
Detecting and Tolerating Asymmetric Races

1Paruj Ratanaworabhan, 2Martin Burtscher, 3Darko Kirovski
3Benjamin Zorn, 4Rahul Nagpal, and 5Karthik Pattabiraman

1Cornell University
2The University of Texas at Austin

3Microsoft Research Redmond
4Indian Institute of Science

5University of Illinois at Urbana-Champaign

Overview

• Introduction of multicore processors made parallel

programming ubiquitous

• Parallel programming is hard

– Suffers from all the problems of sequential programming

– Introduces additional sources of errors

• E.g., deadlock, atomicity violation, and data races

Scope of this work

• Data races

– Asymmetric races

• Large code base of parallel applications

– Lock-based programs

– Written mostly in C/C++

– Use add-on libraries for threading and synchronization

• ToleRace: detects and tolerates races at runtime

Talk outline

• Overview and scope

• Asymmetric races

• The oracle ToleRace

• Pin-ToleRace

• Evaluation of Pin-ToleRace

• Ideal software ToleRace

• Summary

Asymmetric races

• One thread correctly protects a shared variable

Thread 1:

CSEnter(mutex_A)

if (gScript == NULL)

baseScript = default;

else

baseScript = gScript;

CSExit(mutex_A)

compile(baseScript)

Thread 2:

gScript = NULL

• Another thread accesses the same variable with

improper synchronization

Why focus on asymmetric races

• Prevalent in software development projects

– Direct experience from Microsoft developers

– Possible reasons:

• Correct local reasoning but lock convention broken

• Assumptions in legacy codes invalidated

• Symmetric races are often benign

// K and flag are declared volatile

Thread 1:

K = x;

flag = true;

Thread 2:

while (flag != true);

y = K;

Read (r, R) Write (w, W) Don’t care (x, X)

Read-dependent write (rw, RW)

+ denotes one or more of the preceding operation

* denotes zero or more of the preceding operation

Characterizing asymmetric races

Lower case for unsafe threadUpper case for safe thread

T1 = safe thread taking proper locks t2 = unsafe thread improperly synchronized

T’1

R+

t2

wx*

T’’1

R+WX*

race

true (non-repeatable read)

= wx* WX* WX*WX* wx* WX* false

no race = T1 and t2 operations are serializable

Characterizing asymmetric races

• Race case:

T’1

R+

R+

R+

WX*

WX*

WX*

R+WX*

R+WX*

R+WX*

T’’1

R+

WX*

R+WX*

R+

WX*

R+WX*

R+

WX*

R+WX*

T’1

R+

R+

R+

WX*

WX*

WX*

R+WX*

R+WX*

R+WX*

T’1

R+

R+

R+

WX*

WX*

WX*

R+WX*

R+WX*

R+WX*

T’’1

R+

WX*

R+WX*

R+

WX*

R+WX*

R+

WX*

R+WX*

t2

wx*

wx*

wx*

wx*

wx*

wx*

wx*

wx*

wx*

t2

r+

r+

r+

r+

r+

r+

r+

r+

r+

race

true

true

true

true

false

true

true

true

true

race

true

true

true

true

true

true

true

true

true

race

false

false

false

false

true

true

false

true

true

t2

r+wx*

r+wx*

r+wx*

r+wx*

r+wx*

r+wx*

r+wx*

r+wx*

r+wx*

I

I

I

I

I

I

II

II

II

II

III

III

IV

IV

IV

IV

IV

IV

IV

IV

IV

I: XwR II: WrW III: RwW IV: XrwX

• Any race conditions among K>2 threads can always

be reduced to one of the four race cases

no race = T1 and t2 operations are serializable

T1 = safe thread taking proper locks t2 = unsafe thread improperly synchronized

T’’1

R+

WX*

R+WX*

R+

WX*

R+WX*

R+

WX*

R+WX*

Possible interaction sequences: R+(r+), WX*(wx*), and R+WX*(r+wx*)

Talk outline

• Overview and scope

• Asymmetric races

• The oracle ToleRace

• Pin-ToleRace

• Evaluation of Pin-ToleRace

• Ideal software ToleRace

• Summary

The oracle ToleRace mechanics

V’ V’’ V
CSEnter()

V’ = malloc()

V’’ = malloc()

V’’ = V’ = V

X11()

…

X1n()

f()

CSExit()

T1

X21(V)

…

X2n(V)

t2

• Upon acquiring a lock protecting V, T1 creates two

private copies of V: V’ and V’’

• T1 operates on V’; t2 on V; V’’ is a clean copy

• Before unlocking, execute the resolution function f

– Detecting and/or tolerating the race at this point

V

VV’

V’

V = shared global

V’ and V’’ = private local

ToleRace resolution function

• Race cases:

I: XwR II: WrW III: RwW IV: XrwXIVA: RrwR IVB: WrwX IVC: RrwW

• Given a shared variable:
V = global operable; V’ = local operable; V’’ = local clean

V != V’’

SE: XRw

• Tolerate races by enforcing serial execution

F() = V

V == V’’

SE: rWW

F() = V’

T1t2 t2T1

V != V’’

SE: RXWw

F() = V

T1t2

V != V’’

SE: RRrw

F() = V

T1t2

V != V’’

SE: rwWX

F() = V’

t2T1

V != V’’

N/A

custom F()

N/A

Detect
&

Tolerate

Detect
&

Tolerate

Detect
&

Tolerate

Detect
&

Tolerate

Tolerate Detect

Analogous to transactional memory, …

Comparison with Transactional Memory

• Uses lazy versioning and lazy conflict detection

• Never aborts or rolls back

• Does not need contention management

• Can handle I/O and overlapped critical sections

Talk outline

• Overview and scope

• Asymmetric races

• The oracle ToleRace

• Pin-ToleRace

• Evaluation of Pin-ToleRace

• Ideal software ToleRace

• Summary

Pin-ToleRace

• Implemented software ToleRace on top of Pin, a

dynamic instrumentation tool from Intel

• Work directly on executables

• Motivation for software ToleRace:

– Can be deployed immediately

– Gauges the worst case overhead by performing all

analyses and decisions at runtime

Pin-ToleRace specific details

• x86/Linux platform

• Parallel pthread-based programs

• pthread_mutex_lock/unlock pair defines a

critical section

Oracle ToleRace versus Pin-ToleRace

• Oracle ToleRace

– Protects shared variables

– All protected variables

known

– Atomic copy

– Not realizable

• Pin-ToleRace

– Protects shared memory

– All protected locations

determined on-the-fly

– Non-atomic copy

– Implementable

Tolerate races with Pin-ToleRace

• Pin-ToleRace knows all the shared accesses in the

safe thread, but cannot distinguish between

intervening rw and w sequences from other threads

• Comparison of oracle ToleRace with Pin-ToleRace

race type Tolerable

Oracle ToleRace Pin-ToleRace

I XwR true true

II WrW true true

III RwW true false

IVA RrwR true true

IVB WrwX true true

IVC RrwW false false

Pin-ToleRace evaluation

• Microbenchmark stress tests

• Real applications

Benchmarks

• 3 microbenchmarks for stress tests

– Scalar, static array, and dynamic array

• 13 real applications

– SPLASH2: four kernels and four applications

– PARSEC: one kernel and four applications

• All benchmarks compiled and run on Intel 32-bit

system with 4-core 2.8 GHz P4-Xeon

dynamic array

0

10

20

30

40

50

60

70

80

5M 7.5M 10M

Number of iterations

N
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Native Pin Pin-Tolerace

Stress tests

6.6x74x

• Demonstrate race toleration with microbenchmarks

– Safe thread: increments shared counters each iteration

– Unsafe threads: impart random writes to shared counters

• Overhead is very high

– Almost always executing inside critical sections

Critical section characteristics

• Small number of unique critical sections

• Infrequently executing inside critical sections

unique
nested

CS

dynamic

number of

instrs per

CS (user)

%

dynamic

instrs in

CS

cholesky 14 no 29 < 0.1%

fft 10 no 17 < 0.01%

lu 7 no 17 < 0.01%

radix 9 no 17 < 0.01%

barnes 10 no 94 0.18%

ocean 26 no 17 < 0.01%

radiosity 36 yes 18 0.11%

water-spatial 16 no 13 < 0.01%

dedup 7 yes 600 0.42%

facesim 5 yes 46 < 0.01%

ferret 4 yes 690 1.59%

fluidanimate 11 no 13 0.40%

x264 2 no 11 < 0.01%

Critical section characteristics

unique accesses

AVG STD

cholesky 4.78 0.38

fft 1.37 0.04

lu 2.99 0.01

radix 2.82 0.19

barnes 19.13 0.03

ocean 3.00 0.00

radiosity 4.92 0.23

water-spatial 2.62 0.01

dedup 80.87 3.52

facesim 7.70 1.14

ferret 72.89 33.83

fluidanimate 5.00 0.00

x264 2.16 0.02

• The table shows unique

accesses to possibly shared

locations per critical section

• This number is less than five

except for barnes, dedup,

facesim, and ferret

Pin-ToleRace performance

• On average, about 2X and 24% slowdown

compared to the native and Pin run, respectively

• Approximate upper bound on overhead

Normalized execution time of Pin-ToleRace

0%

100%

200%

300%

400%

500%

600%

700%

800%

ch
ole

sky ff
t lu

ra
dix

barn
es

ocea
n

ra
dio

si
ty

w
at

er
-s

p
at

ia
l

dedup

fa
ces

im

fe
rr

et

flu
id

an
im

at
e

x2
64

G
M

E
A
N

Native w/ Pin w/ Pin-ToleRace

Ideal software ToleRace performance

• On average, only 7% slowdown

• Most applications run with less than 1% overhead

• Approximate lower bound on overhead

Normalized execution time of ideal software ToleRace

0%

20%

40%

60%

80%

100%

120%

140%

160%

cholesky fft lu radix barnes ocean radiosity water-spatial dedup facesim ferret fluidanimate x264 GMEAN

Native w/ Ideal ToleRace

Summary

• Asymmetric races are an important class of parallel

programming errors

• We presented ToleRace, a theoretical framework for

detecting and tolerating asymmetric races

• We showed that an implementable software

ToleRace system based on Pin has a 2X overhead

• Aim to further improve ToleRace by

– Providing a stronger isolation guarantee

– Lowering the software ToleRace overhead

Backup Slides

The oracle ToleRace

• A theoretical framework for handling asymmetric

races in lock-based parallel programs

– Creates local copies of shared variables upon CSEnter()

– Detects changes to shared data at critical CSExit()

– Propagates the appropriate copy to hide races

• Dynamically detects the race and also tolerates it

whenever possible

• Incurs overhead only at critical section execution

Pin-ToleRace general framework

• Defines safe memory as the region that holds local

copies of shared memory locations

• Once in a critical section, instruments each executed

instruction touching shared locations

• Searches the safe memory for shared locations

– If found: accesses are redirected to the safe memory

– If not: create a new node in the safe memory and redirect

accesses

The safe memory region

locklist

safemem

sharedsafemem

tid

outermost lock

variable

0 xxxxxx

1 0x3deeaabb

2 0x3f112244

3 0x3deeaabb

: :

: :

N xxxxxx

0x3deeaabb
1 3

Safe Memory Region

tid-lock table

safemem header

safemem list

cond_wait_threadlist

next

lockvar

write_aft_orig_accs

currentvalue

origaccesstype

origvalue

address

cond_wait_threadlist

next

lockvar

write_aft_orig_accs

currentvalue

origaccesstype

origvalue

address

• Contains three main data structures:

– Safemem list

– Tid-lock table

– Safemem header

