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Abstract— This paper presents a technique to derive and 
implement error detectors to protect an application from data 
errors. The error detectors are derived automatically using 
compiler-based static analysis from the backward program 
slice of critical variables in the program. Critical variables are 
defined as those that are highly sensitive to errors, and deriving 
error detectors for these variables provides high coverage for 
errors in any data value used in the program. The error 
detectors take the form of checking expressions and are 
optimized for each control flow path followed at runtime. The 
derived detectors are implemented using a combination of 
hardware and software. 

 
Index Terms— Static Analysis, Application-aware, 

Path-tracking, Backward Slicing, Reliability. Diverse Execution. 
 

I. INTRODUCTION 
his paper presents a methodology to derive error detectors 
for an application based on compiler (static) analysis. The 
derived detectors protect the application from data errors. 

A data error is defined as a divergence in the data values used in 
the application from an error-free run of the program. These 
errors can result from incorrect computation and would not be 
caught by generic techniques such as ECC in memory. They 
can also arise due to software defects, such as pointer errors and 
timing and synchronization errors.  
Many static analysis [1] and dynamic analysis [2] approaches 
have been proposed to find bugs in programs. These 
approaches have proven effective in finding known kinds of 
errors prior to deployment of the application in an operational 
environment. However, studies have shown that the kinds of 
errors encountered by applications in operational settings are 
subtle errors (such as timing and synchronization errors) [8], 
which are not caught by static and dynamic methods. In order to 
detect runtime errors, we need mechanisms that can provide 
high-coverage, low-latency (rapid) error detection to: preempt 
uncontrolled system crash/hang and prevent error propagation. 

Duplication has traditionally been used to provide 
high-coverage at runtime for software errors and 
hardware-errors. However, in order to prevent 

error-propagation and preempt crashes, duplication needs to 
make a comparison after every instruction, which in turn results 
in high performance overhead. Therefore, duplication 
approaches compare the results of replicated instructions at 
selected program points such as stores and branches 
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[4]. While 
this reduces the performance overhead, it sacrifices coverage as 
the program may crash before reaching the comparison point. 
Further, duplication-based techniques offer limited protection 
from software errors and permanent hardware faults because 
the original program and the duplicated program can suffer 
from common mode errors.  

Diverse execution techniques that execute two different 
versions of the same program, can offer protection from 
common-mode errors. ED4I [5] is a software-based diverse 
execution technique to protect against transient and permanent 
hardware faults. The original program is transformed into a 
different program in which each data operand is multiplied by a 
constant value k. The original program and the transformed 
program are both executed on the same processor and the 
results are compared. Since the transformed program operates 
on a different set of data operands than the original program, it 
is able to mask certain kinds of hardware errors in processor 
functional units and memory. However, ED4I cannot detect 
errors in instruction issue and decode logic as it introduces 
diversity only in the data values used in the program and not in 
the instructions that compute the data values. 

The approach presented in this paper derives runtime error 
detectors (or checks) based on static analysis. It takes into 
account the placement of checks to preempt crashes and 
provides high-coverage to detect errors that result in 
application failures. The approach is complementary to existing 
static analysis techniques and detects subtle errors such as 
timing errors in the program. In addition, the derived checks 
can naturally detect hardware errors that occur in the processor 
and the memory.  

The main contribution of this paper is that it derives runtime 
error detectors based on application properties extracted using 
static analysis. The derived detectors recompute the values of 
critical program variables in a diverse way in order to 
minimize the possibility of common-mode errors. The derived 
detectors are implemented using a combination of 
programmable hardware and software. 

II. APPROACH 
This section presents an overview of the detector derivation 
approach. The approach is based on program slicing [6]. 

T 



A. Terms and Definitions 
Backward Program Slice of a variable at a program location is 
defined as the set of all program statements/instructions that 
can affect the value of the variable at that program location [6]. 
Slicing techniques can be static or dynamic in nature. 
Critical variable: A program variable that exhibits high 
sensitivity to random data errors in the application is a critical 
variable. Placing checks on critical variables achieves high 
detection coverage. 
Checking expression: A checking expression is a sequence of 
instructions that recomputes the critical variable, and is 
optimized aggressively and differently from the rest of the 
program code. The instruction sequence is computed from the 
backward slice of the critical variable for a specific control path 
in the program. Checking expressions are referred to 
synonymously as checks in the paper. Checks are placed after 
the computation of the critical variable in the original program. 

B. Slicing Algorithm 
The slicing algorithm used is a static slicing technique that 
considers all possible dependences between instructions in the 
program regardless of program inputs. It does not perform 
inter-procedural slicing allowing the analysis to be scaled to 
large applications. This can affect the coverage of the derived 
detectors. However, by placing multiple detectors in the 
program at critical variables, it is possible to achieve high 
coverage. This is because at least one of the detectors placed in 
the program will be able to detect the error. 

C. Steps in Detector Derivation 
The main steps in the derivation of error detectors are as 
follows: 
Identification of critical variables: The critical variables are 
identified based on an analysis of the dynamic dependence 
graph of the program presented in [3]. This analysis is carried 
out on a per-function basis in the program i.e. each function in 
the program is considered separately for identification of 
critical variables. 
Computation of backward slice of critical variables: A 
backward traversal of the static dependence graph of the 
program is performed starting from the instruction that 
computes the value of the critical variable going back to the 
beginning of the function. The slice is specialized for each 
acyclic control path that reaches the computation of the critical 
variable from the top of the function. 
Check derivation, Check insertion and instrumentation: 
Check derivation: The specialized backward slice for each 
control path is optimized considering only the instructions on 
the corresponding path, to form the checking expression. 
Check insertion: The checking expression is inserted in the 
program immediately after the computation of the critical 
variable (check placement point). 
Instrumentation: Program is instrumented to track 
control-paths followed at runtime in order to choose the 
checking expression for that specific control path. 
Runtime checking in hardware and software: 
The control path followed is tracked by the inserted 
instrumentation in hardware at runtime. The path-specific 

inserted checks are executed at appropriate points in the 
execution depending on the runtime control path. 
The checks recompute the value of the critical variable for the 
runtime control path. The recomputed value is compared with 
the original value computed by the main program. In case of a 
mismatch, the original program is stopped and recovery is 
initiated. Otherwise, execution continues normally. 

D. Hardware Implementation 
In the proposed technique, the analysis of the program, 
derivation of the checking expression and the addition of 
instrumentation is entirely done at compile-time. At runtime, 
the added instrumentation keeps track of the path followed and 
executes the checking expression corresponding to the path. 
While the runtime checking can be performed in hardware or 
software, we provide a combined hardware-software 
implementation in this paper.  
There are two sources of runtime overhead for the detector: (1) 
the overhead of keeping track of the control path followed and 
(2) the overhead of executing the check. 
Path Tracking: The overhead of tracking paths can be 
significant (4x) when done in software. Therefore, a prototype 
implementation of path tracking is presented in hardware. This 
hardware is integrated with the Reliability and Security Engine 
(RSE) [10]. RSE is a hardware framework that provides a 
plug-and-play environment for including modules that can 
perform a variety of checking and monitoring tasks in the 
processor’s data-path level. The path-tracking hardware is 
implemented as a module in the RSE framework and is 
configured at application load-time. The monitoring is done in 
parallel with the main program, thereby reducing the 
performance overhead of the monitoring.  
In this paper, the behavior of the path-tracking module is 
simulated in software and the conceptual design of the 
hardware module is presented in Section IV. 
Checking: In order to further reduce the performance overhead, 
the check execution itself can be moved to hardware. This 
would involve compiling the checking expressions directly to 
hardware and implementing them in the RSE. In our 
implementation, the checking is done in software.  

E. Fault Model 
Hardware transient errors that results in corruption of 
architectural state are considered. Examples of such errors are: 
• Errors in Instruction Fetch and Decode: Either the wrong 

instruction is fetched, (OR) a correct instruction is decoded 
incorrectly resulting in data value corruption. 

• Errors in Execute and Memory Units: An ALU instruction 
is executed incorrectly inside a functional unit, (OR) the 
wrong memory address is computed for a load/store 
instruction, resulting in value corruption. 

• Errors in Cache/Memory/Register File Errors: A value in 
the cache, memory, or register file experiences a soft error 
that causes it to be incorrectly interpreted in the program 
(assuming that ECC is not used). 

Software transient errors such as buffer overflows (memory 
errors) and race conditions (timing errors), which can corrupt 
data values used in the program, are also considered.  



III. COMPILER-BASED DETECTOR DERIVATION 
The LLVM compiler [7] is used for the analysis and derivation 
of error detectors. The derivation of detectors is done by 
introducing a new pass into LLVM, called the Value 
Recomputation Pass (VRP). The VRP performs the backward 
slicing starting from the instruction that computes the value of 
the critical variable to the beginning of the function. It also 
performs check derivation, insertion and instrumentation. The 
output of the pass is provided as input to other optimization 
passes in LLVM. By extracting the path-specific backward 
slice and exposing it to other optimization passes in the 
compiler, the Value Recomputation pass enables aggressive 
compiler optimizations to be performed on the slice that would 
not be possible otherwise.  
 

loopentry:
…
br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [ 0, loopentry ], [tmp.i, then ], [tmp.i, endif ]

tmp.i = add indvar.i, 1         
i.1 = cast tmp.i to int                
tmp.9 = getArrayElement sortlist, tmp.i            
tmp.10 = load [ tmp.9 ]      
tmp.12 = add i.1, 1                  
tmp.13 = getArrayElement sortlist , tmp.12
tmp.14 = load [tmp.13]           
tmp.15 = setgt tmp.10, tmp.14      
br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]
br endif

endif: 
tmp.16 = setlt tmp.12, top         
br tmp.16, no_exit, loop_exit

loopexit:
….  

Figure 1: LLVM intermediate code corresponding to inner 
while loop of a Bubble sort program 
 
 

no_exit:.
indvar = phi  [0, loopentry], [tmp.i, then ], [tmp.i, endif ]   
old.tmp..i = tmp..i 
tmp.i = add indvar.i, 1         
i.1 = cast tmp.i to int                
tmp.9 = getArrayIndex sortlist, tmp.i             
tmp.10 = load [ tmp.9 ]      
pathVal = getState( ) 
br pathVal, path.0, path.1

path0:
new.0.tmp.9 = getArrayIndex sortList, 1
new.0.tmp.10 = load [ new.0.tmp.9 ]          
br Check

path1:
new.1.tmp.i = add old.tmp.i, 1         
new.1.tmp.9 = getArrayIndex sortlist, new.1.tmp.i        
new.1.tmp.10 = load [ new.1.tmp.9 ]     
br Check

Check:
new.tmp.10 = phi [new.0.tmp, path0], [new.1.tmp, path1]
compare = seteq new.10, tmp.10
br compare, errorBlock, restBlock

restBlock:
tmp.12 = add int i.1, 1                  
tmp.13 = getArrayIndex sortlist, tmp.12             
tmp.14 = load tmp.13
tmp.15 = setgt tmp.10, tmp.14       
br bool tmp.15, label then, label endif

errorBlock:
call errFunc()

 
Figure 2: Transformations introduced by the VRP and 
other optimization passes for code shown in Figure 1. 
 
Figure 1 shows the LLVM intermediate code for the inner 
while loop of a bubble sort program. The LLVM code is in SSA 

form [9], which is an intermediate representation used by 
compilers to represent data dependences. In SSA form, each 
variable (value) is defined exactly once in the program, and the 
definition is assigned a unique name [9]. This unique name 
makes it easy to identify dependences among instructions. 
A. Algorithm 
The instruction that computes the critical variable is called the 
critical instruction. In order to derive the backward program 
slice, a backward traversal of the Static Dependence Graph 
(SDG) is performed starting from the critical instruction. The 
traversal continues until one of the following conditions is met, 
(1) The beginning of the current function is reached (only 
intra-procedural slices are considered) or (2) A basic block that 
had been previously encountered in the backward traversal is 
revisited (loops are not recomputed) or (3) The critical 
instruction occurs in-between the producer instruction of the 
dependence and the consumer instruction of the dependence 
(only previous loop iterations are considered when traversing 
loop-carried dependences) or (4) A memory dependence is 
encountered in the backward traversal. 
The rationale for each of these cases is presented below:  
• Intra-procedural Slices:  As already mentioned, it is 

sufficient to consider intra-procedural slices in the 
backward traversal because each function is considered 
separately for the detector placement analysis. For 
example in Figure 2a, the array sortList is passed in as an 
argument to the function from the main function. The slice 
does not include the computation of sortList in main. If 
sortList is a critical variable in the main function, then a 
check will be placed for the variable in the main function.  

• No recomputation of loops: During the backward traversal, 
if a dependence within a loop is encountered, the loop is 
not recomputed in the checking expression. Instead, the 
check is broken into two checks, one placed on the critical 
variable and one on the variable that affects the critical 
variable within the loop. This second check ensures that 
the variable within the loop is computed correctly and 
hence the variable can be used directly in the check. 

• Only the previous loop iteration is considered in traversing 
loop carried dependences: When a 
loop-carried-dependence across two or more iterations is 
encountered, the dependence is truncated and the loop 
dependence is not included in the slice. This is because 
duplicating across multiple loop iterations can involve 
loop unrolling or buffering intermediate values that are 
rewritten in the loop. Instead, the check is broken into two 
checks, one for the dependence-generating variable and 
one for the critical variable. 

• Memory Dependences not considered. While LLVM does 
not represent memory objects in SSA form, it promotes 
most memory objects to registers prior to running a pass 
(including the Value Recomputation pass). Since there is 
an unbounded number of virtual registers for storing 
variables in SSA form, the compiler is not constrained by 
the number of physical registers. 

The details of the VRP are omitted due to space constraints. 
The VRP algorithm may be found in the technical report 
version of this paper [11]. 



B. Derived Checks 
The VRP creates two different instruction sequences to 
compute the value of the critical variable corresponding to the 
control paths in the code. The first control path corresponds to 
the control transfer from the basic block loopentry to the basic 
block no_exit in Figure 1. The optimized set of instructions 
corresponding to the first control path is encoded as a checking 
expression in the basic block path0 in Figure 2. 
The second control path corresponds to the control transfer 
from the basic block endif to the basic block no_exit in Figure 1. 
The optimized set of instructions corresponding to the first 
control path is encoded as a checking expression in the basic 
block path1 in Figure 2.  
The instructions in the basic blocks path0 and path1 recompute 
the value of the critical variable tmp.10. These instruction 
sequences constitute the checking expressions for the critical 
variable tmp.10. The basic block Check in Figure 2(c) 
compares the value computed by the checking expressions to 
the value computed in the original program. A mismatch 
signals an error and the appropriate error handler is invoked in 
the basic block error. Otherwise, control is transferred to the 
basic block restBlock, which contains the instructions 
following the computation of tmp.10 in Figure 2, and execution 
proceeds normally. 
C. Discussion 

As illustrated in the example in Figure 2, the instructions in the 
checking expression are optimized separately from the rest of 
the program. As a result, the check introduces a level of 
diversity in the recomputation of the critical variable. This 
diversity provides detection of errors in the instructions 
involved in the critical variable’s computation.  
Consider what happens when an error affects an instruction that 
is involved in the computation of the critical variable. Assume 
that the error affects the instruction that computes tmp.i in 
Figure 1 (this instruction indirectly impacts the computation of 
the critical variable tmp.10).  
We now describe how this error is detected by the checking 
expressions in path0 and path1, when the corresponding 
control paths are executed by the program. 
First consider the case when the runtime path followed 
corresponds to the execution of the checking expression in the 
basic block path0 (Figure 2). In path0, the compiler performs 
constant propagation and replaces the computation of tmp.i 
with the constant 1 in Figure 2. As a result, the error in the 
computation of tmp.i is not manifested in path0. Hence, the 
value of the critical variable computed in path0, namely 
new.0.tmp.10, is different from the value of the critical variable 
computed in the original program (Figure 2). Therefore the 
error in the computation of tmp.i is detected along path0. 

Now consider the case when the path followed corresponds 
to the execution of the checking expression in path1 (Figure 2). 
The VRP inserts code to copy the original value of tmp.i into 
old.tmp.i before tmp.i is overwritten in the program. The value 
old.tmp.i is used in the checking expression in path1 to 
recompute the value of tmp.i, namely new.1.tmp.i, which in 
turn is used to recompute the critical variable in path1. The 
value new.tmp.i is computed and stored separately from the 
original value tmp.i, and consequently does not suffer from the 
error that affected the computation of tmp.i. As a result, the 

value of the critical variable computed in path1, namely 
new.1.tmp.i is different from the one computed in the original 
program (Figure 2). Therefore the error in the computation of 
tmp.i is detected along path1. 

In the first case, the checking expression performed a 
recomputation of the critical variable with diversity in 
instructions (path0) while in the second case it performed the 
recomputation with diversity in data (path1). In both cases, the 
diversity was introduced by the transformations carried out by 
the VRP and subsequent optimization passes. Therefore, the 
diversity introduced by the checking expressions allows the 
detection of errors that may not have been detected due to 
simple duplication alone. 

IV. HARDWARE-BASED PATH TRACKING 
The path-tracking hardware keeps track of the control paths 
encoded as finite state machines. The Value Recomputation 
pass synthesizes the state machines for each check 
automatically from the program. The algorithm to convert the 
control-flow paths corresponding to each check into state 
machines is straightforward and is not described here. 
As explained in Section II.D, the path-tracking hardware is 
implemented as a module in the RSE [10] and monitors the 
main processor data path. The state machines corresponding to 
each check in the application are programmed into the 
path-tracking module at application load time.  
A. Interface with main processor  
The main processor uses special instructions called CHECK 
instructions to invoke the RSE modules. The path tracking 
module supports three primitive operations encoded as 
CHECK instructions. The operations are as follows: 
emitEdge(from, to): Triggers transitions in the state machines 
corresponding to one or more checks. Each basic block in the 
program is assigned a unique identifier assigned by the Value 
Recomputation pass. This operation indicates that control is 
transferred from the basic block with identifier from to the basic 
block with identifier to.  
getState(checkID): Returns the current state of the state 
machine corresponding to the check, and is invoked just before 
the execution of the check in the program. 
resetState(checkID): Resets the state-machine for the check 
given by checkID. This operation is invoked after the execution 
of the check in the program. 
B. Module Components 
The path-tracking module is shown in Figure 3. It consists of 
three main components as follows: 
Edge Table: Stores the mapping from control-flow edges to 
edge-identifiers for instrumented edges in the program. Each 
instrumented control-flow edge is assigned a unique index and 
is mapped to the identifiers assigned to the source and sink 
basic blocks for that edge.  
State Vector: Holds the current state of the state machine 
corresponding to the checks, with one entry for each check 
inserted in the program. 
State Transition Table: Contains the transitions corresponding 
to the state machines. The rows of the state transition table 
correspond to the edge indices, while the columns correspond 
to the checks.  
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Figure 3: Hardware module for tracking paths 

RSE Interface: Converts the CHECK instructions from the 
main processor into signals specific to the path-tracking 
module. Similarly, converts signals from the path-tracking 
module into special flags in the main processor. This is a 
common component shared by all RSE modules. 
C. Module Operation 
 The operation of the path-tracking module for each of the 
following operations (executed in the processor) is considered: 
CHECK instruction with emitEdge operation:  
• RSE interface asserts the emitEdge signal and sends the basic 

block identifiers that constitute the edge in the from and to 
lines.  

• The from and to identifiers are looked up in the edge table 
and the edge index corresponding to the edge is sent to the 
state transition table.  

• The row corresponding to the edge is looked up in the state 
transition table.  

• For each non-empty table-entry in the column corresponding 
to the checks, the states in the LHS of the transitions stored 
in the table entry are compared to the current state of the 
check in the state vector.  

• If the states match, then the transition is fired and the state 
vector entry corresponding to the check is updated with the 
state in the RHS of the transition that matched.  

CHECK instruction with the getState operation:  
• RSE interface asserts the getState signal and sends the 

identifier of the check on the checkID line to the 
path-tracking module.  

• The path tracking module looks up the state in the state 
vector and sends it to the RSE interface through the 
currentState line. This in turn is sent to the main processor 
and is returned as the value of the CHECK instruction 
(through a special register in the RSE). 

CHECK instruction with resetState operation: This is similar to 
the getState operation, except that no value is returned. 
Function calls/returns: The state vector needs to be preserved 
across function calls and returns. This is done by pushing the 
state vector on a separate stack (different from the function call 
stack) along with the return address upon a function call and by 
popping the stack upon a return.  

V. CONCLUSIONS AND FUTURE WORK 
This paper presented a technique to error detectors for 
protecting an application from data errors (both due to 
hardware and software). The error detectors were derived 
automatically using compiler-based static analysis from the 
backward program slice of critical variables in the program. 
The slice is optimized aggressively and differently (from the 
rest of the code) based on specific control-paths in the 
application, to form a checking expression. At runtime, the 
checking expression corresponding to the executed control path 
is tracked using specialized hardware and the checking 
expressions corresponding to the control-path are executed. 
The checking expression recomputes the value of the critical 
variable and a mismatch between the recomputed and original 
values indicates an error.  
Future work will involve evaluating the performance overhead 
and error detection coverage of the derived detectors. We also 
plan to implement the checking expressions derived in 
hardware and joint synthesis of the path-tracking module.  
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