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Abstract 

The goal of this study is to provide low-latency detection and 

prevent error propagation due to value errors. This paper 

introduces metrics to guide the strategic placement of detectors 

and evaluates (using fault injection) the coverage provided by 

ideal detectors embedded at program locations selected using the 

computed metrics. The computation is represented in the form of 

a Dynamic Dependence Graph (DDG), a directed-acyclic graph 

that captures the dynamic dependencies among the values 

produced during the course of program execution. The DDG is 

employed to model error propagation in the program and to 

derive metrics (e.g., value fanout or lifetime) for detector 

placement. The coverage of the detectors placed is evaluated 

using fault injections in real programs, including two large 

SPEC95 integer benchmarks (gcc and perl). Results show that a 

small number of detectors, strategically placed, can achieve a 

high degree of detection coverage. 

 

1. Introduction 

This paper presents a technique of inserting detectors or checks 

into programs to prevent/limit fault propagation due to value 

errors.  Value errors are errors that cause a divergence from the 

program values seen during the error-free execution of the 

application. These errors can lead to application crash, hang, or 

fail-silent violations (when the program produces an incorrect 

result). Data from real systems has shown that, while many 

crashes are benign, severe system failures often result from latent 

errors that cause undetected error propagation [14][19]. These 

latent errors can cause file corruption [10], propagate to other 

processes in a distributed system [2], or result in checkpoint 

corruption [5] prior to a system crash.  It is a common 

assumption that crashes are benign and that there is a mechanism 

in a system that ensures that when the program encounters an 

error (that ultimately leads to a crash), the application will crash 

instantaneously (crash-failure semantics). 

To guarantee crash-failure semantics for a program, we need 

some form of checking mechanisms in the system. Such support 

can take many forms, including protection at multiple levels and 

duplication both in hardware and software. Recent commercial 

examples of such approaches include: (i) IBM G5, which, at the 

processor level, employs two fully duplicated lock-step pipelines 

to enable low-latency detection and rapid recovery [18] and (ii) 

HP NonStop Himalaya, which, at the system level, employs two 

processors running the same program in locked step. Faults are 

detected by comparing the output of the two processors at the 

external pins on every clock cycle [7]. Although these are very 

robust solutions, due to their high cost and significant hardware 

overhead, they are usually used only in high-end mainframes and 

servers intended for mission-critical applications, not in 

commercial off-the-shelf (COTS) systems. 

This paper introduces metrics to guide strategic placement of 

detectors and evaluates (using fault injection) the coverage 

provided by ideal detectors (an ideal detector is one that detects 

100% of the errors that are manifested at its location in the 

program) at program locations selected using the computed 

metrics. Results show that a small number of detectors, 

strategically placed, can achieve a high degree of detection 

coverage. The issues of development of actual detectors and the 

performance implications of embedding the detectors into the 

application code are not addressed in this study. Examples of 

potential detectors are consistency checks on the values in the 

program, such as range-checks and instruction sequence-checks 

[11]. In this paper: 

 The program’s code and dynamic execution are analyzed, 

and an abstract model of the data-dependencies in the program 

called the Dynamic Dependence Graph (DDG) is built. 

 Several metrics such as fanout and lifetime are derived from 

the DDG and used to strategically place/embed detectors in the 

program code to maximize the coverage. A detector’s coverage 

depends on two factors: (i) the effectiveness (coverage) of the 

placement of the detector, i.e., how many errors manifest at the 

location where the detector is embedded and (ii) the effectiveness 

(coverage) of the detector itself, i.e., what fraction of errors 

manifested at the detector’s location are captured.  

The key findings from this work are: 

 A single detector placed using the fanout metric can achieve 

50-60% crash-detection coverage for large benchmarks (gcc and 

perl). 

 A small number of detectors placed using the lifetime metric 

can achieve high coverage for large benchmarks. For example, it 

is possible to achieve about 80% coverage with 10 detectors and 

90% coverage with 25 detectors embedded in the gcc benchmark.  

 Although the placement of detectors is geared toward 

providing low-latency detection and preventing propagation by 

preemptively detecting potential crashes, the placed detectors are 

also effective at detecting fail-silence violations (i.e., the 

application terminates normally but produces incorrect results) 

(30-70%) and hangs (50-60%). 

2. Related Work 

In recent years, several studies have addressed the issue of 

strategic placement of detectors in application code. Hiller et al. 

[12] use Error Propagation Analysis (EPA) to determine where 

detectors or checks should be inserted in an embedded control 



 

system. It is assumed that the checks have ideal coverage (100%) 

and are inserted at points (signals) at which error detection 

probability is the highest. Voas [20] proposes the “avalanche 

paradigm,” a technique to place assertions in programs before 

faults in the program propagate to critical states. Goradia [9] 

evaluates the sensitivity of data values to errors from a software 

testing perspective.  

DAIKON [8] is a dynamic analysis system for generating likely 

program invariants to detect software bugs. Narayanan et al. [16] 

use the loop invariants produced by DAIKON to detect soft 

errors in the data cache. DAIKON places assertions at the 

beginnings and ends of loops and procedure calls. However, this 

may not be sufficient to provide low-latency error detection, as 

the application/system may misbehave long before the assertion 

point is reached. Benso et al. [3] present a compiler technique to 

detect critical values in a program. The criticality of a variable is 

calculated based on the lifetime of the variable and how many 

other variables it affects. This technique can protect against faults 

that originate in the critical variable and propagate to other 

variables, but it does not protect against faults that are 

propagated to the critical variable from other locations. 

3. Computation Model:  Dynamic Dependence 

Graph (DDG) 

The computation is represented in the form of a Dynamic 

Dependence Graph (DDG), a directed-acyclic graph (DAG) that 

captures the dynamic dependencies among the values produced 

in the course of program execution. In this context, a value is a 

dynamic definition (assignment) of a variable or memory 

location used by the program at runtime. A value may be read 

many times, but it is written only once. If the variable or location 

is rewritten, it is treated as a new value. Thus, a single variable or 

memory location may be mapped onto multiple values.  

This is similar to the Static Single Assignment (SSA) form used 

by compilers [1]. In SSA, however, each static assignment of a 

variable is treated as a new value, while in a DDG each dynamic 

assignment of a variable is treated as a new value 

A node in the DDG represents a value produced in the program, 

and it is associated with the dynamic instruction that produced 

the value. In the DDG, edges are drawn between nodes 

representing the operands of an instruction and nodes 

representing the value produced by the instruction. The edge 

represents the instruction, the source node of the outgoing edge 

corresponds to an instruction operand, and the destination node 

corresponds to the value produced by the instruction. 

Table 1 shows an example code fragment, and Figure 1 shows 

the DDG corresponding to that code fragment. The code 

computes the sum of the elements of an array A of 5 integers 

(denoted by size) and stores the sum in the variable sum. The 

table shows the mapping between the DDG nodes and the 

instructions, as well as the effect of executing the instructions. 

Not all nodes in the DDG correspond to instructions, e.g., nodes 

1, 3, 8, 13, 23, and 28 represent memory locations used by the 

code fragment. 

The following observations can be made based on the DDG: 

 Every value-producing instruction has a corresponding node 

in the DDG, shown by an arrow from the instruction to its node 

label in the DDG. 

 Memory locations are represented as DDG nodes when they 

are first read or written. For example, in Figure 1, nodes 1 and 28 

represent memory locations size and sum, respectively, and nodes 

3, 8, 13, 18, and 23 represent the array locations A[0] to A[4].  

Table 1: Example code fragment to compute array sum 

Code fragment Explanation Nodes in DDG 

    ADDI R1, R0, 0 

    LW R2, [size] 

    ADDI R4, R0, 0  

LOOP:   LW R3, R1[ A ] 

    ADD R4, R4, R3 

    ADDI R1, R1, 1 

    BNE R1, R2, LOOP 

    SW [Sum], R4 

R1  R0                               

R2  [ size ]                               

R4  R0                               

R3  A[ R1 ]                               

R4  R4 + R3                             

R1  R1 + 1                               

If (R1!=R2) then 
goto Loop       

[Sum]  R4                                 

6 

2 

0 

5, 10, 15, 20, 25 

4, 9, 14, 19, 24 

6, 11, 16, 21, 26 

7, 12, 17, 22, 27 

28 

 

Figure 1: DDG corresponding to code fragment in Table 1 

 Constants are not represented in the DDG (e.g., 0 and 1 are 

not represented, though they appear as instruction operands). 

Similarly, register names and memory addresses are not stored in 

the DDG, though they are shown in the figure for ease of 

reading. 

 The same register/memory location can be mapped onto 

multiple nodes in the DDG, just as a given register or memory 

location can have multiple value instances during the execution. 

For example, in Figure 1, the value produced in register R1 is 

mapped onto nodes 6, 11, 16, 21, 26, one for each loop iteration.  

 Each edge of the DDG is marked with the letter that 

represents the role of the operand in the instruction: M is a 

memory operand, A is an address operand, P is a regular operand, 

B is an operand used as a branch target, F is a function address 

operand, and S is a system call operand. 

Function calls and returns are also represented in the DDG (not 

present in the example in Figure 1). Most of the semantics of 

function calls, such as setting up and tearing down the stack 

frame or parameter passing, that are already present in the 

assembly code are automatically included as part of the DDG. 

However, calling conventions cannot be extracted from the 

machine code and are explicitly specified in the DDG. For 

example, in the SPARC architecture, the register R2 is used to 

store the return value of a function, and this must be incorporated 

in the DDG to analyze dependencies across function calls and 

returns. The DDG also incorporates dependencies caused by 



 

system calls (not present in the example in Figure 1). Our method 

for DDG construction is similar to the one proposed in [17]. 

4. Fault Model 

This study considers the impact of faults in data values produced 

during the course of a program’s execution. Our fault model 

assumes that any dynamic value in a program can be corrupted at 

the time of the value definition. This corresponds to an incorrect 

computation of the value mainly due to transient (or soft) errors 

and includes all values written to memory, registers, and the 

processor cache. Note that the assumed fault model also covers 

errors that arise due to some categories of software faults, e.g., 

assignment/initialization (an uninitialized or incorrectly 

initialized value is used) or checking (a check performed on the 

variable fails, which is equivalent to an incorrect value of a 

variable being used) [6].  

Crash model. Since the ultimate goal is to ensure a crash-failure 

semantic for application processes, we first introduce a crash 

model. It is assumed that crashes can occur as a result of (i) 

illegal memory references (SIGBUS and SIGSEGV), (ii) divide-

by-zero and overflow exceptions (DIVBYZERO, OVERFLOW), 

(iii) invocation of system calls with invalid arguments, or (iv) 

branch to an incorrect or illegal code (SIGILL). These four 

categories can be represented in the Dynamic Dependence Graph 

(DDG) described in the previous section as follows: 

1. A value used as an address operand in a load or store 

instruction is corrupted and causes the reference to be misaligned 

or to be outside a valid memory region. 

2. A value used in an arithmetic or logic operation is corrupted 

and causes a divide-by-zero exception or arithmetic overflow. 

3. A value used as a system call operand is incorrect or the 

program does not have the permissions to perform a particular 

system call.  

4. An operand used as the target of a branch or as the target 

address of an indirect function call is corrupted, causing the 

program to jump to an invalid region or to a valid (part of the 

application) but incorrect (from the point of view of the 

application semantic) region of code. 

Usually, corruption of pointer data is much more likely to cause a 

crash than non-pointer data, as shown by earlier studies, e.g., 

[15]. Therefore, this study considers only crashes due to (i) 

corruption of values used as address operands of load/store 

instructions (the first category) or (ii) corruption of values used 

as targets of branches and function calls (the last category 

discussed above). While the model does not consider corruption 

of system call operands or operands of arithmetic and logic 

instructions, we found that in practice (i.e., in real programs) the 

percentage of crashes missed by the model is small. 

Analysis of error propagation. The dynamic execution traces 

provided by the DDG are used to reason about error propagation 

from one value to another. It is assumed that a fault originating in 

a node (value) of the DDG can potentially propagate to all nodes 

that are successors of this node in the DDG. Unique error-

propagation probabilities are not assigned to DDG edges (unlike 

in other studies, e.g., [9]); rather, it is assumed that errors can 

propagate along every arc with the probability of 1. 

5. Metrics Derived from the Models 

To strategically place detectors, we develop a set of metrics for 

selecting locations in the program that can provide high crash 

detection coverage. The metrics are derived based on the DDG of 

the program. To enable placement of detectors in the code, the 

notion of static location of a value is introduced. The static 

location of a value is defined as the address of the instruction that 

produces the value. The following metrics are employed: 

 Fanout: The fanout of a node is the set of all immediate 

successors of the node in the DDG. In terms of values, it is 

the set of uses of the value represented by the node. The 

fanout of a node indicates how many nodes are directly 

impacted by an error in that node.  

 Lifetime: The lifetime of a node is the maximum distance (in 

terms of dynamic instructions) between the node and its 

immediate successors. In terms of values, it is the maximum 

dynamic distance between the def and use of a value. The 

lifetime evaluates the reach of the error in the program’s 

execution.  This is because values with a long lifetime are 

typically global variables or global constants, and an error in 

these values can affect values that are distant from the 

current execution context of the program.  

 Execution: The execution of a node is the number of times 

the static location (program counter) associated with the 

value is executed. Execution reflects the intuition that a 

location that is executed more frequently is a good place to 

embed a detector.  

 Propagation: The propagation of a node is the number of 

nodes to which an error in this node propagates before 

causing a crash. The propagation metric is somewhat similar 

to the fanout metric, but while the fanout metric considers 

only the first level of error propagation, the propagation 

metric characterizes error propagation across multiple levels.  

 Cover: The cover of a node is the number of nodes from 

which an error can propagate to a given node before causing 

a crash. Nodes with a high cover usually have many error-

propagation paths passing through them, and consequently, 

these nodes are good locations for placing detectors to 

enable preemptive crash detection. 

Since detectors are placed in the static code of the program, each 

node selected (based on the computed metrics) for a detector 

must be mapped onto the static locations in the program. Note 

that multiple nodes in the DDG can be mapped onto a single 

static location.  Consequently, aggregation functions must be 

defined to compute overall metrics corresponding to a given 

static program location based on the metrics of the nodes that 

map onto this location. In the case of fanout, propagation, and 

cover metrics, the set-union operation is used to compute the 

aggregate set. The cardinality of the aggregate set is calculated as 

the aggregate fanout, propagation, and cover of that location, 

respectively. For lifetime and execution, the aggregate value of 

the metric at a location is computed as the average of the metric 

values of the nodes that map onto this location. 

For the example in Figure 1, nodes 6, 11, 16, 21, and 26 map 

onto the value produced by the static instruction ADDI R1, R1, 1. 

The instruction has the following metric values: 

 The aggregate fanout of the instruction is the cardinality of 

the union of the set of immediate successors of 6, 11, 16, 21 and 

26, namely the cardinality of the set {5, 6,7, 10, 11, 12, 15, 16, 

17, 20, 21, 22, 25, 27}, which is equal to 15.  

 The aggregate lifetime of the instruction is the average of 

the lifetimes of the nodes 6, 11, 16, 21, and 26. The lifetime of 

each of these nodes is 4 dynamic instructions (the length of a 



 

loop iteration), except for 26 for which it is only one dynamic 

instruction (the last loop iteration). Therefore, the aggregate 

lifetime of the instruction is 4.25.  

 The aggregate execution value for the instruction is 5, as the 

loop is executed 5 times. 

For computing the propagation and cover metrics, we need to 

locate the points at which the program can crash. The crash-set 

of a node in the DDG is the set of all nodes at which a crash can 

potentially occur due to an error in that node. The crash-point of 

a node is the earliest point in the error’s propagation (not to be 

confused with the propagation metric) at which a crash can occur 

because of pointer corruption or corruption of a branch/function 

call target address (this follows from the crash model defined in 

Section 4, in which only corruptions of pointers and 

function/branch targets are assumed to cause crashes). For each 

node N in the DDG, we denote by Crash(N)  the crash-point of 

N. In the rare case that a node has multiple crash points, we 

arbitrarily pick one of them to be Crash(N). If there is no crash 

due to a fault at N, we assume that Crash(N) is nil. For the 

example in Figure 1, the crash-points of nodes 6, 11, 16, 21, and 

26 are nodes 5, 10, 15, 20, and 25 respectively, as these are used 

as address operands in the instruction LW R3, A(R1). The crash-

distance of a node (CrashDist(N)) is the distance between the 

node and its crash-point in the DDG, in terms of dynamic 

instructions. 

Once the crash-distance is computed, the propagation set of a 

node/location N can be computed as the union of the propagation 

sets of the successor nodes of N, such that the distance from N to 

a node x in its propagation set ( dist(x,N) ) is less than or equal to 

the crash-distance of N (CrashDist(N)). The propagation set of a 

node also includes the node itself.  

The aggregate propagation of a location can be computed as the 

cardinality of the union of the propagation sets of the nodes in 

the DDG that map onto this location. For the example in Figure 

1, the aggregate propagation of the node corresponding to 

instruction ADDI R1, R1, 1 is 10, as the union of the propagation 

sets of its DDG nodes 6, 11, 16, 21, and 26 is the set of nodes {6, 

11, 16, 21, 26, 5, 10, 15, 20, 25}. Note that although nodes 7, 12, 

1, 22, and 27 are successors of the nodes 6, 11, 16, 21, and 26, 

they do not appear in the propagation sets, as their distance from 

these nodes (4) is greater than the crash-distance of the nodes (2). 

Once the propagation metric is computed, the cover metric can 

be computed as follows: A node M is in the cover of N if and only 

if N belongs to the propagation of M. This is because any fault in 

N must propagate to M before causing a crash if M belongs to 

the cover of N (by definition). In the example in Figure 1, the 

aggregate cover of the node corresponding to instruction LW R3, 

R1(A) is the cardinality of the union of the cover sets of its nodes 

in the DDG, namely 5, 10, 15, 20, and 25. This is the set {6, 11, 

16, 21, 26}, as the nodes 5, 10, 15, 20, and 25 collectively appear 

in the propagation sets of nodes 6, 16, 11, 21, and 26. Hence, the 

aggregate cover is 5, which is the cardinality of the set. 

6. Experimental Setup  

This section describes the experimental infrastructure and 

application workload used to evaluate the model and the metrics. 

The experiment is divided into three parts: 

1. Tracing: The application program is executed and a detailed 

execution trace is obtained containing all the dynamic 

dependencies, branches, and load/store instructions.  

2. Analysis: The trace is analyzed, the dynamic dependence 

graph (DDG) is constructed, and the metrics for placing 

detectors are computed; this part is done offline.  

3. Fault Injection: Fault injections are performed to evaluate 

the choice of the detector points. The values at the detector 

points are recorded and compared with the corresponding 

values in the golden (error-free) run of the application. Any 

deviation between the values in the golden run and the faulty 

run indicates successful detection of the error by the 

detection point. 

6.1 Infrastructure 

The tracing and fault injections are performed using a functional 

simulator in the SimpleScalar family of processor simulators [4]. 

The simulator allows fine-grained tracing of the application 

without perturbing its state or modifying application code. It 

provides a virtual sandbox in which to execute the application 

and study its behavior under faults.  

We modified the simulator to track dependencies among data 

values in both registers and memory by shadowing each 

register/location with four extra bytes (invisible to the 

application) that store a unique tag for that location. For each 

instruction executed by the application, the simulator prints (to 

the trace file) the tag of the instruction’s operands and the tag of 

the resulting value to the trace. The trace is analyzed offline by 

specialized scripts to construct the DDG and compute the metrics 

for placing detectors in the code. The top 100 points according to 

each metric are chosen as locations for inserting detectors.  

The effectiveness of the detectors is assessed using fault 

injection. Fault locations are specified randomly from the 

dynamic set of tags produced in the program. In this mode, the 

tags are tracked by the simulator, but the executed instructions 

are not written to the trace. When the tag value of the current 

instruction equals the value of a specified fault location, a fault is 

injected by flipping a single bit in the value produced by the 

current instruction. Once a fault is injected, the execution 

sequence is monitored to see whether a detector location is 

reached. If so, the value at the detector location is written to a file 

for offline comparison with the golden run of the application. 

Table 2 shows the errors detected by the simulator and their 

corresponding consequence in a real system. It also explains the 

detection mechanism in the simulator and in the real system. 

6.2 Application Programs 

The system is evaluated with four programs from the Siemens 

suite [12] and two programs from the SPEC95 benchmark suite. 

These benchmark applications range from a few hundred lines of 

code (Siemens) to tens of thousands of lines of code (SPEC95). 

A brief description of benchmarks is given in Table 3. tcas from 

the Siemens suite is omitted, as it is very small (<200 lines of C 

code), and separation among the different metrics used in the 

study was insufficient.  

Each of these applications is executed for three inputs. For the 

Siemens programs, the inputs are chosen from the provided set of 

inputs. For gcc95 and perl, we create inputs of reduced size 

(compared to the original SPEC workloads), since our analysis 

scripts were unable to handle the extremely large dynamic traces 

of the SPEC workloads. Also, for the SPEC benchmarks, 

infrequently executed dynamic control paths that contributed to 

less than 20% of the cumulative execution time are removed 

from the DDG (this constitutes approximately 80% of the 

program paths).  



 

Table 2: Types of errors detected by simulator and their real-

world consequences 

Type of error 
detected 

Consequence in  
a real system 

Simulator detection 
mechanism 

Invalid memory 
access 

Crash (SIGSEGV) Consistency checks on 
address range 

Memory 
alignment error 

Crash ( SIGBUS) Check on memory 
address alignment 

Divide-by-zero Crash (SIGFPE) Check before DIV 
operation 

Integer overflow Crash (SIGFPE) Check after every 
integer operation 

Illegal 
instruction 

Crash (SIGILL) Check instruction validity 
before decoding 

System call 
error 

Crash (SIGSYS) None, as simulator 
executes system calls on 
behalf of application 

Infinite loops Program hang (live-
lock); program 
continuously issues 
instructions and never 
terminates 

Program executes 
double the number of 
instructions compared 
with the golden run 

Indefinite wait 
due to blocking 
system calls or  
I/O 

Program hang 
(deadlock); program 
stops issuing 
instructions and never 
terminates 

Program execution takes 
substantially longer (five 
times) than the golden 
run 

Incorrect output Fail-silent violation 
(silent data corruption) 

Compare outputs at the 
end of the run 

Table 3: Benchmarks and their descriptions 

Benchmark  Suite Description 

Replace Siemens Searches a text file for a regular 
expression and replaces all occurrences 
of the expression with a specified string 

Schedule2 Siemens A priority scheduler for multiple job 
tasks 

Print_tokens Siemens Breaks the input stream into a series of 
lexical tokens according to pre-specified 
rules 

Tot_info Siemens Offers a series of data analysis 
functions 

Gcc95 SPEC95 The gcc compiler 

Perl SPEC95 The perl interpreter 

For each program, the dynamic trace from one of the inputs is 

chosen to build the DDG and to perform the analysis to choose 

detector points (the top 100 locations according to each metric). 

Fault injections are then performed at randomly chosen values in 

the application’s execution for all three inputs. For each 

application, input, and metric used to choose detector points, 

faults are injected at 500 random locations, randomly flipping a 

single bit of a value. This is done 10 times for each location, for a 

total of 5000 fault injections for each combination of application, 

input, and metric. One fault is injected per run to eliminate the 

possibility of latent errors due to faults injected earlier.  

7. Results 

The results obtained from the experiments are analyzed with the 

objective of answering the following questions: 

 What is the detection coverage provided by individual 

detectors placed according to a given metric? 

 What is the rate of false-positives of individual detectors 

placed according to a given metric? 

 What is the detection coverage provided jointly by multiple 

detectors placed according to a given metric? 

 What is the rate of false-positives of multiple detectors 

placed according to a given metric? 

7.1 Detection Capability of Metrics for Single 

Detectors 

This section evaluates the detection coverage provided by 

individual detectors placed according to different metrics. All 

results represent the average calculated for each application 

across three inputs. The detector points that registered a value 

deviation for an injection are associated with the outcome of the 

injection. The results for each outcome category (crash, hang, 

fail-silent violation, success) are normalized across the total 

number of errors observed under that category (for each 

benchmark-metric combination). The results for crashes, 

successes (false-positives) and fail-silent violations are shown in 

Figures 2, 3, and 4, respectively. The results for hangs are not 

shown due to space limitations. The interested reader may refer 

to [22] for the same.  

The following can be concluded from the graphs: 

 Detectors placed according to the fanout and propagation 

metrics are the best at detecting crashes. They are followed by 

detectors placed according to the cover metric (see Figure 2).  

The coverage provided by fanout and propagation detectors is 

more than 90% for the Siemens benchmarks (except for tot_info). 

For the SPEC benchmarks, the coverage is around 50-60%.  

 The percentage of false-positives is small, less than 2% for 

all benchmarks except replace (see Figure 3). The higher false-

positive rates for gcc95 and perl are registered by detectors 

placed using fanout (1.5%) and propagation (2%) metrics. 

 Although the detector points were chosen to support crash 

detection, they also detect a significant percentage of fail-silent 

violations (30-70% for detectors placed using fanout and 

propagation metrics, as shown in Figure 4) and hangs (60-90%). 

7.1.1 Discussion 

Locations having high fanout and propagation are responsible 

for propagating errors to a large number of places in the DDG, 

and it is likely that at least one of the propagated errors causes a 

crash. Detectors placed using fanout do marginally better than 

those inserted using propagation. There are two key reasons for 

the differences: (i) Propagation relies on the accuracy of the 

crash model in deciding on the further propagation of the error, 

while fanout does not take the crash model into account and is 

more conservative. (ii) Locations with a high fanout are often 

stack or frame pointers. The program accesses these locations 

frequently, hence an error is likely to cause a crash. 

The SPEC benchmarks execute more than a million dynamic 

instructions, while the Siemens benchmarks typically execute 

less than 100,000 (only tot_info in the Siemens suite executes 

between 100,000 and a million instructions). As a result, the 

probability of the error reaching the detector is higher in the case 

of the Siemens benchmarks than for the SPEC95 benchmarks. 

Hence, the detection coverage for replace, schedule2, and 

print_tokens ranges between 80% and 90%, compared with 50-

70% for gcc, perl, and tot_info. 

The execution metric is a good indicator for placing detectors in 

the Siemens benchmarks, where infrequently executed paths are 

not pruned. However, it does not perform well in the SPEC 



 

benchmarks, where paths that contribute to less than 80% of the 

execution time are already removed.  

Detectors placed using the lifetime metric do not have high crash-

detection coverage, as the error is likely to remain latent for a 

long time in a high-lifetime node and is unlikely to cause a crash. 

The lower effectiveness of detectors placed using the cover 

metric compared to propagation and fanout stems from the fact 

that cover aims at placing detectors along paths leading to 

potential crash-points, while propagation and fanout place 

detectors along paths that can potentially spawn errors in many 

nodes. Typically, the number of locations with high fanout or 

propagation is small (these metrics follow a Pareto-Zipf law like 

distribution), while the number of potential crash-points of the 

application is much larger.  This result shows that it is more 

beneficial to place detectors to protect these few, highly sensitive 

values, than it is to place detectors along paths that lead to 

potential crash points.  

The false-positive rate for the metrics is less than 2% for all 

benchmarks except replace. A false-positive means that the error 

was detected by a detector point, but the program completed 

successfully (and produced correct output). The number of 

instructions executed by replace is around 10,000, and hence the 

probability of an error reaching the detector point is high even if 

the error does not trigger a failure.  

7.2 Detection Capability of Metrics for Multiple 

Detectors 

The previous section considered the detection provided by 

placing a single detector in each of the benchmark programs. For 

the Siemens benchmarks (except tot_info), this was sufficient to 

provide coverage of 90%. However, for applications such as 

gcc95 and perl, a single detector could achieve only up to 60% 

coverage. In this section, we evaluate the coverage provided 

jointly by multiple detectors placed in gcc95 and perl.   

The top 100 detector locations selected by each metric are 

grouped into bins of a predefined size, and the cumulative 

coverage of detectors placed at locations indicated by a bin is 

evaluated. For example, to evaluate the coverage of the fanout 

metric with a bin size of 10, the top 100 locations with the 

highest fanout are arranged in decreasing order by their fanout 

value. The top 10 locations are then grouped into bin 1, the next 

10 locations into bin 2, and so on up to bin 10. The crash-

detection coverage of each bin as a whole is evaluated. The 

average coverage of the 10 bins is the crash-detection coverage 

for the fanout metric with a bin size of 10. 

The results for crash detection, false-positives, and fail-silent 

violations are shown in Figures 5 through 10 as a function of the 

bin size for gcc95 and perl. 
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Figure 2: Crashes detected by detectors across benchmarks 
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Figure 3: False-Positives detected by detectors across benchmarks 
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Figure 4: Fail-silent violations detected by detectors across benchmarks 



 

The results for gcc95 are summarized below, and similar trends 

are observed for perl. 

 For detectors placed using fanout and propagation, the 

crash-detection coverage is less than 60% when the bin size 

is 1 (as discussed in section 7.1). Increasing the bin size to 

10 improves coverage to 80% (see Figure 5). 

 For a bin size of 1, the coverage provided by detectors 

placed according to lifetime is less than 40% (as discussed in 

Section 7.1). However, for a bin size of 10, the coverage is 

almost equal to that provided by detectors placed according 

to fanout and propagation metrics. For a bin size of 25 and 

100, it even surpasses the coverage of detectors placed using 

fanout, providing coverage values of 90% and 99%, 

respectively (see Figure 5). 

 The percentage of false-positives also increases with 

increasing bin-size, but not as much as the crash-detection 

coverage. For example, for detectors placed using the fanout 

metric, the coverage is around 80% when the bin size is 10, 

but the number of false-positives remains around 5% (see 

Figure 7).  

 The increase in the false-positive rate for lifetime is much 

less than it is for fanout. The false-positive percentage for 

lifetime is only 5% for a bin size of 100 compared to 10% 

for fanout for the same bin size. When 10 or more detectors 

are considered, placement based on the lifetime metric 

provides the best coverage and the lowest rate of false-

positives (see Figure 7). 

 Random detector placement provides coverage of 95% (see 

Figure 5) when the bin size is 100. Further, it has the smallest 

percentage of false-positives (2.5%, see Figure 7), making 

random placement of multiple detectors a good choice when 

minimizing false-positives is critical. 

 The fail-silent violation coverage is highest for detectors 

placed using the fanout metric (70% for a bin size of 10, see 

Figure 9). For a bin size of 100, detectors placed using the 

execution metric surpass the detectors placed using fanout. 

7.2.1 Discussion 

For all the metrics, the coverage increases with increases in the 

bin size as the number of detector points increases. This increase 

in the coverage as bin size increases flattens out, however, since 

there is considerable overlap among the multiple detector points 

in detecting crashes. For example, for detectors placed using the 

fanout metric, grouping detectors into bins of size 5 increases the 

coverage to 75% (from the 60% coverage provided by individual 

detectors). However, the increase in coverage is less when the 

bin size increases to 10 (coverage 80%). 

Detectors at locations with a high lifetime provide limited 

coverage individually, but several of them jointly achieve very 

high coverage. This is because each detection point covers a 

different set of errors. Closer analysis of the results indicates that 

there is usually one hot-detector in each bin.  The hot-detector 

detects the majority of errors covered by that bin, and the other 

detectors complement the coverage by detecting errors that 

escape the hot-detector. These errors are also not easily 

detectable by the detectors placed using other metrics.  

When detectors are grouped into bins, the rate of the false-

positives increases, as there are more detector-points that are 

likely to capture the error even if no crash occurs. However, for 

detectors chosen using the lifetime metric, each detector point by 

itself has a lower detection rate than detectors selected using 

other metrics, and hence the number of false-positives is also 

low. When combined together in bins, the coverage numbers are 

additive, whereas the false-positives are not.  

The coverage provided by random detector placement is the 

lowest of all metrics (with the exception of execution) for bin 

sizes up to 25 (for gcc). For bin-size beyond 25, the coverage 

provided by the randomly placed detectors increases sharply and 

is comparable to the coverage provided by the detectors placed 

using other metrics (for a bin size of 100). In the top 100 detector 

points picked by the random metric, there are a few points that 

provide very high coverage. Consequently, if the bins are large 

enough, it is likely that at least one such high coverage point gets 

included in each bin.  

For gcc95, 100 detectors correspond to about 1% of the locations 

on its hot-paths, while for perl, 25 detectors correspond to 1% of 

its hot-paths locations. Hence, by placing detectors at less than 

1% of the hot-paths in both applications, it is possible to obtain 

up to 99% coverage.  

7.3 Summary of Results 
This section summarizes the results from sections 7.1 and 7.2 as 

follows: 

 Detectors placed using the fanout metric have the best 

coverage in the program when single detectors are 

considered. The coverage provided is 90% for the Siemens 

benchmarks and 50-60 % for the SPEC benchmarks.  

 When multiple detectors are placed using the fanout metric, 

the coverage increases to 97% by inserting detectors at less 

than 1% of the hot-paths. In the multiple detector case, the 

coverage provided by the detectors placed using the lifetime 

metric is higher than the coverage provided by detectors 

placed using the fanout metric (for 10 or more detectors).  

 Random assertion placement on the hot-paths of the 

application can provide coverage of up to 95% with a low 

rate of false-positives if detectors are placed at 1% of the 

hot-path locations.   

8. Conclusions and Future Work 

This paper explores the problem of detector placement in 

programs to preemptively detect crashes due to errors in data 

values used in the program. A model for error propagation and 

crashes is developed, and metrics for placing detectors are 

derived from the model. The metrics are evaluated on six 

applications, including two SPEC95 benchmarks. It is found that 

strategic placement of detectors can increase crash coverage by 

an order-of-magnitude compared to random placement, with a 

low percentage of false-positives. Though the placement of 

detectors was geared toward detecting crashes, the detectors also 

detected a sizeable percentage of fail-silent violations and hangs. 

Future work will involve integrating the analysis into a compiler 

and automatically deriving the actual detectors for checking.  We 

also plan to integrate the detectors as hardware modules in the 

Reliability and Security Engine (RSE) [21]. 
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Figure 5: Effect of bin size on crash detection 

coverage for gcc for different metrics 

Crash Detection versus Bin Size (perl)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetime

Random

Execution

Cover

 

Figure 6: Effect of bin size on crash detection 

coverage for perl for different metrics 

False-Positives versus Bin size (gcc95)
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Figure 7: Effect of bin size on false-positive rate 

for gcc for different metrics 
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Figure 8: Effect of bin size on false positive rate 

for perl for different metrics 
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Figure 9: Effect of bin size on fail-silent violation 

coverage for gcc for different metrics 
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Figure 10: Effect of bin size on fail-silent 

violation coverage for perl for different metrics 
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