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Overview

• Introduction of multicore processors made parallel 

programming ubiquitous

• Parallel programming is hard

– Suffers from all the problems of sequential programming

– Introduces additional sources of errors

• E.g., deadlock, atomicity violation, and data races



Scope of this work

• Data races

– Asymmetric races

• Large code base of parallel applications

– Lock-based programs

– Written mostly in C/C++

– Use add-on libraries for threading and synchronization

• ToleRace: detects and tolerates races at runtime
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Asymmetric races

• One thread correctly protects a shared variable

Thread 1:

CSEnter(mutex_A)

if (gScript == NULL)

baseScript = default;

else

baseScript = gScript;

CSExit(mutex_A)

compile(baseScript)

Thread 2:

gScript = NULL

• Another thread accesses the same variable with 

improper synchronization



Why focus on asymmetric races

• Prevalent in software development projects

– Direct experience from Microsoft developers

– Possible reasons:

• Correct local reasoning but lock convention broken

• Assumptions in legacy codes invalidated

• Symmetric races are often benign

// K and flag are declared volatile

Thread 1:

K = x;

flag = true;

Thread 2:

while (flag != true);

y = K;



Read (r, R)   Write (w, W)  Don’t care (x, X)

Read-dependent write (rw, RW)

+ denotes one or more of the preceding operation

* denotes zero or more of the preceding operation

Characterizing asymmetric races

Lower case for unsafe threadUpper case for safe thread

T1 = safe thread taking proper locks t2 = unsafe thread improperly synchronized

T’1

R+

t2

wx*

T’’1

R+WX*

race

true (non-repeatable read)

=   wx* WX* WX*WX* wx* WX* false

no race = T1 and t2 operations are serializable



Characterizing asymmetric races

• Race case:
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• Any race conditions among K>2 threads can always 

be reduced to one of the four race cases

no race = T1 and t2 operations are serializable

T1 = safe thread taking proper locks t2 = unsafe thread improperly synchronized
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Possible interaction sequences: R+(r+), WX*(wx*), and R+WX*(r+wx*)
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The oracle ToleRace mechanics

V’ V’’ V
CSEnter()

V’ = malloc()

V’’ = malloc()

V’’ = V’ = V

X11(    )

…

X1n(    )

f()

CSExit()

T1

X21( V )

…

X2n( V )

t2

• Upon acquiring a lock protecting V, T1 creates two 

private copies of V: V’ and V’’

• T1 operates on V’; t2 on V; V’’ is a clean copy

• Before unlocking, execute the resolution function f

– Detecting and/or tolerating the race at this point

V

VV’

V’

V = shared global

V’ and V’’ = private local



ToleRace resolution function

• Race cases:

I: XwR II: WrW III: RwW IV: XrwXIVA: RrwR IVB: WrwX IVC: RrwW

• Given a shared variable:
V = global operable; V’ = local operable; V’’ = local clean

V != V’’

SE: XRw

• Tolerate races by enforcing serial execution

F() = V

V == V’’

SE: rWW

F() = V’

T1t2 t2T1

V != V’’

SE: RXWw

F() = V

T1t2

V != V’’

SE: RRrw

F() = V

T1t2

V != V’’

SE: rwWX

F() = V’

t2T1

V != V’’

N/A

custom F()

N/A
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Analogous to transactional memory, …



Comparison with Transactional Memory

• Uses lazy versioning and lazy conflict detection

• Never aborts or rolls back

• Does not need contention management

• Can handle I/O and overlapped critical sections
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Pin-ToleRace

• Implemented software ToleRace on top of Pin, a 

dynamic instrumentation tool from Intel

• Work directly on executables

• Motivation for software ToleRace:

– Can be deployed immediately

– Gauges the worst case overhead by performing all 

analyses and decisions at runtime



Pin-ToleRace specific details

• x86/Linux platform

• Parallel pthread-based programs

• pthread_mutex_lock/unlock pair defines a 

critical section



Oracle ToleRace versus Pin-ToleRace 

• Oracle ToleRace

– Protects shared variables

– All protected variables 

known

– Atomic copy

– Not realizable

• Pin-ToleRace

– Protects shared memory

– All protected locations 

determined on-the-fly

– Non-atomic copy

– Implementable



Tolerate races with Pin-ToleRace

• Pin-ToleRace knows all the shared accesses in the 

safe thread, but cannot distinguish between

intervening rw and w sequences from other threads

• Comparison of oracle ToleRace with Pin-ToleRace

race type Tolerable

Oracle ToleRace Pin-ToleRace

I XwR true true

II WrW true true

III RwW true false

IVA RrwR true true

IVB WrwX true true

IVC RrwW false false



Pin-ToleRace evaluation

• Microbenchmark stress tests

• Real applications



Benchmarks

• 3 microbenchmarks for stress tests

– Scalar, static array, and dynamic array

• 13 real applications

– SPLASH2: four kernels and four applications

– PARSEC: one kernel and four applications

• All benchmarks compiled and run on Intel 32-bit 

system with 4-core 2.8 GHz P4-Xeon
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• Demonstrate race toleration with microbenchmarks

– Safe thread: increments shared counters each iteration

– Unsafe threads: impart random writes to shared counters

• Overhead is very high

– Almost always executing inside critical sections



Critical section characteristics

• Small number of unique critical sections

• Infrequently executing inside critical sections

unique
nested 

CS

dynamic 

number of 

instrs per 

CS (user)

% 

dynamic 

instrs in 

CS

cholesky 14 no 29 < 0.1%

fft 10 no 17 < 0.01%

lu 7 no 17 < 0.01%

radix 9 no 17 < 0.01%

barnes 10 no 94 0.18%

ocean 26 no 17 < 0.01%

radiosity 36 yes 18 0.11%

water-spatial 16 no 13 < 0.01%

dedup 7 yes 600 0.42%

facesim 5 yes 46 < 0.01%

ferret 4 yes 690 1.59%

fluidanimate 11 no 13 0.40%

x264 2 no 11 < 0.01%



Critical section characteristics

unique accesses

AVG STD

cholesky 4.78 0.38

fft 1.37 0.04

lu 2.99 0.01

radix 2.82 0.19

barnes 19.13 0.03

ocean 3.00 0.00

radiosity 4.92 0.23

water-spatial 2.62 0.01

dedup 80.87 3.52

facesim 7.70 1.14

ferret 72.89 33.83

fluidanimate 5.00 0.00

x264 2.16 0.02

• The table shows unique 

accesses to possibly shared 

locations per critical section

• This number is less than five 

except for barnes, dedup, 

facesim, and ferret



Pin-ToleRace performance

• On average, about 2X and 24% slowdown 

compared to the native and Pin run, respectively

• Approximate upper bound on overhead

Normalized execution time of Pin-ToleRace
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Ideal software ToleRace performance

• On average, only 7% slowdown

• Most applications run with less than 1% overhead

• Approximate lower bound on overhead

Normalized execution time of ideal software ToleRace
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Summary

• Asymmetric races are an important class of parallel 

programming errors

• We presented ToleRace, a theoretical framework for 

detecting and tolerating asymmetric races

• We showed that an implementable software 

ToleRace system based on Pin has a 2X overhead

• Aim to further improve ToleRace by

– Providing a stronger isolation guarantee

– Lowering the software ToleRace overhead



Backup Slides



The oracle ToleRace

• A theoretical framework for handling asymmetric 

races in lock-based parallel programs

– Creates local copies of shared variables upon CSEnter()

– Detects changes to shared data at critical CSExit()

– Propagates the appropriate copy to hide races

• Dynamically detects the race and also tolerates it 

whenever possible

• Incurs overhead only at critical section execution



Pin-ToleRace general framework

• Defines safe memory as the region that holds local 

copies of shared memory locations

• Once in a critical section, instruments each executed 

instruction touching shared locations

• Searches the safe memory for shared locations

– If found: accesses are redirected to the safe memory

– If not: create a new node in the safe memory and redirect 

accesses



The safe memory region

 

locklist

safemem

sharedsafemem

tid

outermost lock 

variable

0 xxxxxx

1 0x3deeaabb

2 0x3f112244

3 0x3deeaabb

: :

: :

N xxxxxx

0x3deeaabb
1 3

Safe Memory Region 

tid-lock table 

safemem header 

safemem list 

cond_wait_threadlist

next

lockvar

write_aft_orig_accs

currentvalue

origaccesstype

origvalue

address

cond_wait_threadlist

next

lockvar

write_aft_orig_accs

currentvalue

origaccesstype

origvalue

address

• Contains three main data structures:

– Safemem list

– Tid-lock table

– Safemem header


