
Modeling the Propagation of Intermittent Hardware
Faults in Programs

Layali Rashid, Karthik Pattabiraman and Sathish Gopalakrishnan
The University of British Columbia, Canada
{lrashid, karthikp, sathish}@ece.ubc.ca

Abstract—Intermittent hardware faults are bursts of errors
that last from a few CPU cycles to a few seconds. Recent
studies have shown that intermittent fault rates are increasing
due to technology scaling and are likely to be a significant
concern in future systems. We study the impact of intermittent
hardware faults in programs. A simulation-based fault-injection
campaign shows that the majority of the intermittent faults lead
to program crashes. We build a crash model and a program
model that represents the data dependencies in a fault-free
execution of the program. We then use this model to glean
information about when the program crashes and the extent
of fault propagation. Empirical validation of our model using
fault-injection experiment shows that it predicts almost all actual
crash-causing intermittent faults, and in 93% of the considered
faults the prediction is accurate within 100 instructions. Further,
the model is found to be more than two orders of magnitude
faster than equivalent fault-injection experiments performed with
a microprocessor simulator.

I. INTRODUCTION

Intermittent hardware faults are bursts of errors that occur
at the same location (i.e., micro-architectural component) and
last from a few cycles to a few seconds [1]. They can occur due
to a variety of causes such as variations in device reliability
[2], fluctuations in supply voltage and temperature (PVT) [3],
[4], in-progress wear-outs and manufacturing residues [1],
[5]. Studies have shown that future processors will be more
susceptible to intermittent faults and that the rates of these
faults will increase due to technology scaling [1], [4], [6].

Fault avoidance techniques mitigate intermittent faults by
minimizing process variations [4], regulating voltage [7] or
managing temperature [8]. Although such techniques reduce
the base rate of intermittent faults, many such faults still
occur and escape to the software [6]. Therefore, we need
mechanisms at the software level to mitigate the impact of
intermittent faults through detection, diagnosis and recovery.

We study and model the impact of intermittent faults on
software programs as a first step towards building software-
level mechanisms for mitigating intermittent faults. To the best
of our knowledge, this is the first study of intermittent fault
propagation at the program level. Prior work has analyzed the
effects of transient faults and permanent faults on software
programs [9], [10]. However, intermittent faults are unlike
transient faults in that they affect more than one instruction,
and are unlike permanent faults in that they do not persist at the
same location. Further, it has been suggested that intermittent
faults have the potential to impact program execution to a
greater extent when compared with transient faults [1].

A hardware fault can affect programs in different ways. The
fault may be benign (it has no impact on the program), cause
silent data corruption (i.e., incorrect program output) or lead
to a program crash. Even if a fault does lead to a crash, the
crash may not occur immediately after the onset of the fault,
but only after some amount of time later (crash latency). In
the meantime, the fault may propagate to other instructions
in the program and corrupt their data values. It is important,
in this context, to ask: (1) what is the fraction of intermittent
faults that lead to program crashes? (2) For the faults that do
lead to crashes, how do they propagate within their programs
before the crashes?
We focus on crashes, in this study, because our experiments
indicate that more than 95% of non-benign intermittent faults
result in program crashes (Section IV-A).

The questions asked above can be answered by subjecting
benchmark programs to a fault-injection campaign using a
micro-architectural simulator. However, this method is pro-
hibitively expensive because fault-injection experiments in-
volve a significant time investment, especially when we want
to inject all possible intermittent faults, which vary in both
location and duration. Further, fault injections yield limited
insight for characterizing the propagation of intermittent faults
at the program level. Therefore, we need efficient models
of fault propagation at the program level for designing error
mitigation mechanisms in software.

We consider the applicability of Dynamic Dependency
Graph (DDG) [11], [12], an instruction-level model for repre-
senting program dependencies, in modeling and understanding
the propagation of intermittent faults. A DDG is derived from
a dynamic instruction trace of a program obtained from a fault-
free execution of that program. Thus, unlike a fault-injection
campaign, we execute a program only once and gather its
instruction trace to construct its DDG. This allows further
analysis to be performed more than two orders of magnitude
faster than an equivalent fault-injection campaign.

The contributions of our work are as follows: (1) Charac-
terizing the impact of intermittent faults on programs through
fault-injection experiments carried out using the SimpleScalar
simulator [13]. (2) Modeling the propagation of intermittent
faults in programs at the instruction level using the DDG.
(3) Validating the DDG as a model for examining fault
propagation. This is accomplished by comparing the model’s
predictions with equivalent intermittent-fault injection experi-
ments on seven benchmark programs [14].

The main results of the study are as follows:
• The predominant impact of an intermittent fault on soft-

ware is a program crash. Between 62% and 79% (varied
by benchmark) of the faults we injected led to program
crashes. Of the remaining fault injections, between 20%
and 34% were benign, and only about 4% of injected
faults resulted in silent data corruption.

• Using the DDG model, we were able to predict almost all
the crashes observed in the fault-injection experiments.
The false negative rate of the predictions was at most
0.06% and the false positive rate was about 20%.

• The DDG model’s predictions of a fault’s crash location
and propagation were accurate to within 100 dynamic
instructions of the actual values for about 93% of the
faults. The discrepancies in the remaining faults were due
to aspects of program execution that were not captured by
the DDG model, such as errors affecting stack pointers.

• Analysis using the DDG model required 4 to 89 seconds
per benchmark, while the equivalent fault injections with
the SimpleScalar simulator required 6 to 70 hours per
benchmark.

II. METHOD

In this section, we: (1) describe our fault model, and create
a crash model to reason about where programs crash due to
intermittent faults, (2) define two metrics to characterize the
propagation of intermittent faults in programs, and (3) show
how to calculate the values of those metrics using a Dynamic
Dependency Graph (DDG) [11] model of the program.

A. Fault Model

While intermittent faults may manifest themselves in pro-
grams in many ways, we focus on fault bursts that affect
multiple consecutive instructions in an execution of a program.
In our model, an intermittent fault can be specified by the
program instruction that is being executed when the fault starts
and by the number of instructions over which the fault persists
(the length). We also assume that all instructions within a fault
burst are affected by the fault. Our fault model can capture
different fault types including:
• Instruction decoding errors that result in a different in-

struction being executed than the intended one.
• ALU errors that affect the computational operations and

produce erroneous results. This includes errors in source
registers, destination registers and the ALU’s combina-
tional circuitry.

• Load/store unit errors that result in loading/storing data
from/to incorrect memory locations.

We assume that the processor’s memory hierarchy (caches
and main memory) is reliable and hence do not consider
memory/cache errors. This is reasonable as such errors can
be detected by parity or ECC (in memory). We also assume
that the processor’s control logic is error-free. This is also
reasonable because the control logic constitutes a very small
portion of the processor [15].

B. Crash Model

It is important to build an accurate model of when programs
crash due to an error. This is because all errors, and more
importantly the propagation of all errors within programs, will
of course end at the instance of a program crash. We focus
on crashes because they are the most common consequences
of intermittent faults (as we show in Section IV). Moreover,
when encountering a crash-causing error, programs do not
necessarily crash immediately. They rather continue executing,
leading to error propagation. This in turn can result in extended
down-times or corruption of permanent state [9]. Hence,
crashes are not always benign or fail-stop.
Previous studies (e.g., [16]) have shown that executing in-
structions that use erroneous pointer values will likely lead
to program crashes at the same instruction. The crash model
therefore assumes that a program crashes when a fault propa-
gates to any of the following:

1) memory address in a load or store instruction,
2) destination address of a branch instruction or
3) destination or return addresses of a function call.

This crash model is conservative and over-approximates the
set of circumstances that may lead to a crash. We study the
consequences of this over-approximation in Section IV-D.

C. Terms and Definitions

In the definitions below, a transient fault is assumed to affect
a single instruction, while intermittent faults affect two or more
instructions in the program.
Node is a value produced by a dynamic instruction during
program execution. A node can be a data value or a memory
address. Further, a node can be read multiple times but is
written only once during execution.
Dynamic Dependency Graph (DDG) is a directed acyclic
graph that models the dynamic data dependencies among
nodes generated during a program’s execution. The dependen-
cies are represented as edges in the graph, and are annotated
based on the type of dependency (address/regular). DDGs have
been used in prior work for understanding and analyzing pro-
gram behavior [11], [12], [17]. To the best of our knowledge,
we are the first to use DDGs in modeling the propagation of
intermittent errors.
CrashNode(i) is the node at which a program crashes due
to a transient fault at node i (as per the crash model).
Transient Propagation Set or TPS(i) is the set of nodes to
which a transient fault that occurs at node i propagates until
it reaches CrashNode(i).
CrashNode(is, ie) is the node at which a program crashes
due to an intermittent fault that starts at node is and ends at
another node ie, where is and ie are DDG nodes such that
is < ie (as per the crash model).
Intermittent Propagation Set or IPS(is, ie) is the set of
nodes to which an intermittent fault, that starts at node is and
ends at ie propagates until it reaches CrashNode(is, ie) or
ie, whichever comes later.
Crash Distance or CD(is, ie) is the number of nodes that

are generated by a program from the start of an intermit-
tent fault occurring between node is and node ie and until
CrashNode(is, ie) is reached.

D. Computing the Intermittent Fault Propagation Set

In order to compute the propagation set for an intermittent
fault in a program (IPS), a DDG is constructed from a trace
file of a fault-free program execution. The construction of the
DDG uses established techniques [11], [17] and hence will
not be elaborated here. Because we use TPS(i) in computing
IPS(is, ie), we first explain how to compute TPS(i) below.
The following steps are repeated for every node i in the DDG
model (in topological sort order of nodes1).

1) Compute CrashNode(i) by recursively following the
data paths of all successors of the node i in best-first
fashion, which relies on the order in which nodes appear
in a fault-free run, and stopping when a potential crash
point is reached (as per the crash model). Note that while
a node may have multiple crash nodes, we only need the
earliest crash node since the execution stops thereafter.

2) Compute TPS(i), by performing a best-first search
starting from the successors of node i until we reach
CrashNode(i). The TPS consists of all nodes visited
in the best-first search traversal. We consider every node
in the DDG model as a potential starting point for an
intermittent fault, and consider all possible intermittent
fault lengths from that node. For each intermittent fault
(is, ie), we do the following:

3) Compute CrashNode(is, ie) as the earliest crash node
among all crash nodes of the nodes between is and ie
(inclusive), i.e., it is the minimum of CrashNode(i),
i ≥ is and i ≤ ie.

4) Compute CrashDistance(is, ie) as the number of
nodes between the start of the intermittent fault, namely
is and the crash node of the intermittent fault, namely
CrashNode(is, ie).

5) Compute IPS(is, ie) as the union of the TPS′(i) such
that i is between is and ie (inclusive), where TPS′(i)
is equal to TPS(i) computed with CrashNode(i)
equal to CrashNode(is, ie). In other words, an IPS
includes all nodes in the TPSs of nodes over which the
intermittent fault spans, until the CrashNode(is, ie) is
reached, after which no more nodes are added.

E. Example of IPS/CD Computation

In this section, we demonstrate how to compute the CD
and IPS of an intermittent fault using an example code
fragment from Table I. Note that, for this example only, we
assume a loop-free program and hence there is a one-to-one
mapping between nodes and instructions. In general, loops
do not present a problem as the DDG model is constructed
from a dynamic execution of a program and hence all loop
iterations are unrolled in execution. In the example code
fragment, elements at indices 5, 6 and 7 of an array (starting

1Recall that a DDG is a directed acyclic graph and hence it has no cycles.

Fig. 1. The DDG corresponding to code fragment in Table I.

TABLE I
CODE FRAGMENT TO ILLUSTRATE IPS/CD COMPUTATION.

Code Fragment Explanation Node
mov R1, #5 R1 ← 5 1
mov R2, #6 R2 ← 6 2
mov R3, #7 R3 ← 7 3
ld R4, R1, Array Addr R4 ← [R1+Array Addr] 4
ld R5, R2, Array Addr R5 ← [R2+Array Addr] 5
ld R6, R3, Array Addr R6 ← [R3+Array Addr] 6
mult R7, R5, R4 R7 ← R5xR4 7
add R8, R7, R6 R8 ← R7xR6 8

at Array Addr) are loaded into registers R4, R5 and R6,
respectively. Then, the first two registers are multiplied and
the result is stored in R7. Finally, registers R7 and R6 are
added and the result is stored in R8.
Figure 1 shows the DDG for the code fragment in Table I.

The last column of the table shows mapping from instructions
to DDG nodes. In the figure, nodes are drawn as circles
with the node number inside the circle. The edges represent
the type of dependencies among nodes and are labeled with
the operand’s type, where A is an address operand and
R is a register operand. Assume that an intermittent fault
affects the first two instructions in Figure 1. We want to
compute IPS(1, 2). Because we use TPS(i), i = {1, 2}
to compute IPS(1, 2), we first explain how to compute
TPS(i). Recall that TPS(1) is the set of nodes to which
a transient error at node 1 propagates. Hence, it includes at
least the node at which the error occurs, namely node 1. Node
1 has a successor node 4, which corresponds to the dynamic
instance of the instruction ld R4, R1, Array Addr. Hence
TPS(1) = {1, 4}. However, node 1 is used as an address
operand in the instruction (A operand), hence the program
crashes at this instruction (as per the crash model). Therefore,
CrashNode(1) = 4 and TPS(1) = {1, 4}. Similarly, we
can compute TPS(2) = {2, 5} and CrashNode(2) = 5.
To compute IPS(1, 2), we first find CrashNode(1, 2),
which is the minimum of the crash nodes for nodes
between 1 and 2 (inclusive). CrashNode(1, 2) =
min(CrashNode(1), CrashNode(2)) = CrashNode(1) =
4. We then compute the union of TPS(1) and TPS(2),
only including nodes at or before CrashNode(1).
Consequently, IPS(1, 2) = {1, 2, 4}. Note that node 5
is not included in IPS(1, 2) even though it was included
in TPS(2) because it is generated after its crash node 4.
CrashDistance(1, 2) is the number of nodes generated from
the start of the intermittent fault until its crash node 4, i.e.,

TABLE II
BENCHMARKS AND THEIR DESCRIPTIONS.

Benchmark Description
Tot info Offers a series of data analysis functions
Print Tokens Breaks the input stream into a series of lexical

tokens according to pre-specified rules
Replace Searches a text file for a regular expression and

replaces the expression with a string
Tcas Aircraft collision avoidance application
Print Tokens2 Breaks the input stream into a series of lexical

tokens according to pre-specified rules
Schedule A priority scheduler for multiple job tasks
Schedule2 A priority scheduler for multiple job tasks

CrashDistance(1, 2) = |{1, 2, 3, 4}| = 4.

III. EXPERIMENTAL SETUP

We now describe the experimental setup used to study the
impact of intermittent faults on programs and to validate the
DDG model. We used the Siemens benchmark suite [14],
which comprises seven programs written using the C language.
The programs range between 100 to 1000 lines of code (Table
II). For each program, we chose arbitrary input from the
corresponding test suite. We conducted our experiments on an
Intel Xeon E5345 Quad Core 2.33GHz system with 8GB main
memory and 4MB of L2 cache. The experiments consisted of
two phases: the first phase used the DDG model to compute
IPS and CD, while the second phase evaluated the accuracy
of the DDG model using fault-injection experiments.
Phase 1: Computing the propagation set and the crash

distance
We modified sim-safe from the SimpleScalar simulator [13] to
capture the instruction trace of a fault-free program execution.
For each instruction executed by the program, SimpleScalar
recorded the instruction’s type and the node(s) used and
generated by the instruction to a trace file. It also recorded
the order in which the dynamic instructions were executed
(i.e., the program’s control flow). Based on this instruction
trace, we constructed the DDG model of the program, and
considered potential intermittent faults. These faults ranged in
length from 2 to 10 instructions and would start at any node
in the DDG, one fault at a program run (the maximum fault
length we considered was 10 nodes since we found that the
average CD for 90% of intermittent faults was 8 nodes). If the
fault resulted in a crash, we calculated its expected IPS and
CD values using the DDG model. If it did not result in a crash,
we ignored the fault since we focused only on crash-causing
faults in this study.
Phase 2: Evaluating the accuracy of the DDG model
We injected the faults considered by the DDG into a modi-
fied SimpleScalar simulator [13]. We modified sim-safe from
SimpleScalar to mimic the behavior of the operating system
when an application crashes [17]. As before, the fault length
ranged from 2 to 10 nodes. For each one of these intermittent
faults, SimpleScalar executed the application and injected a
single fault (a single bit-flip into a randomly chosen byte)
into the corresponding output registers of the instructions that

are spanned by the fault. If the program crashed, SimpleScalar
generated a crash dump file that contained the node and the
instruction PC at which the program crashed and a list of
erroneous nodes in the program (i.e., the IPS of the fault)2.
Otherwise, it executed the application to completion and
compared the application’s output with the expected output
(golden run). In case of a mismatch, the fault is considered a
Silent-Data Corruption (SDC) fault. Otherwise it is considered
a benign fault, as it has no effect on the program.
We counted the number of faults that were predicted to cause
crashes but did not actually do so in SimpleScalar (false
positives), and the faults that caused crashes in SimpleScalar
but were not predicted to do so using the DDG model (false
negatives). For the faults that were predicted to cause crashes
and actually did so in SimpleScalar, we compared their CD
and IPS values with the values predicted using DDG (for the
same faults).

IV. RESULTS

In this section, we first characterize the impact of intermit-
tent faults on programs by injecting faults using SimpleScalar
[13]. We measure the percentage of crashes, silent data cor-
ruptions and benign faults for the injected faults (Section
IV-A). We then assess the accuracy of the DDG model along
three different dimensions: (1) number of crashes, (2) crash
distances, and (3) propagation sets. Further, we focus on the
differences between the expected and actual crash distances
to understand the reasons behind these variations (Section
IV-D). Finally, we examine the relationship between the fault
length(s) and the predicted and real CDs and IPSs (Section
IV-E).
Performance: We measure the time taken by DDG and
SimpleScalar-based fault injections to obtain the results re-
ported in this section. Table III shows the execution times
(in seconds) for each program. In addition, we measure the
total number of DDG nodes generated by each benchmark
and the total number of intermittent faults considered for the
program3. The DDG model takes 4 to 89 seconds to find
all potential crash-causing faults. In comparison, the fault-
injection experiments in SimpleScalar require about 21600 to
252000 seconds (6 to 70 hours) to complete for the same set
of intermittent faults.
To further study how time is spent in the DDG model, we
present the breakdown of the DDG execution time for the
largest benchmark, schedule2. For this program: the trace-
gathering run takes 3.0 seconds, DDG construction takes 18.5
seconds and computation of the metrics takes 67.1 seconds.
Note that the DDG-construction and trace-gathering overheads
are both one-time costs that can be amortized over the number
of intermittent faults considered. Moreover, the time complex-
ity of building the DDG is linear with respect to the number

2Our modified version of the simulator maintained DDG information even
during the fault-injections phase. We assumed that nodes corresponded to the
same PCs in DDG and SimpleScalar.

3Number of faults injected into a benchmark depends on the number of
instructions in that benchmark.

TABLE III
REQUIREMENTS OF THE DDG MODEL AND SIMPLESCALAR INJECTIONS

IN NUMBER OF NODES AND TIME IN SECONDS.

Benchmark No. of
Nodes

No. of
Faults

Time Req.
by the DDG

Time Req.
by the SS

Tot info 25640 230715 11 43200
Print Tokens 26366 237276 11 46800
Replace 12417 111735 6 28800
Tcas 8532 76770 4 21600
Print Tokens2 24081 216711 11 39600
Schedule 137777 1239948 53 244800
Schedule2 210875 1897830 89 252000

TABLE IV
BREAKDOWN OF FAILURE CATEGORIES IN SIMPLESCALAR(SS).

Benchmark Rate of SS
Crashes

Rate of SDC Rate of Be-
nign Faults

Tot info 73.94% 5.11% 20.95%
Print Tokens 62.07% 4.01% 33.91%
Replace 72.76% 4.10% 23.13%
Tcas 73.62% 3.01% 23.38%
Print
Tokens2

64.95% 3.65% 31.39%

Schedule 79.02% 3.04% 17.94%
Schedule2 75.56% 2.26% 22.18%

of instructions.
Thus, DDG is more than two orders of magnitude faster than

the SimpleScalar-based fault injections for the applications
studied, and is a more scalable technique for evaluating the
effects of intermittent faults on programs. Future work will
examine the scalability of the DDG to even longer programs.

A. Classifying Intermittent Faults Impact

In this subsection, we study the effects of intermittent faults
on programs using SimpleScalar-based fault injections. The
experiments in this section do not involve the DDG (Table
IV).
Of the total number of faults injected, we find that 70.52%
result in crashes, 3.43% in Silent-Data-Corruption (SDC), and
the remaining 26.05% in benign outcomes, i.e., they do not
alter the program’s output. Thus, of the intermittent faults that
are non-benign (i.e., 73.95% of total faults), 95.11% result in
a program crash. This high percentage reaffirms our focus on
crash-causing intermittent faults in this study.
Moreover, we find that 34.39% of the total crashes (not shown
in Table IV) are truncated, i.e., the intermittent fault causes
a crash in the very first affected instruction. Most of these
truncated intermittent faults affect memory-instructions such
as loads, stores and jump instructions.

B. Intermittent Faults’ Crash Distances

We present the absolute values of the crash distances for
the faults injected in SimpleScalar. A significant number of
the crash distances (99.71% on average) are within 10000
instructions. However, there is a small fraction of intermittent
faults (0.29%) that have larger CDs than 10000 (Table V).
We find that at-most 0.28% of faults result in crashes beyond
one hundred thousand instructions from their start nodes. Such

TABLE V
CRASH DISTANCES FOR LONG LATENCY INTERMITTENT FAULTS IN

SIMPLESCALAR.

Benchmark ≤ 10000 10000-
100000

100000-
1000000

Tot info 99.52% 0.20% 0.28%
Print Tokens 99.81% 0.14% 0.05%
Replace 99.88% 0.09% 0.03%
Tcas 99.69% 0.28% 0.03%
Print Tokens2 99.82% 0.13% 0.05%
Schedule 99.62% 0.27% 0.11%
Schedule2 99.80% 0.09% 0.11%

faults result either in changes to the control flow of the
program or in very deep loop iterations.

C. Evaluating the Accuracy of the Expected Number of
Crashes

We assess the accuracy of the DDG model by comparing
its predictions to the fault-injection results obtained from
the SimpleScalar-based fault-injection campaign (Section III).
These comparisons include: (1) the difference between inter-
mittent faults that are expected to lead to crashes and those
that actually do so (Table VI), (2) the difference between the
predicted intermittent faults’ CDs and the actual ones (Figure
2), and (3) the differences between the predicted intermittent
faults’ IPSs and the actual ones (Figure 3).
We measure the percentage of intermittent faults that are
expected to result in crashes and actually do so in SimpleScalar
(i.e., true expected crashes). We also measure the percentage
of faults causing crashes that occur in SimpleScalar but are
not predicted by the DDG model (i.e., false negatives). Table
VI shows the results.
Table VI shows that 74% to 81% of the faults in the total
expected crashes category are true expected crashes, i.e., they
crash in both DDG and SimpleScalar. The remaining faults do
not lead to a crash, but rather lead to benign outcomes and
SDCs in SimpleScalar. Hence, they are false-positives. This
inaccuracy arises because the crash model used in the DDG
(Section II-B) is conservative and hence over-estimates the
number of crashes that occur in reality (i.e., in SimpleScalar).
Further, Table VI also shows that 0.00% to 0.06% of the total
number of crashes in SimpleScalar are not predicted by DDG.
These are false negatives for the DDG model. We find that
these missed crashes are due to faults that are either injected
into arithmetic instructions that update the stack pointer or into
registers that store very large values (hence, injecting a fault
into these registers would likely cause an integer overflow,
which is not modeled by the DDG).
Moreover, most of the mis-predicted intermittent faults in
each benchmark start at the same node (a node is a value
produced by a dynamic instruction) which suggests that they
are localized to specific code segments. Future work will
attempt to improve the DDG model to account for these faults.

To quantify the accuracy of the predicted crash distances
(i.e., the total number of nodes generated by a program from
the start of an intermittent fault to the point of the crash),

TABLE VI
THE PERCENTAGES OF TRUE EXPECTED CRASHES AND MISSED CRASHES

FOR EACH BENCHMARK.

Benchmark Percentage of True
Expected Crashes

Percentage of Missed
Crashes

Tot Info 74% 0.01%
Print Tokens 78% 0.03%
Replace 79% 0.00%
Tcas 77% 0.00%
Print Tokens2 76% 0.06%
Schedule 81% 0.03%
Schedule2 78% 0.05%

Fig. 2. The difference between actual CDs in SimpleScalar and the
corresponding CDs as predicted by the DDG model.

we compare the Crash Distances (CDs) of the injected faults
in SimpleScalar to those predicted by the DDG model. We
measure the percentages of faults whose CDs differ from
their predicted CDs (independent of the fault’s start node
and its length) and plot their distribution with respect to the
differences in Figure 2.
We find that for 86% of the faults whose CDs differ, the DDG
model under-estimates the CD (i.e., the actual CD is larger
than the corresponding predicted CD). This is because DDG is
conservative in predicting crashes. However, we find that 75 to
82% of the predicted crash distances are within 10 nodes and,
89 to 93% are within 100 nodes of the actual crash distances
for all programs. This shows that the DDG model is accurate
in predicting the CDs of crash-causing faults to within 100
nodes of their actual CDs.

To evaluate the accuracy of the Intermittent Propagation
Set (i.e., the number of nodes affected by the intermittent
fault before the program crashes, IPS) by the DDG model,
we compare the IPSs resulting from the injected faults in
SimpleScalar to those predicted by the DDG model. We
compute the difference set of the two sets and measure the
cardinality of this set (i.e., the number of nodes that are
different). Figure 3 shows the percentage distribution of the
difference set’s cardinalities.
We find that 88 to 94% of the difference sets’ cardinalities
are within 10 nodes and that 93 to 97% are within 100 nodes

Fig. 3. The cardinality of the difference set of actual IPSs in SimpleScalar
and the corresponding IPSs as predicted by the DDG model.

across all programs. Thus, the DDG model is highly accurate
in predicting the IPS of intermittent faults that cause crashes
to within 100 nodes of their actual IPS.
Further, the divergence between the expected and actual IPS
is even smaller than the observed divergences for the CDs.
Hence, out of the faults whose CDs deviate by more than
100 nodes from the expected CDs, only about half exhibit
deviations in the IPS by more than 100 nodes. This illustrates
that faults that take a long time to crash do not always
propagate extensively in the program.
In summary, the DDG is highly accurate in predicting both
CDs and IPSs of crash-causing faults in SimpleScalar (to
within 100 nodes). However, there are also large variations
between the predicted and observed values in 5 to 10% of the
faults. We elaborate on the reasons for these variations in the
next sub-section.

D. Understanding the Differences between DDG and Sim-
pleScalar

To understand the rationale for the deviations between
expected and actual intermittent faults properties (CD and
IPS), we classify the faults predicted by DDG into two
categories: faults with low CDs and faults with high CDs
(Table VII), where low means less than or equal to 100 nodes
and high means larger than 100 nodes. We further divide each
category into three sub-categories based on their manifestation
in SimpleScalar: low CDs, high CDs or no crashes. We
perform a similar categorization based on the IPS cardinalities
(Table VIII). We show results for the tot info benchmark.
Similar results are obtained for the other programs and are
hence not reported.
The following results may be observed from Table VII and

Table VIII:
• 99.98% of crashes in SimpleScalar are predicted by the

DDG model (Table VI). However, not all DDG-predicted
crashes induce SimpleScalar crashes, but only 74% of
them do so. The remaining faults are false positives for

TABLE VII
EVALUATING THE PREDICTED CRASH DISTANCES FOR TOT INFO

BENCHMARK.

Low Actual
CD

High Actual
CD

No Crashes

Low Exp. CD (99.98%) 66.40% 7.51% 26.07%
High Exp. CD (0.02%) 0.003% 0.00% 0.017%

TABLE VIII
EVALUATING THE PREDICTED IPS CARDINALITIES (IPSC) FOR TOT INFO

BENCHMARK.

Low Actual
IPSC

High Actual
IPSC

No Crashes

Low Exp. IPSC (100.00%) 71.67% 2.26% 26.07%
High Exp. IPSC (0.00%) 0.00% 0.00% 0.00%

the DDG model. Thus, DDG over-predicts the number of
real crashes (as shown in Section IV-C).

• Of the 74% that the DDG model correctly predicts as
crashes, it under-predicts the CD for about 9.85% (7.51%
out of the 74%) of them. In other words, it predicts that
all 74% of the faults crash fairly quickly (within 100
instructions), while in reality, only 90.15% of these faults
do so.

• Of the 9.85% of the faults whose CDs are under-
predicted, the DDG model assumes that all of them
generate a low IPS cardinality (Table VIII). However,
only 95.65% of the faults satisfy this criterion, whereas
the remaining 4.35% of the faults have both high CDs
and high IPS cardinalities.

Thus, the DDG model over-predicts the number of faults that
cause crashes, but for the ones that it correctly predicts, it
under-predicts the CD by about 9.85%. In these cases, it also
under-predicts the IPS (for 4.35%). Thus, the DDG model
accurately predicts CDs and IPSs for the majority of the faults
that actually cause crashes with low crash distances. However,
there are discrepancies for faults with high CDs. To gain a
better understanding of the discrepancy, we demonstrate two
examples where a fault results in a crash with a high CD and
a high or a low IPS cardinality and the DDG predicts low CDs
for the same faults.
Example of a fault with high CD and high IPS cardinality:
Table IX shows an example code sequence taken from the
library function memset: The code sequence consists of a loop
to store data (a3[7]) to a set of locations with pre-calculated
base-address ($v0[2]) and different indexes (0, -4, ..., -24),
(PCs 0x40d608 to 0x40d638). It then updates the base-address
at PC 0x40d640 and the loop counter v1[3] at PC 0x40d650,
and executes another loop-iteration if the counter is not zero
(PC 0x40d658).
Consider an intermittent fault of length 7 instructions that
affects PCs 0x40d608 to 0x40d638, which correspond to nodes
2496to 2503 in the DDG. Based on the DDG’s crash model,
a crash is predicted at the first encountered store instructions
(0x40d608 <memset+98> sw $a3[7],-24($v0[2])). Therefore,
the predicted CD is equal to zero and the predicted IPS only
contains the injected nodes (2496 to 2503) and hence has a

cardinality of 7.
When the intermittent fault is injected into the application
executing in SimpleScalar, a least-significant-bit (bit 7 in this
example) is flipped in the address of the store instruction, and
the fault in register $v[0] persists without causing a crash until
a later loop iteration at node 5339 (0x40d608 <memset+98>
sw $a3[7],-24($v0[2])). At this point, the program attempts to
store the data in the erroneous address, upon which it crashes.
Consequently, the real CD is 2843 (5339 to 2496), and the
IPS cardinality is 1896, which represents all the values that
are stored in the wrong addresses until the program crashes.
Thus, the fault has a high CD and a high IPS cardinality.
Example of a fault with high CD and low IPS cardinality:

TABLE IX
EXAMPLE CODE FRAGEMENT WITH HIGH CD AND HIGH IPS

CARDINALITY.

0x40d608 <memset+98> sw $a3[7],-24($v0[2])
0x40d610 <memset+a0> sw $a3[7],-20($v0[2])
0x40d618 <memset+a8> sw $a3[7],-16($v0[2])
0x40d620 <memset+b0> sw $a3[7],-12($v0[2])
0x40d628 <memset+b8> sw $a3[7],-8($v0[2])
0x40d630 <memset+c0> sw $a3[7],-4($v0[2])
0x40d638 <memset+c8> sw $a3[7],0($v0[2])
0x40d640 <memset+d0> addiu $v0[2],$v0[2],32
0x40d648 <memset+d8> addiu $t0[8],$t0[8],32
0x40d650 <memset+e0> addiu $v1[3],$v1[3],-1
0x40d658 <memset+e8> bne $v1[3],$zero[0],0x40d600

Table X shows another example code fragment from the
malloc library function. When the code sequence is executed,
register $v0[2] has a value greater than zero. An intermittent
fault of length 6 affects instructions with PCs 0x403fc8 to
0x403f88 in the code, which corresponds to nodes 15775 to
15781 in the DDG. Since the first instruction in the intermittent
fault interval is a branch, it is assumed to be the crash node by
the DDG’s crash model. Hence, the predicted CD is zero and
the expected IPS consists of the injected nodes only (15775
to 15781).
In the real execution, the fault that is injected into the first
instruction of the code sequence results in random bit flip (bit
7 in this example) and modifies the branch destination address
from 0x403f60 to 0x403fe0. This effectively causes the branch
to fall through, and the control to transfer to PC 0x403fe0.
This instruction is also a branch instruction and is taken. In
this case too, the control is transferred to the instruction at PC
0x403f70 instead of the original destination at PC 0x403ff0.
Then the intermittent fault modifies the addresses of the data
loaded or stored and the values computed at PCs 0x403f70,
0x403f78, 0x403f80 and 0x403f88 (the fault length is 6). In a
later library function (free internal), one of the values stored
by the malloc function is retrieved. However, because the value
was stored in erroneous address (due to the fault), an incorrect
value is loaded, which causes the program to crash at PC
0x404c70 (corresponding to node 19674). Consequently, the
real CD for this fault is 3900 (19674 to 15775), although
the IPS cardinality is only 11 nodes (10 nodes in the malloc
function and the crash node). Thus, the fault has a high CD

Fig. 4. The relationship between the intermittent fault length and av-
erage crash distance (CD) and the intermittent propagation set (IPS) for
Print Tokens.

and low IPS cardinality.

TABLE X
EXAMPLE CODE FRAGEMENT WITH HIGH CD AND LOW IPS

CARDINALITY.

0x403fc8 <malloc+330> bne $v0[2],$zero[0],0x403f60
0x403fe0 <malloc+348> bgez $v0[2],0x403ff0
0x403f70 <malloc+2d8> lw $v1[3],15600($v1[3])
0x403f78 <malloc+2e0> sllv $v0[2],$a0[4],$s1[17]
0x403f80 <malloc+2e8> addu $v0[2],$a2[6],$v0[2]
0x403f88 <malloc+2f0> sw $v1[3],0($v0[2])
0x403f90 <malloc+2f8> sw $a1[5],4($v0[2])
0x403f98 <malloc+300> sw $v0[2],0($a1[5])
0x403fa0 <malloc+308> lw $v1[3],0($v0[2])
0x403fa8 <malloc+310> beq $v1[3],$zero[0],0x403fb8
. . .
0x404c50 <free internal+630> addu $v1[3],$zero[0],$a3[7]
0x404c58 <free internal+638> addiu $a2[6],$zero[0],1

E. Understanding the Effect of Intermittent Fault Length

In this subsection, we study the relationship between the
intermittent fault’s length and its predicted and actual CD and
IPS cardinalities. Our goal is to understand how the DDG
model’s predictions are affected by the length of the fault.
The numbers reported in this section pertain to the intermittent
faults that are expected to cause crashes by the DDG model
and actually do so in SimpleScalar (i.e., 74% to 81% of crashes
in Table VI). We focus on faults whose CDs are less than 200
nodes since such faults constitute 90% of the total faults. The
remaining faults are outliers and are hence ignored in this
section. For the faults whose CD is less than 200, we plot
the average CDs and IPS cardinalities (obtained in DDG and
SimpleScalar), as a function of the fault’s length. We report
the results for only two applications, replace and print tokens.
Similar results were obtained for the other applications and,
for brevity, are not reported. Note that each point in the graph
represents the average CD or IPS values for all crash-causing
faults of a given length. The main observations for the graphs
in Figures 4 and 5 are as follows:
• The predicted and actual CDs remain relatively constant

with the length of the intermittent fault. However, actual
CD is consistently larger than expected CD, which reaf-
firms the earlier observation that DDG under-predicts the
CDs (Section IV-D). Nonetheless, the observed deviation

Fig. 5. The relationship between the intermittent fault length and average
crash distance (CD) and the intermittent propagation set (IPS) for Replace.

in CDs is less than 8 nodes on average for all faults
independent of their lengths.

• Both predicted and actual IPS cardinalities steadily in-
crease with respect to the fault’s length. However, our
analysis using the DDG model over-predicts the cardinali-
ties compared to the actual values. Further, the predicted
IPS values increase linearly with the intermittent fault
length. This is because the IPS predicted by the DDG
contains at least the nodes that are directly affected by
the intermittent fault.

• The average actual CD is 7 to 8 nodes and is independent
of the fault’s length. Hence, most crashes occur within 8
nodes from the start of the intermittent fault. Therefore,
we focus on intermittent faults that are at most 10
instructions long.

These results demonstrate that the DDG model’s predictions
of relationships between the intermittent faults’ properties (CD
and IPS) and the faults’ lengths have similar trends as the
corresponding values obtained with fault-injection experiments
using SimpleScalar.

V. RELATED WORK

Fault avoidance and tolerance techniques: Fault-
avoidance techniques attempt to minimize process variations
[4], regulate voltage [7] or manage temperature [8]. Although
fault-avoidance techniques reduce the base rate of intermittent
faults, many faults still occur and escape to the software
[6]. Fault tolerance techniques for intermittent faults require
circuit-level changes [18], or often incur very high overheads
even for fault-free devices [5].
Wells et al. [6] propose to recover from intermittent faults in
software by suspending the faulty core and using a virtualiza-
tion layer to manage over-committed systems. However, they
assume that hardware circuits are used to detect intermittent
faults. These circuits incur power and area overhead. To the
best of our knowledge, there is no technique to mitigate
intermittent faults using software alone. We evaluate the
propagation of intermittent faults in programs as a first step
in building software-only mechanisms to mitigate such faults.
Fault propagation studies: Gracia et al. [19] study the behav-
ior of intermittent faults in a VHDL model of a commercial
microcontroller. They find that intermittent fault length is

the most influential variable in error propagation. However,
they do not consider the impact of intermittent faults on the
program executing on the processor, which is important for
developing software fault-tolerance mechanisms. While error
propagation studies have been performed for permanent faults
[10] and transient errors [9], [20], to our knowledge no such
study has been performed for intermittent faults.
The DDG model: The DDG model has been used to derive in-
formation about programs in prior work. These studies include:
(1) Agrawal and Horgan [11] for slicing programs, (2) Austin
and Sohi [12] for parallelizing programs, (3) Smolens et al.
[20] for bounding error detection latency due to transient faults
and (4) Pattabiraman et al. [17] for placing error detectors to
detect transient faults. To the best of our knowledge, our work
is the first to utilize the DDG to infer the effects of intermittent
faults on programs.

VI. CONCLUSION

We studied the impact of intermittent hardware faults at
the program level by gathering a dynamic instruction trace of
fault-free program execution and analyzing this information
using Dynamic Dependency Graph (DDG). We found that
the majority of intermittent faults results in crashes (95% of
non-benign faults) and that the DDG model is accurate in
predicting the propagation of errors (within 100 nodes) for
over 90% of crash-causing errors. Further, the DDG model
took only from 4 to 89 seconds to analyze the propagation of
intermittent faults in programs, whereas an equivalent fault-
injection campaign using the SimpleScalar simulator took
from 6 to 70 hours.

ACKNOWLEDGMENTS

This research was supported by the National Science and
Engineering Research Council through the Discovery Grant
Program (Pattabirman, Gopalakrishnan) and by the Alexander
Graham Bell Canada Graduate Scholarship (Rashid).

REFERENCES

[1] C. Constantinescu, “Intermittent faults and effects on reliability of
integrated circuits,” Proceedings of the Annual Reliability and Main-
tainability Symposium, pp. 370–374, 2008.

[2] J. McPherson, “Reliability challenges for 45nm and beyond,” ACM IEEE
Design Automation Conference, pp. 176–181, 2006.

[3] K. Bowman, S. Dunvall, and J. Meindl, “Impact of die-to-die and within-
die parameter fluctuations on the maximum clock frequency distribution
for gigascale integration,” IEEE Journal of Solid-State Circuits, vol. 37,
no. 2, pp. 183–190, 2002.

[4] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, and A. Keshavarzi,
“Parameter variations and impact on circuits and microarchitecture,”
Design Automation Conference, pp. 338–342, 2003.

[5] J. Smolens, B. Gold, J. Hoe, B. Falsafi, and K. Mai, “Detecting emerging
wearout faults,” IEEE Workshop On Silicon Errors in Logic-System
Effects, 2007.

[6] P. Wells, K. Chakraborty, and G. Sohi, “Adapting to intermittent faults in
multicore systems,” International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 255–264, 2008.

[7] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler,
D. Blaauw, T. Austin, T. Mudge, and K. Flautner, “Razor: A low-
power pipeline based on circuit-level timing speculation,” International
Symposium on Microarchitecture, pp. 7–18, 2003.

[8] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and
D. Tarjan, “Temperature-aware microarchitecture: Modeling and imple-
mentation,” ACM Transactions on Architecture and Code Optimization,
vol. 1, no. 1, pp. 94–125, 2004.

[9] W. Gu, Z. Kalbarczyk, R. Iyer, and Z. Yang, “Characterization of linux
kernel behavior under errors,” International Conference on Dependable
Systems and Networks, pp. 459–468, 2003.

[10] M. Li, P. Ramchandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou, “Un-
derstanding the propagation of hard errors to software and implications
for resilient system design,” International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 265–
276, 2008.

[11] H. Agrawal and J. Horgan, “Dynamic program slicing,” ACM SIGPLAN
Notices, vol. 25, no. 6, pp. 246–256, 1990.

[12] T. Austin and G. Sohi, “Dynamic dependency analysis of ordinary
programs,” Annual International Symposium on Computer Architecture,
vol. 20, no. 2, pp. 342–351, 1992.

[13] D. Burger and T. Austin, “The SimpleScalar tool set, version 2.0,”
Computer Architecture News, vol. 25, no. 3, pp. 13–25, 1997.

[14] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria,”
The International Conference on Software Engineering, pp. 191–200,
1994.

[15] G. Saggese, A. Vetteth, Z. Kalbarczyk, and R. Iyer, “Microprocessor sen-
sitivity to failures: Control vs execution and combinational vs sequential
logic,” Dependable Systems and Networks, International Conference on,
vol. 0, pp. 760–769, 2005.

[16] W. Kao, R. Iyer, and D. Tang, “Fine: A fault injection and monitoring
environment for tracing the unix system behavior under faults,” IEEE
Transaction on Software Engineering, vol. 19, no. 11, pp. 38–43, 1993.

[17] K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Application-based metrics
for strategic placement of detectors,” Pacific Rim International Sympo-
sium on Dependable Computing, pp. 75–82, 2005.

[18] A. Ismaeel and R. Bhatnagar, “Test for detection and location of
intermittent faults in combinational circuits,” IEEE transactions on
reliability, vol. 46, no. 2, pp. 269–274, 1997.

[19] J. Gracia, L. Saiz, J. Baraza, D. Gil, and P. Gil, “Analysis of the influence
of intermittent faults in a microcontroller,” IEEE Workshop on Design
and Diagnostics of Electronic Circuits and Systems, pp. 1–6, 2008.

[20] J. Smolens, B. Gold, J. Kim, B. Falsafi, J. Hoe, and A. Nowatzyk,
“Fingerprinting: Bounding soft-error detection latency and bandwidth,”
Symposium on Architectural Support for Programming Languages and
Operating Systems, pp. 224–234, 2004.

