement of detectors

and evaluates (using fault injection) the coverage provided by

ideal detectors embedded at program locations selected using the

computed metrics. The computation is represented in the form of

a Dynamic Dependence Graph (DDG), a directed-acyclic graph

that captures the dynamic dependencies among the values

produced during the course of program execution. The DDG is

employed to model error propagation in the program and to

derive metrics (e.g., value fanout or lifetime) for detector

placement. The coverage of the detectors placed is evaluated

using fault injections in real programs, including two large

SPEC95 integer benchmarks (gcc and perl). Results show that a

small number of detectors, strategically placed, can achieve a

high degree of detection coverage.

1. Introduction

This paper presents a technique of inserting detectors or checks

into programs to prevent/limit fault propagation due to value

errors. Value errors are errors that cause a divergence from the

program values seen during the error-free execution of the

application. These errors can lead to application crash, hang, or

fail-silent violations (when the program produces an incorrect

result). Data from real systems has shown that, while many

crashes are benign, severe system failures often result from latent

errors that cause undetected error propagation [14][19]. These

latent errors can cause file corruption [10], propagate to other

processes in a distributed system [2], or result in checkpoint

corruption [5] prior to a system crash. It is a common

assumption that crashes are benign and that there is a mechanism

in a system that ensures that when the program encounters an

error (that ultimately leads to a crash), the application will crash

instantaneously (crash-failure semantics).

To guarantee crash-failure semantics for a program, we need

some form of checking mechanisms in the system. Such support

can take many forms, including protection at multiple levels and

duplication both in hardware and software. Recent commercial

examples of such approaches include: (i) IBM G5, which, at the

processor level, employs two fully duplicated lock-step pipelines

to enable low-latency detection and rapid recovery [18] and (ii)

HP NonStop Himalaya, which, at the system level, employs two

processors running the same program in locked step. Faults are

detected by comparing the output of the two processors at the

external pins on every clock cycle [7]. Although these are very

robust solutions, due to their high cost and significant hardware

overhead, they are usually used only in high-end mainframes and

servers intended for mission-critical applications, not in

commercial off-the-shelf (COTS) systems.

This paper introduces metrics to guide strategic placement of

detectors and evaluates (using fault injection) the coverage

provided by ideal detectors (an ideal detector is one that detects

100% of the errors that are manifested at its location in the

program) at program locations selected using the computed

metrics. Results show that a small number of detectors,

strategically placed, can achieve a high degree of detection

coverage. The issues of development of actual detectors and the

performance implications of embedding the detectors into the

application code are not addressed in this study. Examples of

potential detectors are consistency checks on the values in the

program, such as range-checks and instruction sequence-checks

[11]. In this paper:

 The program’s code and dynamic execution are analyzed,

and an abstract model of the data-dependencies in the program

called the Dynamic Dependence Graph (DDG) is built.

 Several metrics such as fanout and lifetime are derived from

the DDG and used to strategically place/embed detectors in the

program code to maximize the coverage. A detector’s coverage

depends on two factors: (i) the effectiveness (coverage) of the

placement of the detector, i.e., how many errors manifest at the

location where the detector is embedded and (ii) the effectiveness

(coverage) of the detector itself, i.e., what fraction of errors

manifested at the detector’s location are captured.

The key findings from this work are:

 A single detector placed using the fanout metric can achieve

50-60% crash-detection coverage for large benchmarks (gcc and

perl).

 A small number of detectors placed using the lifetime metric

can achieve high coverage for large benchmarks. For example, it

is possible to achieve about 80% coverage with 10 detectors and

90% coverage with 25 detectors embedded in the gcc benchmark.

 Although the placement of detectors is geared toward

providing low-latency detection and preventing propagation by

preemptively detecting potential crashes, the placed detectors are

also effective at detecting fail-silence violations (i.e., the

application terminates normally but produces incorrect results)

(30-70%) and hangs (50-60%).

2. Related Work

In recent years, several studies have addressed the issue of

strategic placement of detectors in application code. Hiller et al.

[12] use Error Propagation Analysis (EPA) to determine where

detectors or checks should be inserted in an embedded control

system. It is assumed that the checks have ideal coverage (100%)

and are inserted at points (signals) at which error detection

probability is the highest. Voas [20] proposes the “avalanche

paradigm,” a technique to place assertions in programs before

faults in the program propagate to critical states. Goradia [9]

evaluates the sensitivity of data values to errors from a software

testing perspective.

DAIKON [8] is a dynamic analysis system for generating likely

program invariants to detect software bugs. Narayanan et al. [16]

use the loop invariants produced by DAIKON to detect soft

errors in the data cache. DAIKON places assertions at the

beginnings and ends of loops and procedure calls. However, this

may not be sufficient to provide low-latency error detection, as

the application/system may misbehave long before the assertion

point is reached. Benso et al. [3] present a compiler technique to

detect critical values in a program. The criticality of a variable is

calculated based on the lifetime of the variable and how many

other variables it affects. This technique can protect against faults

that originate in the critical variable and propagate to other

variables, but it does not protect against faults that are

propagated to the critical variable from other locations.

3. Computation Model: Dynamic Dependence

Graph (DDG)

The computation is represented in the form of a Dynamic

Dependence Graph (DDG), a directed-acyclic graph (DAG) that

captures the dynamic dependencies among the values produced

in the course of program execution. In this context, a value is a

dynamic definition (assignment) of a variable or memory

location used by the program at runtime. A value may be read

many times, but it is written only once. If the variable or location

is rewritten, it is treated as a new value. Thus, a single variable or

memory location may be mapped onto multiple values.

This is similar to the Static Single Assignment (SSA) form used

by compilers [1]. In SSA, however, each static assignment of a

variable is treated as a new value, while in a DDG each dynamic

assignment of a variable is treated as a new value

A node in the DDG represents a value produced in the program,

and it is associated with the dynamic instruction that produced

the value. In the DDG, edges are drawn between nodes

representing the operands of an instruction and nodes

representing the value produced by the instruction. The edge

represents the instruction, the source node of the outgoing edge

corresponds to an instruction operand, and the destination node

corresponds to the value produced by the instruction.

Table 1 shows an example code fragment, and Figure 1 shows

the DDG corresponding to that code fragment. The code

computes the sum of the elements of an array A of 5 integers

(denoted by size) and stores the sum in the variable sum. The

table shows the mapping between the DDG nodes and the

instructions, as well as the effect of executing the instructions.

Not all nodes in the DDG correspond to instructions, e.g., nodes

1, 3, 8, 13, 23, and 28 represent memory locations used by the

code fragment.

The following observations can be made based on the DDG:

 Every value-producing instruction has a corresponding node

in the DDG, shown by an arrow from the instruction to its node

label in the DDG.

 Memory locations are represented as DDG nodes when they

are first read or written. For example, in Figure 1, nodes 1 and 28

represent memory locations size and sum, respectively, and nodes

3, 8, 13, 18, and 23 represent the array locations A[0] to A[4].

Table 1: Example code fragment to compute array sum

Code fragment Explanation Nodes in DDG

 ADDI R1, R0, 0

 LW R2, [size]

 ADDI R4, R0, 0

LOOP: LW R3, R1[A]

 ADD R4, R4, R3

 ADDI R1, R1, 1

 BNE R1, R2, LOOP

 SW [Sum], R4

R1 R0

R2 [size]

R4 R0

R3 A[R1]

R4 R4 + R3

R1 R1 + 1

If (R1!=R2) then
goto Loop

[Sum] R4

6

2

0

5, 10, 15, 20, 25

4, 9, 14, 19, 24

6, 11, 16, 21, 26

7, 12, 17, 22, 27

28

Figure 1: DDG corresponding to code fragment in Table 1

 Constants are not represented in the DDG (e.g., 0 and 1 are

not represented, though they appear as instruction operands).

Similarly, register names and memory addresses are not stored in

the DDG, though they are shown in the figure for ease of

reading.

 The same register/memory location can be mapped onto

multiple nodes in the DDG, just as a given register or memory

location can have multiple value instances during the execution.

For example, in Figure 1, the value produced in register R1 is

mapped onto nodes 6, 11, 16, 21, 26, one for each loop iteration.

 Each edge of the DDG is marked with the letter that

represents the role of the operand in the instruction: M is a

memory operand, A is an address operand, P is a regular operand,

B is an operand used as a branch target, F is a function address

operand, and S is a system call operand.

Function calls and returns are also represented in the DDG (not

present in the example in Figure 1). Most of the semantics of

function calls, such as setting up and tearing down the stack

frame or parameter passing, that are already present in the

assembly code are automatically included as part of the DDG.

However, calling conventions cannot be extracted from the

machine code and are explicitly specified in the DDG. For

example, in the SPARC architecture, the register R2 is used to

store the return value of a function, and this must be incorporated

in the DDG to analyze dependencies across function calls and

returns. The DDG also incorporates dependencies caused by

system calls (not present in the example in Figure 1). Our method

for DDG construction is similar to the one proposed in [17].

4. Fault Model

This study considers the impact of faults in data values produced

during the course of a program’s execution. Our fault model

assumes that any dynamic value in a program can be corrupted at

the time of the value definition. This corresponds to an incorrect

computation of the value mainly due to transient (or soft) errors

and includes all values written to memory, registers, and the

processor cache. Note that the assumed fault model also covers

errors that arise due to some categories of software faults, e.g.,

assignment/initialization (an uninitialized or incorrectly

initialized value is used) or checking (a check performed on the

variable fails, which is equivalent to an incorrect value of a

variable being used) [6].

Crash model. Since the ultimate goal is to ensure a crash-failure

semantic for application processes, we first introduce a crash

model. It is assumed that crashes can occur as a result of (i)

illegal memory references (SIGBUS and SIGSEGV), (ii) divide-

by-zero and overflow exceptions (DIVBYZERO, OVERFLOW),

(iii) invocation of system calls with invalid arguments, or (iv)

branch to an incorrect or illegal code (SIGILL). These four

categories can be represented in the Dynamic Dependence Graph

(DDG) described in the previous section as follows:

1. A value used as an address operand in a load or store

instruction is corrupted and causes the reference to be misaligned

or to be outside a valid memory region.

2. A value used in an arithmetic or logic operation is corrupted

and causes a divide-by-zero exception or arithmetic overflow.

3. A value used as a system call operand is incorrect or the

program does not have the permissions to perform a particular

system call.

4. An operand used as the target of a branch or as the target

address of an indirect function call is corrupted, causing the

program to jump to an invalid region or to a valid (part of the

application) but incorrect (from the point of view of the

application semantic) region of code.

Usually, corruption of pointer data is much more likely to cause a

crash than non-pointer data, as shown by earlier studies, e.g.,

[15]. Therefore, this study considers only crashes due to (i)

corruption of values used as address operands of load/store

instructions (the first category) or (ii) corruption of values used

as targets of branches and function calls (the last category

discussed above). While the model does not consider corruption

of system call operands or operands of arithmetic and logic

instructions, we found that in practice (i.e., in real programs) the

percentage of crashes missed by the model is small.

Analysis of error propagation. The dynamic execution traces

provided by the DDG are used to reason about error propagation

from one value to another. It is assumed that a fault originating in

a node (value) of the DDG can potentially propagate to all nodes

that are successors of this node in the DDG. Unique error-

propagation probabilities are not assigned to DDG edges (unlike

in other studies, e.g., [9]); rather, it is assumed that errors can

propagate along every arc with the probability of 1.

5. Metrics Derived from the Models

To strategically place detectors, we develop a set of metrics for

selecting locations in the program that can provide high crash

detection coverage. The metrics are derived based on the DDG of

the program. To enable placement of detectors in the code, the

notion of static location of a value is introduced. The static

location of a value is defined as the address of the instruction that

produces the value. The following metrics are employed:

 Fanout: The fanout of a node is the set of all immediate

successors of the node in the DDG. In terms of values, it is

the set of uses of the value represented by the node. The

fanout of a node indicates how many nodes are directly

impacted by an error in that node.

 Lifetime: The lifetime of a node is the maximum distance (in

terms of dynamic instructions) between the node and its

immediate successors. In terms of values, it is the maximum

dynamic distance between the def and use of a value. The

lifetime evaluates the reach of the error in the program’s

execution. This is because values with a long lifetime are

typically global variables or global constants, and an error in

these values can affect values that are distant from the

current execution context of the program.

 Execution: The execution of a node is the number of times

the static location (program counter) associated with the

value is executed. Execution reflects the intuition that a

location that is executed more frequently is a good place to

embed a detector.

 Propagation: The propagation of a node is the number of

nodes to which an error in this node propagates before

causing a crash. The propagation metric is somewhat similar

to the fanout metric, but while the fanout metric considers

only the first level of error propagation, the propagation

metric characterizes error propagation across multiple levels.

 Cover: The cover of a node is the number of nodes from

which an error can propagate to a given node before causing

a crash. Nodes with a high cover usually have many error-

propagation paths passing through them, and consequently,

these nodes are good locations for placing detectors to

enable preemptive crash detection.

Since detectors are placed in the static code of the program, each

node selected (based on the computed metrics) for a detector

must be mapped onto the static locations in the program. Note

that multiple nodes in the DDG can be mapped onto a single

static location. Consequently, aggregation functions must be

defined to compute overall metrics corresponding to a given

static program location based on the metrics of the nodes that

map onto this location. In the case of fanout, propagation, and

cover metrics, the set-union operation is used to compute the

aggregate set. The cardinality of the aggregate set is calculated as

the aggregate fanout, propagation, and cover of that location,

respectively. For lifetime and execution, the aggregate value of

the metric at a location is computed as the average of the metric

values of the nodes that map onto this location.

For the example in Figure 1, nodes 6, 11, 16, 21, and 26 map

onto the value produced by the static instruction ADDI R1, R1, 1.

The instruction has the following metric values:

 The aggregate fanout of the instruction is the cardinality of

the union of the set of immediate successors of 6, 11, 16, 21 and

26, namely the cardinality of the set {5, 6,7, 10, 11, 12, 15, 16,

17, 20, 21, 22, 25, 27}, which is equal to 15.

 The aggregate lifetime of the instruction is the average of

the lifetimes of the nodes 6, 11, 16, 21, and 26. The lifetime of

each of these nodes is 4 dynamic instructions (the length of a

loop iteration), except for 26 for which it is only one dynamic

instruction (the last loop iteration). Therefore, the aggregate

lifetime of the instruction is 4.25.

 The aggregate execution value for the instruction is 5, as the

loop is executed 5 times.

For computing the propagation and cover metrics, we need to

locate the points at which the program can crash. The crash-set

of a node in the DDG is the set of all nodes at which a crash can

potentially occur due to an error in that node. The crash-point of

a node is the earliest point in the error’s propagation (not to be

confused with the propagation metric) at which a crash can occur

because of pointer corruption or corruption of a branch/function

call target address (this follows from the crash model defined in

Section 4, in which only corruptions of pointers and

function/branch targets are assumed to cause crashes). For each

node N in the DDG, we denote by Crash(N) the crash-point of

N. In the rare case that a node has multiple crash points, we

arbitrarily pick one of them to be Crash(N). If there is no crash

due to a fault at N, we assume that Crash(N) is nil. For the

example in Figure 1, the crash-points of nodes 6, 11, 16, 21, and

26 are nodes 5, 10, 15, 20, and 25 respectively, as these are used

as address operands in the instruction LW R3, A(R1). The crash-

distance of a node (CrashDist(N)) is the distance between the

node and its crash-point in the DDG, in terms of dynamic

instructions.

Once the crash-distance is computed, the propagation set of a

node/location N can be computed as the union of the propagation

sets of the successor nodes of N, such that the distance from N to

a node x in its propagation set (dist(x,N)) is less than or equal to

the crash-distance of N (CrashDist(N)). The propagation set of a

node also includes the node itself.

The aggregate propagation of a location can be computed as the

cardinality of the union of the propagation sets of the nodes in

the DDG that map onto this location. For the example in Figure

1, the aggregate propagation of the node corresponding to

instruction ADDI R1, R1, 1 is 10, as the union of the propagation

sets of its DDG nodes 6, 11, 16, 21, and 26 is the set of nodes {6,

11, 16, 21, 26, 5, 10, 15, 20, 25}. Note that although nodes 7, 12,

1, 22, and 27 are successors of the nodes 6, 11, 16, 21, and 26,

they do not appear in the propagation sets, as their distance from

these nodes (4) is greater than the crash-distance of the nodes (2).

Once the propagation metric is computed, the cover metric can

be computed as follows: A node M is in the cover of N if and only

if N belongs to the propagation of M. This is because any fault in

N must propagate to M before causing a crash if M belongs to

the cover of N (by definition). In the example in Figure 1, the

aggregate cover of the node corresponding to instruction LW R3,

R1(A) is the cardinality of the union of the cover sets of its nodes

in the DDG, namely 5, 10, 15, 20, and 25. This is the set {6, 11,

16, 21, 26}, as the nodes 5, 10, 15, 20, and 25 collectively appear

in the propagation sets of nodes 6, 16, 11, 21, and 26. Hence, the

aggregate cover is 5, which is the cardinality of the set.

6. Experimental Setup

This section describes the experimental infrastructure and

application workload used to evaluate the model and the metrics.

The experiment is divided into three parts:

1. Tracing: The application program is executed and a detailed

execution trace is obtained containing all the dynamic

dependencies, branches, and load/store instructions.

2. Analysis: The trace is analyzed, the dynamic dependence

graph (DDG) is constructed, and the metrics for placing

detectors are computed; this part is done offline.

3. Fault Injection: Fault injections are performed to evaluate

the choice of the detector points. The values at the detector

points are recorded and compared with the corresponding

values in the golden (error-free) run of the application. Any

deviation between the values in the golden run and the faulty

run indicates successful detection of the error by the

detection point.

6.1 Infrastructure

The tracing and fault injections are performed using a functional

simulator in the SimpleScalar family of processor simulators [4].

The simulator allows fine-grained tracing of the application

without perturbing its state or modifying application code. It

provides a virtual sandbox in which to execute the application

and study its behavior under faults.

We modified the simulator to track dependencies among data

values in both registers and memory by shadowing each

register/location with four extra bytes (invisible to the

application) that store a unique tag for that location. For each

instruction executed by the application, the simulator prints (to

the trace file) the tag of the instruction’s operands and the tag of

the resulting value to the trace. The trace is analyzed offline by

specialized scripts to construct the DDG and compute the metrics

for placing detectors in the code. The top 100 points according to

each metric are chosen as locations for inserting detectors.

The effectiveness of the detectors is assessed using fault

injection. Fault locations are specified randomly from the

dynamic set of tags produced in the program. In this mode, the

tags are tracked by the simulator, but the executed instructions

are not written to the trace. When the tag value of the current

instruction equals the value of a specified fault location, a fault is

injected by flipping a single bit in the value produced by the

current instruction. Once a fault is injected, the execution

sequence is monitored to see whether a detector location is

reached. If so, the value at the detector location is written to a file

for offline comparison with the golden run of the application.

Table 2 shows the errors detected by the simulator and their

corresponding consequence in a real system. It also explains the

detection mechanism in the simulator and in the real system.

6.2 Application Programs

The system is evaluated with four programs from the Siemens

suite [12] and two programs from the SPEC95 benchmark suite.

These benchmark applications range from a few hundred lines of

code (Siemens) to tens of thousands of lines of code (SPEC95).

A brief description of benchmarks is given in Table 3. tcas from

the Siemens suite is omitted, as it is very small (<200 lines of C

code), and separation among the different metrics used in the

study was insufficient.

Each of these applications is executed for three inputs. For the

Siemens programs, the inputs are chosen from the provided set of

inputs. For gcc95 and perl, we create inputs of reduced size

(compared to the original SPEC workloads), since our analysis

scripts were unable to handle the extremely large dynamic traces

of the SPEC workloads. Also, for the SPEC benchmarks,

infrequently executed dynamic control paths that contributed to

less than 20% of the cumulative execution time are removed

from the DDG (this constitutes approximately 80% of the

program paths).

Table 2: Types of errors detected by simulator and their real-

world consequences

Type of error
detected

Consequence in
a real system

Simulator detection
mechanism

Invalid memory
access

Crash (SIGSEGV) Consistency checks on
address range

Memory
alignment error

Crash (SIGBUS) Check on memory
address alignment

Divide-by-zero Crash (SIGFPE) Check before DIV
operation

Integer overflow Crash (SIGFPE) Check after every
integer operation

Illegal
instruction

Crash (SIGILL) Check instruction validity
before decoding

System call
error

Crash (SIGSYS) None, as simulator
executes system calls on
behalf of application

Infinite loops Program hang (live-
lock); program
continuously issues
instructions and never
terminates

Program executes
double the number of
instructions compared
with the golden run

Indefinite wait
due to blocking
system calls or
I/O

Program hang
(deadlock); program
stops issuing
instructions and never
terminates

Program execution takes
substantially longer (five
times) than the golden
run

Incorrect output Fail-silent violation
(silent data corruption)

Compare outputs at the
end of the run

Table 3: Benchmarks and their descriptions

Benchmark Suite Description

Replace Siemens Searches a text file for a regular
expression and replaces all occurrences
of the expression with a specified string

Schedule2 Siemens A priority scheduler for multiple job
tasks

Print_tokens Siemens Breaks the input stream into a series of
lexical tokens according to pre-specified
rules

Tot_info Siemens Offers a series of data analysis
functions

Gcc95 SPEC95 The gcc compiler

Perl SPEC95 The perl interpreter

For each program, the dynamic trace from one of the inputs is

chosen to build the DDG and to perform the analysis to choose

detector points (the top 100 locations according to each metric).

Fault injections are then performed at randomly chosen values in

the application’s execution for all three inputs. For each

application, input, and metric used to choose detector points,

faults are injected at 500 random locations, randomly flipping a

single bit of a value. This is done 10 times for each location, for a

total of 5000 fault injections for each combination of application,

input, and metric. One fault is injected per run to eliminate the

possibility of latent errors due to faults injected earlier.

7. Results

The results obtained from the experiments are analyzed with the

objective of answering the following questions:

 What is the detection coverage provided by individual

detectors placed according to a given metric?

 What is the rate of false-positives of individual detectors

placed according to a given metric?

 What is the detection coverage provided jointly by multiple

detectors placed according to a given metric?

 What is the rate of false-positives of multiple detectors

placed according to a given metric?

7.1 Detection Capability of Metrics for Single

Detectors

This section evaluates the detection coverage provided by

individual detectors placed according to different metrics. All

results represent the average calculated for each application

across three inputs. The detector points that registered a value

deviation for an injection are associated with the outcome of the

injection. The results for each outcome category (crash, hang,

fail-silent violation, success) are normalized across the total

number of errors observed under that category (for each

benchmark-metric combination). The results for crashes,

successes (false-positives) and fail-silent violations are shown in

Figures 2, 3, and 4, respectively. The results for hangs are not

shown due to space limitations. The interested reader may refer

to [22] for the same.

The following can be concluded from the graphs:

 Detectors placed according to the fanout and propagation

metrics are the best at detecting crashes. They are followed by

detectors placed according to the cover metric (see Figure 2).

The coverage provided by fanout and propagation detectors is

more than 90% for the Siemens benchmarks (except for tot_info).

For the SPEC benchmarks, the coverage is around 50-60%.

 The percentage of false-positives is small, less than 2% for

all benchmarks except replace (see Figure 3). The higher false-

positive rates for gcc95 and perl are registered by detectors

placed using fanout (1.5%) and propagation (2%) metrics.

 Although the detector points were chosen to support crash

detection, they also detect a significant percentage of fail-silent

violations (30-70% for detectors placed using fanout and

propagation metrics, as shown in Figure 4) and hangs (60-90%).

7.1.1 Discussion

Locations having high fanout and propagation are responsible

for propagating errors to a large number of places in the DDG,

and it is likely that at least one of the propagated errors causes a

crash. Detectors placed using fanout do marginally better than

those inserted using propagation. There are two key reasons for

the differences: (i) Propagation relies on the accuracy of the

crash model in deciding on the further propagation of the error,

while fanout does not take the crash model into account and is

more conservative. (ii) Locations with a high fanout are often

stack or frame pointers. The program accesses these locations

frequently, hence an error is likely to cause a crash.

The SPEC benchmarks execute more than a million dynamic

instructions, while the Siemens benchmarks typically execute

less than 100,000 (only tot_info in the Siemens suite executes

between 100,000 and a million instructions). As a result, the

probability of the error reaching the detector is higher in the case

of the Siemens benchmarks than for the SPEC95 benchmarks.

Hence, the detection coverage for replace, schedule2, and

print_tokens ranges between 80% and 90%, compared with 50-

70% for gcc, perl, and tot_info.

The execution metric is a good indicator for placing detectors in

the Siemens benchmarks, where infrequently executed paths are

not pruned. However, it does not perform well in the SPEC

benchmarks, where paths that contribute to less than 80% of the

execution time are already removed.

Detectors placed using the lifetime metric do not have high crash-

detection coverage, as the error is likely to remain latent for a

long time in a high-lifetime node and is unlikely to cause a crash.

The lower effectiveness of detectors placed using the cover

metric compared to propagation and fanout stems from the fact

that cover aims at placing detectors along paths leading to

potential crash-points, while propagation and fanout place

detectors along paths that can potentially spawn errors in many

nodes. Typically, the number of locations with high fanout or

propagation is small (these metrics follow a Pareto-Zipf law like

distribution), while the number of potential crash-points of the

application is much larger. This result shows that it is more

beneficial to place detectors to protect these few, highly sensitive

values, than it is to place detectors along paths that lead to

potential crash points.

The false-positive rate for the metrics is less than 2% for all

benchmarks except replace. A false-positive means that the error

was detected by a detector point, but the program completed

successfully (and produced correct output). The number of

instructions executed by replace is around 10,000, and hence the

probability of an error reaching the detector point is high even if

the error does not trigger a failure.

7.2 Detection Capability of Metrics for Multiple

Detectors

The previous section considered the detection provided by

placing a single detector in each of the benchmark programs. For

the Siemens benchmarks (except tot_info), this was sufficient to

provide coverage of 90%. However, for applications such as

gcc95 and perl, a single detector could achieve only up to 60%

coverage. In this section, we evaluate the coverage provided

jointly by multiple detectors placed in gcc95 and perl.

The top 100 detector locations selected by each metric are

grouped into bins of a predefined size, and the cumulative

coverage of detectors placed at locations indicated by a bin is

evaluated. For example, to evaluate the coverage of the fanout

metric with a bin size of 10, the top 100 locations with the

highest fanout are arranged in decreasing order by their fanout

value. The top 10 locations are then grouped into bin 1, the next

10 locations into bin 2, and so on up to bin 10. The crash-

detection coverage of each bin as a whole is evaluated. The

average coverage of the 10 bins is the crash-detection coverage

for the fanout metric with a bin size of 10.

The results for crash detection, false-positives, and fail-silent

violations are shown in Figures 5 through 10 as a function of the

bin size for gcc95 and perl.

Crashes detected by Metrics across Benchmarks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

replace schedule2 print_tokens tot_info gcc95 perl

Benchmarks

Fr
ac

tio
n

D
et

ec
te

d Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 2: Crashes detected by detectors across benchmarks

False-Positives detected by Metrics across Benchmarks

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

replace schedule2 print_tokens tot_info gcc95 perl

Benchmark

Fr
ac

tio
n

D
et

ec
te

d Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 3: False-Positives detected by detectors across benchmarks

Fail-Silent Violations detected by Metrics across Benchmarks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

replace schedule2 print_tokens tot_info gcc95 perl

Benchmark

Fr
ac

tio
n

de
te

ct
ed

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 4: Fail-silent violations detected by detectors across benchmarks

The results for gcc95 are summarized below, and similar trends

are observed for perl.

 For detectors placed using fanout and propagation, the

crash-detection coverage is less than 60% when the bin size

is 1 (as discussed in section 7.1). Increasing the bin size to

10 improves coverage to 80% (see Figure 5).

 For a bin size of 1, the coverage provided by detectors

placed according to lifetime is less than 40% (as discussed in

Section 7.1). However, for a bin size of 10, the coverage is

almost equal to that provided by detectors placed according

to fanout and propagation metrics. For a bin size of 25 and

100, it even surpasses the coverage of detectors placed using

fanout, providing coverage values of 90% and 99%,

respectively (see Figure 5).

 The percentage of false-positives also increases with

increasing bin-size, but not as much as the crash-detection

coverage. For example, for detectors placed using the fanout

metric, the coverage is around 80% when the bin size is 10,

but the number of false-positives remains around 5% (see

Figure 7).

 The increase in the false-positive rate for lifetime is much

less than it is for fanout. The false-positive percentage for

lifetime is only 5% for a bin size of 100 compared to 10%

for fanout for the same bin size. When 10 or more detectors

are considered, placement based on the lifetime metric

provides the best coverage and the lowest rate of false-

positives (see Figure 7).

 Random detector placement provides coverage of 95% (see

Figure 5) when the bin size is 100. Further, it has the smallest

percentage of false-positives (2.5%, see Figure 7), making

random placement of multiple detectors a good choice when

minimizing false-positives is critical.

 The fail-silent violation coverage is highest for detectors

placed using the fanout metric (70% for a bin size of 10, see

Figure 9). For a bin size of 100, detectors placed using the

execution metric surpass the detectors placed using fanout.

7.2.1 Discussion

For all the metrics, the coverage increases with increases in the

bin size as the number of detector points increases. This increase

in the coverage as bin size increases flattens out, however, since

there is considerable overlap among the multiple detector points

in detecting crashes. For example, for detectors placed using the

fanout metric, grouping detectors into bins of size 5 increases the

coverage to 75% (from the 60% coverage provided by individual

detectors). However, the increase in coverage is less when the

bin size increases to 10 (coverage 80%).

Detectors at locations with a high lifetime provide limited

coverage individually, but several of them jointly achieve very

high coverage. This is because each detection point covers a

different set of errors. Closer analysis of the results indicates that

there is usually one hot-detector in each bin. The hot-detector

detects the majority of errors covered by that bin, and the other

detectors complement the coverage by detecting errors that

escape the hot-detector. These errors are also not easily

detectable by the detectors placed using other metrics.

When detectors are grouped into bins, the rate of the false-

positives increases, as there are more detector-points that are

likely to capture the error even if no crash occurs. However, for

detectors chosen using the lifetime metric, each detector point by

itself has a lower detection rate than detectors selected using

other metrics, and hence the number of false-positives is also

low. When combined together in bins, the coverage numbers are

additive, whereas the false-positives are not.

The coverage provided by random detector placement is the

lowest of all metrics (with the exception of execution) for bin

sizes up to 25 (for gcc). For bin-size beyond 25, the coverage

provided by the randomly placed detectors increases sharply and

is comparable to the coverage provided by the detectors placed

using other metrics (for a bin size of 100). In the top 100 detector

points picked by the random metric, there are a few points that

provide very high coverage. Consequently, if the bins are large

enough, it is likely that at least one such high coverage point gets

included in each bin.

For gcc95, 100 detectors correspond to about 1% of the locations

on its hot-paths, while for perl, 25 detectors correspond to 1% of

its hot-paths locations. Hence, by placing detectors at less than

1% of the hot-paths in both applications, it is possible to obtain

up to 99% coverage.

7.3 Summary of Results
This section summarizes the results from sections 7.1 and 7.2 as

follows:

 Detectors placed using the fanout metric have the best

coverage in the program when single detectors are

considered. The coverage provided is 90% for the Siemens

benchmarks and 50-60 % for the SPEC benchmarks.

 When multiple detectors are placed using the fanout metric,

the coverage increases to 97% by inserting detectors at less

than 1% of the hot-paths. In the multiple detector case, the

coverage provided by the detectors placed using the lifetime

metric is higher than the coverage provided by detectors

placed using the fanout metric (for 10 or more detectors).

 Random assertion placement on the hot-paths of the

application can provide coverage of up to 95% with a low

rate of false-positives if detectors are placed at 1% of the

hot-path locations.

8. Conclusions and Future Work

This paper explores the problem of detector placement in

programs to preemptively detect crashes due to errors in data

values used in the program. A model for error propagation and

crashes is developed, and metrics for placing detectors are

derived from the model. The metrics are evaluated on six

applications, including two SPEC95 benchmarks. It is found that

strategic placement of detectors can increase crash coverage by

an order-of-magnitude compared to random placement, with a

low percentage of false-positives. Though the placement of

detectors was geared toward detecting crashes, the detectors also

detected a sizeable percentage of fail-silent violations and hangs.

Future work will involve integrating the analysis into a compiler

and automatically deriving the actual detectors for checking. We

also plan to integrate the detectors as hardware modules in the

Reliability and Security Engine (RSE) [21].

Acknowledgments

This work was supported in part by the US office of Naval Research,

Defense Advanced Research Projects Agency (MURI Grant N00014-01-

1-0576), Gigascale Systems Research Center (GSRC/MARCO), NSF

Next-Generation Software (grant number CNS-0406351), and Motorola

Corporation.

Crash-Detection Coverage versus Bin Size (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 5: Effect of bin size on crash detection

coverage for gcc for different metrics

Crash Detection versus Bin Size (perl)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetime

Random

Execution

Cover

Figure 6: Effect of bin size on crash detection

coverage for perl for different metrics

False-Positives versus Bin size (gcc95)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 p
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 7: Effect of bin size on false-positive rate

for gcc for different metrics

False-Positives versus Bin Size (perl)

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetime

Random

Execution

Propagation

Cover

Figure 8: Effect of bin size on false positive rate

for perl for different metrics

Fail-Silent Violations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 5 10 25 100

Bin Size

D
et

ec
ti

o
n

 P
ro

b
ab

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 9: Effect of bin size on fail-silent violation

coverage for gcc for different metrics

Fail-Silent Violations (perl)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
et

ec
ti

o
n

 P
ro

b
ai

li
ty Fanouts

Lifetime

Random

Execution

Propagation

Cover

Figure 10: Effect of bin size on fail-silent

violation coverage for perl for different metrics

References

[1] Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, Reading, MA, 1986.

[2] C. Basile, L. Wang, Z. Kalbarczyk, and R. K. Iyer, Group Communication

Protocols under Errors, Symp. on Reliable Distributed Systems (SRDS) 2003.

[3] A. Benso, S. Carlo, G. Natale, L. Tagliaferri, and P. Prinetto, Validation of

a Software Dependability Tool via Fault Injection Experiments, 7th Intl. On-Line
Testing Workshop, 2001.

[4] D. Burger, T. Austin, and S. Bennett, Evaluating Future Microprocessors:

The SimpleScalar ToolSet, University of Wisconsin-Madison, Computer

Sciences Department, Technical Report CS-TR-1308, July 1996.

[5] S. Chandra and P.M Chen, How Fail-Stop Are Faulty Programs?, Proc. 28th
Intl. Symposium on Fault-Tolerant Computing (FTCS-28), 1998.

[6] R. Chillarege, W-L Kao, and R. Condit, Defect Type and its Impact on the

Growth Curve, Proc. 13th Intl. Conference on Software Engineering, 1991.

[7] Compaq Computer Corp, Data Integrity for Compaq NonStop Himalaya

Servers, http://nonstop.compaq.com, 1999.

[8] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, Dynamically
Discovering Likely Program Invariants to Support Program Evolution, IEEE

Trans. on Software Engineering, 27(2), 2001.

[9] T. Goradia, Dynamic Impact Analysis: A Cost-Effective Technique to

Enforce Error-Propagation, ISSTA 1993.

[10] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang, Characterization of Linux
Kernel Behavior under Errors, Proc. Intl. Conference on Dependable Systems and

Networks (DSN), 2003.

[11] M. Hiller, Executable Detectors for Detecting Data Errors in Embedded

Control Systems, Proc. Intl. Conference on Dependable Systems and Networks
(DSN), 2000.

[12] M. Hiller, A. Jhumka, and N. Suri, On the Placement of Software

Mechanisms for Detection of Data Errors, Proc. Intl. Conference on Dependable

Systems and Networks (DSN), 2002.

[13] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, Experiments of the
Effectiveness of Dataflow- and Controlflow-Based Test Adequacy Criteria, Proc.

Intl. Conference of Software Engineering (ICSE), 1994.

[14] R.K Iyer, D.J Rosetti, and M.C. Hseuh, Measurement and Modeling of

Computer Reliability as Affected by System Activity, ACM Trans. on Computer
Systems, 4(3), 1986.

[15] W. Kao, R. K. Iyer, and D. Tang, FINE: A Fault Injection and Monitoring

Environment for Tracing the UNIX System Behavior under Faults, IEEE Trans.

on Soft-ware Engineering, 19(11), 1993.

[16] S. Narayanan, S. Son, M. Kandemir, and F. Li, Using Loop Invariants to
Fight Soft Errors in Data Caches, Proc. Asia and South Pacific Design

Automation Conference (ASP-DAC'05), 2005.

[17] N. Nethercote and A. Mycroft, Redux: A Dynamic Dataflow Tracer, Proc.

of 3rd Workshop on Runtime Verification (RV'03), 2003.

[18] T. Slegel, et al., IBM’s S/390 G5 Microprocessor Design, IEEE Micro,
19(2), 1999.

[19] A. Thakur, Measurement and Analysis of Failures in Computer Systems,

M.S Thesis, University of Illinois, UILU-ENG-97, September 1997.

[20] J. Voas and K. Miller, The Avalanche Paradigm: An Experimental Software
Programming Technique for Improving Fault Tolerance, Proc. of ECBS, 1999.

[21] N. Nakka, Z. Kalbarczyk, R. K. Iyer, and J. Xu, An Architectural

Framework for Providing Reliability and Security Support, Proc. Intl. Conference

on Dependable Systems and Networks (DSN), 2004.
[22] K.Pattabiraman, Z.Kalbarczyk and R.K. Iyer, Application-Based Metrics
for Strategic Placement of Detectors, Technical Report, University of Illinois at

Urbana-Champaign, 2005.

