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Abstract

Energy has become a first-class design constraint in comgyge
tems. Memory is a significant contributor to total system eow
This paper introduceslikker, an application-level technique to re-
duce refresh power in DRAM memories. Flikker enables deyvelo
ers to specify critical and non-critical data in programd #re run-
time system allocates this data in separate parts of menibgy.
portion of memory containing critical data is refreshedhat tegu-
lar refresh-rate, while the portion containing non-catidata is re-
freshed at substantially lower rates. This partitioningesaenergy
at the cost of a modest increase in data corruption in thecritinal
data. Flikker thus exposes and leverages an interestite-titi be-
tween energy consumption and hardware correctness. WetBhbw
many applications are naturally tolerant to errors in the-antical
data, and in the vast majority of cases, the errors have bttino
impact on the application’s final outcome. We also find thaidelr

can save between 20-25% of the power consumed by the memory

sub-system in a mobile device, with negligible impact onliapp
tion performance. Flikker is implemented almost entirelysoft-
ware, and requires only modest changes to the hardware.

Categories and Subject Descriptors  B.3.4 [Hardward: Memory
Structures-Reliability, Testing, and Fault-Tolerance;0 Com-
puter Systems OrganizatipnGeneral-Hardware/software inter-
faces

General Terms Design, Management, Reliability
Keywords Power-savings, DRAM refresh, soft errors, critical
data, allocation
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phone is not being used, application state is stored in toagh
memory to maintain responsiveness. This wastes power decau
Dynamic Random Access Memories (DRAMSs) leak charge and
need to be refreshed periodically, or else they will losadat
Memory is a major part of overall system power in smartphones
Measures of DRAM power as a fraction of overall power range
from 5-30% [6, 14] and depend on the application model, dpera
ing system, and underlying hardware. Some smartphonecappli
tion programming models, such as Android’s, emphasizediagu
application DRAM usage in idle mode [30]. Further, the meynor
capacity of smartphones has been steadily increasing aradrex
sult, memory power consumption will be even more important i
the future. Memory consumes power both when the device is ac-
tive (active mode) and when it is suspended (standby mode). |
standby mode, the refresh operation is the dominant consafne
power, and hence we focus on reducing refresh power in tipsrpa
This paper proposeBlikker,! a software technique to save en-
ergy by reducing refresh power in DRAMs. DRAM manufacturers
typically set the refresh rate to be higher than the leakatgeaf the
fastest-leaking memory cells. However, studies have shbatrthe
leakage distribution of memory-cells follows an exponaindistri-
bution [22], with a small fraction of the cells having signdhtly
higher leakage rates than other cells. Hence, the vast ityapbthe
cells will retain their values even if the refresh rate of themory
chip is significantly reduced. Flikker leverages this olagon to
obtain power-reduction in DRAM memories at the cost of know-
ingly introducing a modest number of errors in applicatiaed
Typical smartphone applications include games, audietvid
processing and productivity tasks such as email and welydimg.
These applications are insensitive to errors in all but dlgoetion
of their data. We call such dataitical data, as it is important for
the overall correctness of the application [7, 8, 32]. Faregle, in

Energy has become a first-class design constraint in many com a video processing application, the data-structure coinigithe list

puter systems, particularly in mobile devices, clustensl, server-

of frames is more important than the output buffer to whicmfes

farms [5, 11, 27]. In a mobile phone, saving energy can extend are rendered (as the human eye is tolerant to mild disrupiion

battery life and enhance mobility. Recently, mobile phohase
morphed into general-purpose computing platforms, oftefed
smartphones. Smartphones are typically used in shortshaver
extended periods of time [21], i.e., they are idle most oftthes.
Nonetheless, they are “always-on” as users expect to rethsire
applications in the state they were last used. Hence, even e
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a frame). Therefore, this data structure would be consitlae
critical data.

Flikker enables the programmer to distinguish betweeicatit
and non-critical data in applications. At runtime, Flikl@locates
the critical and non-critical data in separate memory pagyes
reduces the refresh rate for pages containing non-critiatd at
the cost of increasing the number of errors in these pagegsPa
containing critical data are refreshed at the regular raté are
hence free of errors. This differentiated allocation sggtenables
Flikker to achieve power savings with only marginal degtexa
of the application’s reliability.

1CRT monitors occasionally exhibited flickering, i.e., lasisresolution,
when their refresh rates were lowered—hence the name.



Our approach in Flikker fundamentally differs from exigtin
solutions for saving energy in low-power systems. In these-s
tions, energy reduction is achieved by appropriately traaiff per-
formance metrics, such as throughput/latency, Qualit$eivice
(Qo0S), or user response time, e.g. [17, 37, 39]. In contoastap-
proach explores a largeley unexplored trade-off in systesigh,
namelytrading off energy consumption for data integrity at the ap-
plication level By intentionally lowering hardware correctness in
an application-aware manner, we show that it is possibleh@sae
significant power-savings at the cost of a negligible reidacin
application reliability.

To the best of our knowledge, Flikker is the first software
technique to intentionally introduce hardware errors forem-
ory power-savings based on the characteristics of the apptn
While we focus on mobile applications in this paper, we belie
that Flikker approach can also be applied to data-centdicapp
tions (Section 9).

Aspects of Flikker make it appealing for use in practicesfir
Flikker allows programmers to control what errors are erpa®
the applications, and hence explicitly specify the tratfésetween
power consumption and reliability. Programmers can defihatw
parts of the application are subject to errors, and takecgpjate
measures to handle the introduced errors. Second, Flikkelines
only minor changes to the hardware in the form of interfaoesxt
pose refresh rate controls to the software. Current moldRA[s
already allow the software to specify how much of the memory
should be refreshed (Partial Array Self-Refresh (PASR))[X6d
we show that it is straightforward to enhance the PASR achit
ture to refresh different portions of the memory at différeates.
Finally, legacy applications can work unmodified wilikker, as it
can be selectively enabled or disabled on demand. HenddkeFli
can be incrementally deployed on new applications.

We have evaluated Flikker both using analytical and expamim
tal methods on five diverse applications representative afile
workloads. We find that Flikker can save between 20% to 25%
of the total DRAM power in mobile applications, with neglig
degradation in reliability and performance (less than 1B&sed
on previous study of DRAM power as a fraction of total power
consumption, this 20-25% corresponds to 1% of total power sa
ings in a smartphone [6]. We also find that the effort requied
deploy Flikker is modest (less than half-a-day per appbeatfor
the applications considered in the paper.

2. Flikker: Design Overview

We start with a brief overview of Flikker. Flikker requiresreodest
set of simple changes to both hardware and software. Fdratite
ware portion, Flikker enhances existing DRAM architectures tha
allow for a partial refresh of DRAM memory by allowing diffemt
refresh rategor different sections in memory. For tlseftwarepor-
tion, Flikker (1) introduces a new programming languagestrarct
that allows application programmers to mark non-criticatled and
(2) provides OS and runtime support to allocate the datas tcoit-
responding portion in the DRAM memory. The hardware and-soft
ware components of Flikker are explained in detail in Setid
and 4, respectively.

The changes required by Flikker are justified for several rea
sons. First, the software changes required to deploy Hlikka
be easily made by application developers, who alreadyndjsish
between critical and non-critical data implicitly (see &t 4).
Further, hardware is becoming less reliable due to trendsliin
con manufacturing, and hence it is important to write sofentaat
can degrade gracefully in the presence of hardware fajltg e
software changes to partition the application into critarad non-
critical portions can also provide resilience against ratyioccur-
ring hardware faults.
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Figure 1. Simplified Diagram of DRAM Operating States.

Secondly, small hardware changes are not an inherent show-
stopper in terms of practical deployment, given that moplene
architectures (both hardware and software) are still inatesbf
flux, with new hardware and software models being developed a
put to market regularly. For example, the Partial-Arrayf-&afresh
Mode (PASR) mode on which we base Flikker was a relatively re-
cent introduction in mobile DRAMs (in 2002). We show in Sec-
tion 3 that the hardware changes we propose are relativelpmi
and only involve the memory controller.

Finally, our approach allows us to explore a novel and funda-
mental trade-off in system design. Traditionally, the kaack/software
boundary in computer systems (and specifically the hardmare-
ory) has provided a clear abstraction layer. The hardware wa
assumed to provide a resilient and “correct” substrate chase
which the operating system and application can run. In Elikke
re-examine this assumption and consciously allow the DRAM t
violate data integrity (to a limited degree) in order to sawergy.

3. Flikker Hardware

This section presents the hardware architecture of Flikleer the
Flikker DRAM (83.2) and the impact of lowering the refrestera
on DRAM error-rates (83.3). We present an analytical model t
evaluate the power-savings of the Flikker DRAM in 83.4. This
model is used to determine the best refresh rates in ourmsyste
design (83.5), and to estimate power savings in our evalusti
(85).

3.1 Background on mobile DRAMs

Mobile phones have traditionally used SRAMs (Static Randam
cess Memories) for memory. However, as memory capacity in-
creases, conventional SRAM becomes more expensive, aed,hen
smartphones have adopted DRAM (Dynamic RAMs). A DRAM
memory system consists of three major components: (1) pheilti
DRAM banks that store the actual data, (2) the DRAM controlle
(scheduler) that schedules commands to read/write datdtfydhe
DRAM banks, and (3) DRAM address/data/command buses that
connect banks and the controller. The organization intctipiel
banks allows memory requests issued to different banks tebe
viced in parallel. Each DRAM bank has a two-dimensionalcstru
ture, consisting of multiple rows and columns. The usual wrym
mapping is for consecutive addresses in memory to be lodated
consecutive columns in the same row, and consecutive memory
rows to be located in different banks. The size of a row vaes
tween 1 to 32 kilobytes in commodity DRAMs. In mobile DRAMSs,
the row size varies from 1 to 4 kilobyes.

Figure 1 shows a simplified diagram of DRAM operating states.
DRAM could only be accessed in active states (activatefanee).
Beside active states, several low-power states are useffaredt
system scenarios. Fast low-power states, which have gepdme
siveness (short wakeup time), are used in idle period duajmg
plication executions. In systems with light DRAM trafficjliing
these fast low-power states is usually a good power-pegnoa
tradeoff. On the other hand, self-refresh state and deeppdaown
state are used when the whole system is in standby mode. Com-
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Figure 2. Flikker Bank Architecture. The DRAM bank is partitionedant
two parts, the high refresh part, which contains criticaiadand the low
refresh part, which contains non-critical data. The highesh / low refresh
partition can be assigned at discrete locations, as showhetyashed lines.
The curly brackets on the left show a partition with 1/4 higfresh rows
and 3/4 low refresh rows.

pared with fast low-power states, self-refresh and deegpolown
has lower power consumption as well as longer wakeup time. Ur
like the self-refresh, the deep power-down mode will stdpead
fresh operations and hence the DRAM will lose data in deepepow
down state. In the following, we will discuss details of thdgw-
power states.

Self-refresh: Self-refreshis a feature of low power mobile
DRAMs in which the DRAM array is periodically refreshed even
if the processor is in sleep mode. The self-refresh operasiper-
formed by dedicated hardware on the DRAM chip. The selfesr
mode is activated only when the mobile device is in standly an
the processor is put to sleep as it incurs considerabledg®to
transition in and out of self-refresh mode. The Operatingt&n
(OS) needs to activate self-refresh before putting the laalavice
to sleep.

Partial Array Self Refresh (PASR) is an enhancement of the
self-refresh low power state [18] in which only a portion bt
DRAM array is refreshed. DRAM cells that are not refreshelll wi
lose data in PASR. In a system with PASR, before switchinglio s
refresh mode, the OS needs to specify the portion of the meaner
ray to refresh. In Micron’s mobile DDR SDRAM [18] with 4 banks
there are five different options for PASR, full array (4 bankslf
array (2 banks), quarter array (1 bank), 1/8 array (1/2 haarkdl
1/16 array (1/4 bank).

The main difference between Flikker DRAM and PASR is that
instead of discarding the data in a part of the memory aridgked¥
lowers the reliability of the data. As a result, Flikker islato
achieve similar levels of power savings as PASR, withoutfmam
mising on the amount of memory available to applications.

Fast Low-power States Mobile DRAMs also employ low-
power states during active mode to conserve power. These low
power modes are activated even when there are brief perfaus o
DRAM traffic as the latency of transitioning out of these ssais
only around 10 nano-seconds. The transition to/from thesaes
is performed by the DRAM controller and does not need OS-inter
vention. The power consumption in these low-power statggis
cally less than half of the DRAM power-consumption withonya
memory accesses.

3.2 Flikker DRAM Architecture

Figure 2 illustrates a Flikker DRAM bank. In Flikker DRAM, &a
bank is partitioned into two different parts, thegh refresh fault-
free partand thelow refresh faulty part DRAM rows in the high
refresh part are refreshed at a regular refresh cycle Tirag.iqr
(64 milliseconds or 32 milliseconds in most systems). Therer
rate of data in these high refresh parts is negligible (sintd data
in state-of-the-art DRAM chips). On the other hand, the lefrash
part is refreshed at a much lower rate (longer refresh cyoie t

row address

counter_clk

refresh
enable

config

Figure 3. Self-refresh counter in the Flikker DRAM.

Tiow) and its error rate is a function of the refresh cycle time(se
Section 3.3).

Mobile DRAMSs use a hardware counter during the self-refresh
operation to remember which row to refresh next, known as the
self-refresh counter. Flikker DRAM extends this counterabfew
extra bits (see Figure 3.2) in order to support two refregésta he
Flikker self-refresh counter also has an additional “reffrenable”
output. The DRAM row is refreshed only when the refresh emabl
bit is set to “1”. A configurable controller sets differenfweas to
refresh enable bit based on higher bits of the row addresshend
extra bits, and thus control the refresh rate of differenARows.

The number of additional bits required in the self-refresh
counter is given by the ratio dfjow t0 Treguiar. FOr example,
in a system wher&,,, = 16 X Tregular, the Flikker self-refresh
counter requires 4 extra bits. The refresh enable bit isaveat
to “1” when the row address is a high refresh row. For low r&ire
rows, the refresh enable bit is set to “1” only when the exita b
has a predefined value (say “1111"). In the case of 1/8 highshf
when the extra bits are “0000” through “1110", the refreshl#a
bits is only set for row addresses with highest three bit060".
When the extra bits are “1111". The refresh enable bits ismet
all row addresses. With this configuration, the low refresive
(rows with “001” through “111” in highest bits of row addrésse
refreshed 16 times less frequently than the high refresk.row

3.3 Flikker DRAM Error Rates

Previous work [3, 36] has measured DRAM error rate as a fancti
of refresh cycle time. Bhalodia presents the per cell DRAKkbrer
rate under different temperatures and different refresthesy|3].
Venkatesan et al. measure the percentage of DRAM rows tlat ar
free from errors with a low refresh rate [36]. Although thése
measurements are at different granularity (per cell vepsusow),
their results are consistent with each other.

Table 1 shows the DRAM error rates used in our experiments
which are based on Bhalodia’s measurements [3]. The retenti
time of DRAM cells decrease with temperature. Thereforeeun
a given refresh cycle, the DRAM error rate increases withiantb
temperature. We assume an operating temperature of 489€h wh
is higher than the operating temperatures of most smargshamd
hence our error-rates are higher than those likely to berequed
under real conditions.

Note that the above error-rates are only a function of the re-
fresh period and temperature. In particutie error-rates do not
depend on the duration of low refresh modi&is is because errors
in DRAM cells are primarily caused by manufacturing vaonas
among their retaining capacities. Thus, under a given teape
and refresh rate, a fraction of DRAM cells loses their chaegel
this fraction is independent of how long the refresh ratejdiad.

3.4 Flikker DRAM Power Model

We use an analytical model to estimate the power consumpfion
the Flikker DRAM. The model is based on real power measure-
ments in mobile DDR DRAMs with PASR [18]. The self-refresh
power consumption is calculated as follows:



Refresh Cycle [s] [| Error Rate [| Bit Flips per Byte

1 4.0 x 10738 32x10~7
2 2.6 x 10~7 2.1 x 106
5 3.8x 106 3.0 x 107°
10 2.0 x 1077 1.6 x 10~ 4
20 1.3x 10~ % 1.0 x 103

Table 1. Error rate under different refresh cycle (under 48°C, dativeld
from [3]).

Self-Refresh Current [mA]
High Refresh Size Flikker
PASR —1g 10s | 100s
1 0.5 0.5 0.5 0.5
3/4 0.47 0.4719 | 0.4702 | 0.4700
1/2 0.44 0.4438 | 0.4404 | 0.4400
1/4 0.38 0.3877 | 0.3807 | 0.3801
1/8 0.35 0.3596 | 0.3509 | 0.3501
1/16 0.33 0.3409 | 0.3310 | 0.3301

Table 2. Self-refresh current in different PASR and Flikker confifions
(PASR current values are from [18]). This value is derived from linear
interpolation of full array (1) and half array(1/2) cases.

Priikker :P'ref'resh + Pother
—Irefresh_low + Prefresh_high + Pothe'r

T'C uta
:PL X w + P’ref’resh_high + Pothe’r (1)

low

Tregular

Tl ow

As shown in EqQ. 1,Priikker has two componentSrcfresh,
which is the power consumed by refresh operations, Bnd.,
which is the power consumed by other parts of the DRAM (e.g.
the control logic) in standbyP;. #r.sh i proportional to the refresh
rate; whileP,... is independent of the refresh rate and is constant.
Then we diVide—P'ref'resh into P’ref'resh_high and P’ref'resh_lowy
which correspond to the refresh power consumed by the high an
low refresh parts respectively (as shown in second line oflq
We further explicate the relationship between refresh pcavel
refresh cycle time by representitic fresn_iow aSPr (Which is a
constant) timeg’,cguiar/Tiow (third line in Eq. 1).

In order to evaluatePr;kke-, We consider the DRAM with
PASR and DRAM with full array refreshed (i.e., regular DRAM)
as two extreme cases of Flikker. We calcul®@gasr and Py
by assigningZio., = 0o andTjow = Treguiar iN the third line
of Eqg. 1. With these two extremes cases, we rewrite the thie |
of Eq. 1 with Ppasr and Py, (as shown in the fourth line of
Eqg. 1). The underlined and double-underlined parts of tid time
in Eq. 1 are equal to the corresponding parts in the fourth lin

Table 2 summarizes the self-refresh current of differenSRA
configurations and Flikker DRAM with different refresh cgcl
times for the low refresh part. The self-refresh power isaialted
as self-refresh current times power supply voltage (1.8dlinex-
periments). It is important to understand that the selfes#f power
comprises the power consumed in refreshing the DRAM array, a
the power consumed to control the refresh operations of R&ND
chip. The former is proportional to the refresh rate, while latter
is a constant. Therefore, the self-refresh power does roedse
linearly with the refresh rate, but decreases and satuaatalsout
33%.

=(Pfunt — Prasr) X + Ppasr
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Figure 4. Error rate and power saving for different refresh cyclese Th
high refresh part is 1/4 of DRAM array .

3.5 Power-Reliability Trade-off

The models derived in the two previous sections are usedrieede
a suitable refresh rate for Flikker. Figure 4 shows the sftiesh
power saving and DRAM error rate of different refresh cydles
a system with 1/4 of the memory array at the high refresh rate.
In Figure 4 (top), the X-axis represents the refresh cyateefi
the Y-axis on the left represents the power-savings inreftésh
mode, while the Y-axis on the right represents the errar-mat

a logarithmic scale. It can be observed that the DRAM errte ra
increases exponentially with the DRAM refresh cycle. Hogrev
the self-refresh power saving saturates to about 25% atrestef
cycle time of about 1 second.

Increasing the refresh cycle beyond 1 second leads to signifi
increase in the error rates (the graph is draw to log-scée).
example, from 1 to 20 seconds, the error rate increases 6@&r 3
times, from4.0 x 1078 to 1.3 x 10~*. However, the improvement
in power saving corresponding to the refresh cycle incressmall
(22.5% to 23.9%). On the other hand, reducing refresh cycle t
from 1 second to 0.5 seconds leads to a steep decrease in power
saving. This finding is also substantiated in Figure 4 (bojto
which shows the power-savings as a function of the err@iat
log scale). Therefore, we believe thatefresh cycle of 1 second
is near-optimal, as it achieves a desirable tradeoff betwgewer
savings and reliabilityThis is the value we use in our experiments.

4. Flikker Software

In this section, we describe the changes that need to be made t
software so that it can use the Flikker DRAM. Figure 5 shoves th
steps involved in the operation of Flikker. First, the paogmer
marks application data as critical or non-critical. Secahd run-
time system allocates critical and non-critical data tasate pages

in memory, and places the pages in separate regions of memory
(i.e., high-refresh and low-refresh respectively). Thitte Oper-
ating System (OS) configures the DRAM self-refresh counéer b
fore switching to the self-refresh mode. Finally, the gefiesh
controller refreshes different rows of the DRAM bank at eliéint
rates depending on the OS-specified parameters. Basedwre big
modifications need to be made to the application, the runsiyse
tem and the Operating System (OS).



4.1 Application Changes

Critical data is defined as any data that if corrupted, leada t
catastrophic failure of the application. It includes anyadthat
cannot be easily recreated or regenerated and has a sighifice
impact on the output. The concept of critical data has beed us
in prior work [7, 8, 32] on error recovery. However, to the tes
of our knowledge, our work is the first to leverage criticatedm
applications for power savings.

Earlier studies have shown that it is intuitive for develspt®
identify critical data in applications [8, 32]. This is castent with
our observations in this paper as each application coreidarthe
paper took us less than a day to partition (including the timee
spent understanding it).

Reason for ease of critical data separationWe posit that ap-
plication developers make a natural distinction betweéitatand
non-critical data. Such a distinction is important for threasons.
First, application developers typically partition thedde into mod-
ules based on functionality. Some modules may be resperfsibl
the application’s core functionality and separating thia daanipu-
lated by such modules from the rest of the application’s dwtkes
it easier to reason about their correctness. Secondlyyatfails
due to a variety of different reasons (in production use}i ap-
plication developers may provide recovery and restart Bigisms
for such failures. While the operating system may providatéd
support, it is typically up to the application developer tore the
important state of the application periodically and toaesthe ap-
plication from the stored state upon a failure [7]. Fingtlsograms
typically separate the data structures storing differemtspof their
input/output space. For example, a video application ikl
store its non-critical video data separate from the cllitiveta-data
describing the video file.

How to identify critical data: In Flikker, the programmer
marks program variables as “critical” or “non-critical” rtugh
type-annotations in the program'’s source code. We assuahéhin
default type of a variable is critical, so that we can run amadi-
fied (legacy) application safely. An application’'s memaogtiprint
has four components, code, stack, heap, and global datasknr
the code or the stack are likely to crash the application amtd,
we place code and stack data on the critical pages. Globabahak
heap data, on the other hand, contain both critical and nitinat
parts. For global data, the programmer uses special kepatord
designate the non-critical part. This requires supporhftiee com-
piler and linker, which we currently do not have (we emulatehs
support). For heap data, the programmer allocates ndnatrith-
jects with a custom allocator, which involves modifying toal
calls in the program where non-critical data objects a@catied.

Limitations : Failure to identify critical data correctly may lead
to corrupted states of applications and/or loss of data. resalt,
Flikker may not be suitable for safety critical applicasorsuch
as bio-medical devices. However, there are a large clasppif a
cations that do not require such stringent correctnessagtess.
To protect data during application failures, programmérmany
applications already identify and protect critical datpe&fically,
some applications periodically dump critical data to psesit stor-
age (e.g., a file), while other applications introduce refdunty in
the critical data. For these applications, Flikker may rexjuire
substantial effort from programmers. However, in many ot
plications, the separation between critical and noneaitilata may
not be as obvious. In particular, applications in which th&oal
state it tightly intertwined with the non-critical stateeamot good
candidates for Flikker. In such applications, there are difficul-
ties with deploying Flikker. One is that the programmer magam
identifying critical data, leading to corruption of criticstate and
failure of the application. The second difficulty is that gregram-
mer may over-annotate critical data, thereby marking mitrcal

Programmer critical Runtime
- - objects system
crit/non-crit
declaration | _hon-critical | crit/non-crit
(object level)| ~ objects allocation
(page level)
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Figure 5. Flikker system diagram.

data as critical. This leads to lost opportunities for posesrings,
though the application’s reliability is not impacted. Iti§ring the
most effective way for the programmer to partition critidatta is
outside the scope of this paper and is a topic of future work.

4.2 Runtime System Support

Flikker utilizes a custom allocator that allocates critiaad non-
critical heap data on different pages. The allocator madgep
containing non-critical data using a special bit in the ptaige
entry. The allocator also ensures that either all the datapage is
critical or all of it is non-critical, i.e., there is not mixg of critical
and non-critical data within a page.

Ideally, both heap and global data should be partitioned int
critical/non-critical parts. Our current version of Flikdoes not
implement partitioning of global data as this requires cibenp
support. However, as we will show in the experimental result
(Section 6), there is strong evidence that global data hagasi
characteristics as heap data in terms of the relative ptiopoof
critical to non-critical data.

4.3 Operating System Support

In a system with Flikker, the OS is responsible for managirig ¢
ical and non-critical pages. A “criticality bit” is added te page
table entry of each page. This bit is set by the custom albocat
when allocating any data from the page, unless the data teas be
designated as non-critical by the programmer. Based onrthe ¢
icality bit, the OS maps critical pages to the high refrest p&
the bank (top down in Figure 2), and non-critical pages tddie
refresh part (bottom up in Figure 2). Before switching to sled-
refresh mode, the OS configures DRAM registers that contel t
self-refresh controller based on the amount of criticahdat

Ideally, the high refresh rate portion in the bank coversyonl
pages containing critical data. However, this may not asvag
possible due to discretization in the self-refresh modet{Se 3.4).
Therefore, the OS may end up placing more DRAM banks in high-
refresh state than absolutely necessary, leading to wastedr.
We show in Section 5 that this discretization does not sicgnifily
impact the power-savings of Flikker.

5. Experimental Setup

In this section, we present the applications and experiahemth-
ods used to evaluate Flikker. As mentioned in Section 3 kEtik
requires minor changes to the hardware and hence we do ot eva
ate it directly on a mobile device. Instead, we use hardwiarala-
tion based on memory traces from real applications to et
performance overheads and active power consumption okd¥lik
Further, we evaluate the error-resilience of these apjica by



injecting representative faults in the applications’ meynwith an Application [[ LoC [ Input [ Metric

error-rate corresponding to the expected rate of errors fge@c- mpeg2 10,000 | meilév2.m2v]| output SNR
tion 3.3. The fault-injection experiments are carried autirny the ca 6100 N/A saved moves
execution of each application (to completion) on a realsysiWe rayshade 24,200 | balls.ray output SNR
inject thousands of faults in each application and obsdre# fi- vpr 24,600 | refftest output file
nal outputs in order to evaluate the reliability degradatilue to parser 11,500 | refftest output file

Flikker. Finally, we evaluate the total power consumed hylm-
ing the active power consumption with the idle power constimnp Table 3. Application characterizations and the output criteriaduse
from the analytical model. for evaluating Flikker. (LoC = Lines of Code)

5.1 Selected Applications

We choose a diverse range of applications to evaluate F|ikksed
on typical application categories for smartphones. Eagiliap
tion’s output is evaluated using custom metrics based ochis-
acteristics. For each application, we describe the apfitathe Self-
choice of critical data and the metrics for evaluating itigpatt refresh
mpeg2 Multimedia applications are important for smartphones.
Many multimedia applications utilize lossy compressiore¢am-
pression algorithms, which are naturally error resiliéhe select
mpeg2 decoder from MediaBench [26] to represent multimapia
plications. We mark the input file pointer, video informati@and

output file name as critical because corrupting these abjwitt Figure 6. State transition diagram of “modified” bit in fault-
cause unrecoverable failures in the application. We us&iteal- injection. Error is injected to the DRAM with probability “P
to-Noise-Ratio (SNR) to evaluate the output of the mpeg2icep
tion, which is a commonly-used measure of video/audio figléi ical data. This foot-print is used to calculate power-congtion in
multimedia applications. idle-mode. These measurements were performed by enhatheing
c4 Computer games constitute an important class of smart- Pin dynamic-instrumentation framework [29].
phone applications. Games usually have a save mechanigoréo s Architectural simulator : We use a cycle-accurate architectural
their state to files. Since the game can be recovered entitaty simulator for evaluating the Flikker hardware. The simalaton-
the saved files, the data stored to these files constituteritie ¢ tains a functional front-end based on Pin [29] and a detailecth-
cal data. We select c4 [13] (known as connect 4 or four-iova)r ory system model. A DRAM power model based on the system-
which is a turn-based game similar to chess. c4 stores itesniov power calculator [19] is incorporated into the simulatoe W not
a heap-allocated array, which we mark as critical. We moc#fyo specify the physical allocation of pages among differemtksan
save its moves at the end of each game, and use the saved moves the simulator—this is implicitly assigned depending on thiee the
check its output. page is critical. The simulator takes instruction tracesnasits,

rayshade Rayshade [24] is an extensible system for creating and produces as outputs estimates of the total power comnlsainge
ray-traced images. Rayshade represents a growing classtoliem the total number of processor cycles and instructions egddn
3D applications. In rayshade, objects that model artiateshe the trace. Table 4 shows the main processor and DRAM parame-
scene are marked critical as errors in these objects impage | ters used by the simulator. These parameters are choserd& eo
ranges of the output figure. As was the case with mpeg2, we usetypical smartphone with a 1GHz processor and 128 Mega-lnftes
the SNR to evaluate the output of rayshade. DRAM memory.

vpr: Optimization algorithms may be executed on mobile Fault-injector : We built a fault-injector based on the Pin [29]
phones for a variety of common tasks, e.g., calculatingimgiv dynamic instrumentation framework. The injector starts #p-
directions. We select vpr from SPEC2000 [35] to represesteh plication and executes it for an initial period. No errorge an-

algorithms, as it employs a graph routing algorithm for oyt jected during this period. Then a self-refresh period igiitexd, af-
ing the design of Field-Programmable Gate Arrays (FPGA®. W ter which errors are injected to the non-critical memorygsatp
choose the graph data structure as critical because amyirethis emulate the effect of lowering their refresh rate. In ordekeep
structure will crash the program. We evaluate the outputpofby track of the errors injected during the self-refresh pertbd injec-
perfoming a byte-by-byte comparison with the fault-fre¢pors. tor maintains a “modified” bit for each byte in the low refrgsges

parser: Natural language parsing is used in applications such denoting whether this byte has been accessed after theefeéh
as word processing and translation. The parser applicéition period. Before a low refresh byte is read, the correspondindi-
SPEC2000 [35] is chosen to represent this class of applitsti fied bit is checked. If it is “0”, meaning that the byte has neeb
Parser translates the input file into the output file baseddioti®- accessed after self-refresh, a single bit is flipped in the yth a
nary. Errors in the dictionary data are likely to affect nplé lines pre-computed probability (third column of Table?Modified bits
in the output and hence the dictionary is marked criticahifir to that correspond to target bytes of memory read or write dipgI
vpr, we evaluate the results of parser by comparing the otitpu are set to “1” to prevent future injections into these bykégure 6
with the fault-free output. shows the state transition diagram of the “modified” bit.

Table 3 summarizes the characteristics and evaluationiasetr
of these applications. 5.3 Experimental Methodology

We evaluate the performance overhead, power savings, &ad re
bility degradation due to Flikker. Figure 7 demonstratesawerall
We introduce the main components of our experimental itrisas evaluation methodology. The main steps are as follows:
ture in this section.

Memory Footprint Analyzer : We analyze the memory foot-  2Given the low error rates in Table 1, the probability of nltibit flips in
print of each application in order to calculate the promortdf crit- each byte is extremely low, and are hence ignored.

5.2 Experimental Framework




Parameter | Value

Processor single core, 1GHz

Cache 32KB IL1 and 32KB DL1, 4-way set associative, 32-byte blotlcycle latency
DRAM 1Gb, 4 banks, 200MHz (see [18])

Low power scheme

precharge row buffer after 100ns idle; switch to fast low postate 100ns after precharge

Cache miss delay

row-buffer-hit: 40ns, row-buffer-close: 60ns, row-buffmnflict: 80ns

Table 4. Major architectural simulation parameters.

Application
/_ wlocritical/ | w/critical/
noncritical noncritical
Pin-based partition partition
Footprint
Analyzer
Memory Pin-based Fault
footprint Architectural Simulator Injection Simulator
breakdown k2 Y v cons I aggr | crazy
\vtical w/o low w/ low
Analytica power state | power state
Model
Active power /
Idle powe
Cell Phone
Usage
y
Average Power | Application |

Fault Injection
Results

Consumption Performance (IPC)

Figure 7. Evaluation Framework.

1. First partition each application’s data into criticaldanon-
critical (top box of Fig. 7).

2. Obtain the memory footprint of each application and useti
alytical model to calculate the idle DRAM power consumption
with and without Flikker (left portion of Fig. 7).

3. Apply architectural simulation for measuring the perfance
degradation and active DRAM power consumed by the appli-
cation (middle portion of Fig. 7).

4. Calculate average DRAM power consumption and the total
DRAM power saving achieved by Flikker (bottom left portion
of Fig. 7).

5. Use fault-injection to evaluate the application’s reilidy under
Flikker (right portion of Fig. 7).

In the following, we describe each of the above steps in Hetai
Critical Data Partitioning : We modify all 5 applications to use

Flikker’s custom allocator for allocating heap data. Oyvexmen-
tal infrastructure does not allow us to partition the glothata into
critical and non-critical parts. To understand the impdoglobal
data partitioning, we consider two configurations: “comagve”,
in which all global data is critical, and “aggressive”, in s all
global data is non-critical. The configurations bound thefque
mance benefit and the reliability impact of partitioning tilebal
data. We anticipate that partitioning global data yieldsoaer-
savings close to that of aggressive and has reliability chplse
to that of the conservative configuration, provided thatdtitcal
data is a small fraction of all global data (in Section 6.4 present
experimental evidence that this is indeed the case).

Configuration [| High Refresh | Low Refresh
conservative Code, Stack Noncrit-Heap
Crit-Heap, Global
agaressive Code, Stack Global
99 Crit-Heap Noncrit-Heap
Code Stack, Global
crazy Crit/Noncrit-Heap

Table 5. Configurations used to evaluate Flikker

App. Code | Stack | Global Crit | Noncrit
Heap Heap
mpeg2 79 31 181 1 618
c4 473 21 10062 1 0
rayshade 97 10 603 2 541
vpr 114 713 4271 | 1739 2888
parser 88 544 1570 27 7688

Table 6. Memory footprint breakdown (number of 4kB pages).

Memory foot-print and idle-power calculator: Table 6 sum-
marizes the memory footprint break down for code, stackhajlo
data, critical, and non-critical heap pages. For stack aagh ldata,
we report the maximum number of pages used during the execu-
tion. Hence, these measurements form an upper-bound oattte t
memory foot-print of the application.

We calculate the power consumed by the system in idle mode
based on the analytical model derived in Section 3.4 and ake d
presented in Table 6. The refresh cycle in the low refreskigror
of memory is assumed to be 1 second. This calculation is based
the results of the analytical model in Section 3.4. Furttrer,high
refresh portions in each application are rounded up to therelie
levels in Table 2 to emulate their real-world behavior.

Architectural Simulation : We evaluate the performance and
power consumption in active mode using the hardware simwulat
described in Section 5.2. For evaluating performance, wasore
the Instructions Per Cycle (IPC) of the system, and for eatalg
the power consumption, we measure the total energy conshyned
each DRAM bank and divide it by the simulation time.

All 5 applications are compiled with Microsoft Visual Stodi
2008. The simulations are performed with application tsamen-
sisting of 100 million instructions chosen from the approate
middle of the execution of each application. For vpr and grs
we use the SPEC ref inputs in architectural simulations|enfior
the other applications, we choose inputs representativgpatal
usage scenarios.

The main source of performance overhead due to Flikker stems
from the partitioning of application data, which can potaihy

In the above discussion, we assumed that stack data is placedmpact locality and bank-parallelism. Therefore, the bead of

in high-refresh state. However, in some applications, tiaeks
data may also be amenable to being partitioned into critical
and non-critical. To emulate this condition, we considehiadt
configuration “crazy”, where the stack and critical data also
placed in low-refresh state. Table 5 summarizes the cordiguns
used for evaluating each application.

Flikker is evaluated by considering a system that employta da
partitioning (Part) with one that does not (Base). Note tinat
refresh rate of Flikker plays no part in the measurement tifeac
power. In both cases, we assume that the DRAM aggressively
transitions to low-power states when not in use, as merdiame
Section 3.1.



Application [[ Scenario | IPC | Active Power [mW]

b Base | 1462 717
peg Part | 1.462 4.18
o Base | 1057 5.06

Part 1.068 5.03

Base 1.734 4.15
rayshade Part | 1.734 4.15
or Base | 1772 712
P Part | 1.772 4.14

Base 1.694 4.17
parser Part | 1.695 4.16

Table 7. Performance (IPC) and Active Power Consumption of
Flikker

Power-savings calculation We assume a mobile DRAM de-
vice having a capacity of 128 megabytes, which is conservati
compared to the memory capacity of current smartphones teeg
iPhone) 2 Most of the selected applications will use far less RAM
than this space. However, in a realistic scenario, mul@églglica-
tions will share the RAM space and hence it is important to ac-
count for power-savings on a per-application basis. Tioeeefve
compute the proportion of critical and non-critical datatiee ap-
plication, and scale it to the size of the entire DRAM. Thiewab
us to emulate the multiple-application scenario while @brsng
only one application at a time. In order to evaluate over&IAM
power reduction, we assume that the cell phone usage pro&bbi
busy versus 95% in standby mode (self-refresh state) amassn
prior work [36].

Fault-injection: The fault-injection experiments are performed

using the fault-injector described in Section 5.2. Noté tha in-
puts used for each application during fault-injection dre same
as those used for performance evaluation and active-posVeu-c
lation (the only exceptions are vpr and parser, where we hise t
SPEC test inputs for fault-injection due to the large nundjeri-
als performed). When performing the fault-injection exmpents,
we monitor the applications for failures, i.e., crashes hadgs.
If the application does not fail, its final output is evaluhtas-
ing application-specific metrics shown in Table 3. We clgstfie
fault-injection results into three categories as follody, perfect
(the output is identical to an error-free execution), (2yrdeed
(program finishes successfully with different output), &B\failed
(program crashes or hangs).

6. Experimental Results

We now discuss the results of experiments used to evaluate th
power savings, reliability and performance degradatiah Wiikker.

6.1 Performance & Active Power

Table 7 (column 2) shows the performance and active power con
sumption of the Base and Part system scenarios. Recall ds# B
represents the non-partitioned version of the applicatidile Part
represents the partitioned version. The results in TableoWwshat
the IPC of the Base and Part scenarios are similar for allicgpl
tions (both within 1% of each other). Therefore, the perfanae
overhead of Flikker is negligible for the applications ddesed.
Further, Flikker does not significantly increase the acpesver
consumption of the application. In some cases, the activeepo
consumption is actually reduced due to the partitioningabee it
increases the bank-parallelism by laying out memory dffidy.

3The higher the memory capacity, the greater the power ss\nbjieved
by Flikker.

6.2 Power Reduction

Figure 8 shows the reduction in DRAM standby power for défer
applications and the three configurations in Table 5. Figugleows
the overall power reduction for different applications,igthare
obtained by combining the results in Figure 8 with the agbiewer
measurements in Table 7. The following trends may be obderve
from Figures 8 and 9.

e Both the standby and overall power consumed vary with the
application and the configuration. For all applicationse th
crazy configuration achieves the highest power savings (25-
32% standby and 20-25% overall), followed by the aggressive
configuration (10-32 % standby and 9-25% overall) and finally
the conservative configuration (0-25% standby and 0-17% ove
all).

e The aggressive configuration achieves significant power sav
ings in all applications except vpr. This is because theiappl
cations’ memory foot-print is dominated by global and non-
critical data, whereas in vpr the stack, code and criticéh da
pages constitute a sizable fraction of the total memory page
(over 35% according to Table 6). However, the crazy configu-
ration achieves significant power savings for vpr, as theksta
and critical pages are placed in the low-refresh state.

e For mpeg2, c4 and rayshade, the aggressive and crazy config-
urations yield identical power savings (both standby aret-ov
all) as these applications have very few stack and critiata d
pages.

e Among all applications in the conservative configuration,
parser exhibits the maximum reduction in both standby and
overall power consumption (22% and 17% respectively). This
is because parser has the largest proportion of non-dititizgp
data among the applications considered, and this datadegla
in low-refresh state in the conservative configuration.

e The power savings for the c4 application in the conservative
configuration is 0% as its memory footprint is dominated by
global data pages (according to Table 6), which are placed in
high-refresh mode in the conservative configuration.

From Figure 8 and 9, Flikker achieves substantial DRAM power
savings. The actual reduction in the overall system poweswmp-
tion depends on the relative fraction of memory power tol ®yta-
tem power. Previous work [6] shows that DRAM contributeswtbo
4% of overall power consumption of the Openmoko Neo Freerun-
ner (revision A6) mobile phone. In this case, Flikker wouldyo
yield 1% reduction of total system energy consumption. Kéee
less, as DRAM power is and will continue to be a significant eom
ponent of computer systems, Flikker savings can be obta@oexss
the spectrum of systems, ranging from the very small (matgle
vices) to the very large (datacenters).

6.3 Fault Injection Results

In this section, we present the results of fault-injectinpeximents
to evaluate the reliability of Flikker. We first present aaféresults
corresponding to the error-rate for a low-refresh periodraf sec-
ond, which we showed represents the optimal refresh pedod f
power-reliability trade-off in Section 3.4. We further &vate the
output degradation for each application under faults. Iinee
demonstrate the importance of protecting critical datadayqom-
ing targeted fault-injections into the critical heap data.

6.3.1 Injections in both critical and non-critical data

Figure 10 shows the result of the fault-injection experitadar five
applications and three configurations with an error-ratesspond-
ing to a 1 second refresh period. Each bar in the figure reptese
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Figure 8. Standby DRAM power reduction for different applica-
tions.

Overall DRAM Power Reduction
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Figure 9. Overall DRAM power reduction for different applica-
tions.
the result of 1000 fault-injection trials. The results acemalized
to 100% for ease of comparison.

The main results from Figure 10 are summarized as follows:

e No application exhibits failures in the conservative comfeg
tion. In fact, c4, vpr, and parser, have perfect outputserctin-

Configuration [| mpeg2 | rayshade

conservative 95 101
aggressive 88 72
crazy 88 73

Table 8. Average SNR of degraded output for mpeg2 and rayshade
[dB]. Larger values indicate better output quality.

(a) Original (b) 52dB

(c) Magnified orig.

(d) Magnified 52dB

Figure 11. Rayshade output figures with different SNRs.

Signal-to-Noise Ratio (SNR). Table 8 shows the average SE& m
surements for the outputs averaged across all trials eiighde-
graded outputs. Note that SNR is measured in decibels (dBy-a
arithmic unit of measurement. As can be seen from the talée, t
conservative configuration yields over 95 decibels of outual-
ity for mpeg2 and over 100 decibels for rayshade on average. T
aggressive and crazy configurations both yield SNRs of oQer 8
decibels for mpeg2 and over 70 decibels for rayshade.

In order to understand better the qualitative impact of outp
degradation in mpeg2, we take a raw video, encode it with the

servative configuration. However, mpeg2 and rayshade have ampeg2 encoder, and decoded the result with the mpeg2 decoder
few runs with degraded results (about 33% for mpeg2 and 4% Compared with the original video, the final output video has a
for rayshade), but as we show later in the section, the degra- SNR of 35 decibels. This demonstrates that an SNR of 80 oreabov
dation is marginal. The degradation accurs because mpeh2 an in fact represents a video of high-quality, which we beliesac-

rayshade maintain a large output buffer in DRAM, which is
likely to accumulate errors during the self-refresh period

e Both aggressive and crazy configurations yield worse result
than conservative for all applications. The only excepttocd,
which has a very small proportion of critical pages. Theggepa
are unlikely to get corrupted given the relatively low errate
corresponding to the 1 second refresh period.

e The difference between the aggressive and crazy configngati
is small, with aggressive having slightly fewer failuresdan
degraded outputs. This is because the proportion of driteap
and stack pages is relatively small, and hence the probabili
corrupting objects in these pages is very low.

e Finally, the aggressive configuration exhibits a very smath-
ber of failures across applications (except parser). This c
firms our earlier intuition (see Section 5.3) that globaladist
likely to contain a very small proportion of critical data.

As mentioned above, the conservative configuration yietds d
graded outputs in about 33% of mpeg2 executions and in al8éut 4
of rayshade executions. The aggressive and crazy configusat

ceptable for a mobile smartphone with a limited display hetsmn.

For rayshade, we attempt to understand the output degradati
by studying the rendered images. Figures 11 a and 11 b show the
original image and the corresponding degraded image (WNR
of 52 decibels). The latter is generated during a faulty etien
of rayshade. These figures are shown with a scale factor 6f 0.2
As can be seen from the figure, it is almost impossible to hell t
difference between the original image and the degraded émag
However, when we magnify the images to a factor of two of the
original (Figures 11 c and 11 d), small differences amongptkels
become discernible. Therefore, even for a significantlyraided
image with SNR considerably below 70 decibels, the diffeesn
become discernible only at high resolutions.

6.3.2 Injections into critical data only

Based on the results presented in the previous section, apesk
whether it is indeed necessary to partition applicationsrier to
prevent errors in the non-critical data. We attempt to anshis
question by performing targeted injections into the caitidata.
If we do not observe any failures in these experiments, then w

also yield degraded output in about 40% and 20% of mpeg2 execu can conclude that preventing errors in the critical datal (sence

tions and 21% and 23% of rayshade executions respectively.
To further understand the extent of output degradation, @&-m
sure the quality of the video or image using measures sudheas t

partitioning of data) is unnecessary for achieving higratslity.
In these experiments, we inject a single error into theaaiti
data during each trial because the proportion of critictd tfaeach
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Application [[ Perfect | Degraded [ Failed | SNR
mpeg2 0% 0% 100% N/A
rayshade 42% 58% 0% 39.37dB

vpr 7% 0% 93% N/A
parser 52% 10% 38% N/A

Table 9. Results of injecting a single error in the critical heap data

application is relatively small. Further, we perform feunals (50-
100) than previous experiments as we obtained convergmgdtse
even within these trials.

Table 9 shows the results of these experiments normalized to

100%. We exclude c4 from the experiments, because its oitly cr
ical heap data is the game record, and this is precisely timibu
used for comparison. Therefore, all injections into thécal data
of c4 will result in failures.

From Table 9, mpeg2 always fails (crashes) due to the injecte
errors because its output path or file pointer gets corrupied
the other hand, rayshade does not fail but its output quuality
even a single error in the critical data is 39 decibels onamyer
which is considerably worse than the quality with errors ann
critical data (over 70 decibels). Both parser and vpr expee
high failure rates due to a single error in the critical datar-even
more so than parser. The above results illustrate the impcetof
protecting critical data in applications and underline tieed for
data partitioning to prevent reliability degradation daddwering
of refresh rates.

6.4 Optimal Configurations

In this section, we combine the fault-injection resultsg(i¥e 10)
with the power-savings results (Figures 8 and 9) to find therag
configuration in terms of the power-reliability trade-offrfeach
application. The main results are as follows:

e mpeg2, c4 and rayshade exhibit high overall power savings (2
25%) and no failures in the aggressive configuration. Furthe
the output quality is high (measured in SNR) for both rayshad

Figure 10. Fault-injection result for systems with low refresh ratelafecond.

the aggressive configuration, which suggests that it ha=hlsi
chunk of critical global data.

o Finally, for vpr, the crazy configuration achieves the bestrall
power savings (nearly 25%) compared to the other two configu-
rations. Further, even under the crazy configuration, timetyar
of failures in vpr is marginal (less than 3%). This is becayse
has a significant proportion of stack data due to recursiils, ca
which is not critical to its correct execution.

7. Related Work

This section discusses related work in the areas of bothnzaed
and software techniques for power reduction.

Hardware Techniques: Traditionally, hardware design tech-
nigues over-provision for the worst-case behavior of tlefpim.
However, in the majority of common usage scenarios, the twors
case behavior is rarely exhibited, and the approach is oftete-
ful. Therefore, a new class of techniques have emerged tbat p
vision for the average case and treat the worst case behasior
an exception. This paradigm is referred toBetter-Than-Worst-
Case(BTWC) [1]. Razor is one of the best known examples of
the BTWC paradigm [12]. Razor reduces the energy consumptio
of processors by progressively lowering their voltage luich a
point that the processor starts to experience errors duientogt
violations.

At a high-level, Flikker is also a BTWC technique. However,
unlike Razor and other BTWC technigue which attempt to airre
the introduced errors in hardware, Flikker exposes theremb
the way up the system stack to the application, thereby deveg
power-saving opportunities that were unexposed or inéast
the architectural level alone. This is because many apita
are naturally resilient to errors [28, 38], and this resitie can be
exploited for power-savings through application-levethigiques
such a Flikker.

RAPID [36] is a hardware-software technique that applies the
BTWC principle for DRAM refresh-power reduction. The main
idea is to characterize the leakage behavior of each physace
and partition the pages into different classes based onifAM
leakage characteristics. Applications preferentially pages from

and mpeg2 in the aggressive configuration. Hence, the bestihe |eakage class with the lowest leakage rate and the brefrakh

configuration for these applications is aggressive, sugges
that they have a large proportion of non-critical globabdaee
Section 5.3).

e For parser, the best results are achieved in the consezvativ
configuration. This is because parser has a large propasfion
non-critical data pages, and hence significant power saving

(about 25%) can be achieved by putting these pages in the low-

refresh mode. Further, parser experiences quite a fewdailn

rate is set based on the highest leakage class of pagestadloca
by the application (thereby preserving data integrity)otder for
RAPID to be effective, applications must have substantiatks
in memory usage. However, this assumption often does neot hol
for smartphone applications which are memory-constraised
typically operate near their peak memory capacities.

A number of other techniques modify the memory controller
hardware to reduce unnecessary or redundant refreshesAlfIDR



cells [15, 23, 31]. These techniques however, require anbat

changes to the memory controller’'s hardware compared kééli
Finally, ESKIMO [20] is a hardware mechanism to save DRAM

power using knowledge of application semantics. Simil&ilikker,

Flash memory is predominantly used in smartphones as sec-
ondary storage. Flash memory is durable and does not neesl to b
periodically refreshed. Hence it can be used to store th&capp
tion’s data before the smartphone transitions into sleegentn-

ESKIMO modifies the memory allocator to expose details of the fortunately, Flash memory read and write times are an orfler o

application’s allocation patterns to the hardware. Howenderms
of refresh-power reduction, ESKIMO differs from Flikker iwo

ways. First, ESKIMO focuses on reducing the refresh poweinef
used memory areas, while Flikker focuses on reducing theglef

magnitude higher than DRAM's, with the result that it is coles-

ably slower read/write the contents of entire DRAM to mem&yr

a smartphone with 128 megabytes of DRAM and 16 megabytes per
second effective Flash bandwidth, paging the whole main ongm

power of the used memory areas. Second, ESKIMO attempts to from Flash requires 8 seconds. Since memory capacity Seasies

preserve data integrity in the allocated areas, and hers®rig
limited opportunities for saving refresh-power (6 to 10%).

Software Techniques Recently, a number of software-based
techniques have been proposed that trade-off reliabdityehergy
savings [2, 10, 16, 34]. These techniques share the sameagoal
Flikker, namely to reduce hardware reliability in an apation-
specific manner in order to achieve power savings. We didtess
techniques further in this section and then discuss therdifices
with Flikker.

Fluid-NMR [34] performs N-way replication of applicatioins
a multi-core processors for tolerating errors due to radostin
voltage-levels of processors. The parameter N is varieddas
the application’s ability to tolerate errors. Relax is ahtgique to
save computational power by exposing hardware errors tevar#
in specified regions of code [10]. Relax allows programmers t
mark certain regions of the code as “relaxed”, and lowergtbe
cessor’s voltage and frequency below the critical threghvahen
executing such regions, thereby allowing errors to occuindu
computation. Green [2] trades off Quality-of-Service (Qd&r
energy efficiency in server and high-performance appbcatire-
spectively. Green allows programmers to specify regiortode in
which the application can tolerate reduced precision. 8asethis
information, the Green system attempts to compute a pieatip-
proximation of the code-region (loop or function body) tauee
processor power. Code perforation [16] is similar to Gremeept
that it attempts to infer the approximation code regionetamn
acceptance criteria provided by the user. Further, codenation
monitors the application at runtime and adapts the inferenech-
anism based on the application’s behavior.

The above techniques are very similar to Flikker in theirralle
objectives. However, they differ from Flikker in two waysirgt,
they are task-centric and/or code-centric whereas Flikkelata-
centric. In other words, the techniques require prograranter
identify regions of code where errors are allowed (codequarf
tion infers such regions automatically [16]), while Flikkequires
programmers to identify data items where errors are allpwed
non-critical data. We believe that it is more intuitive faogram-
mers to identify non-critical data as data items often magpatly
to applications’ outputs. Second, the above techniquegtgro-
cessor power reduction, while Flikker targets memory poreer
duction, which involves a different set of trade-offs andhénce
orthogonal to the techniques.

In work submitted concurrently with our own, Salajeghehlet a
propose “Half-wits” to save Flash power consumption by afirg
Flash chips at a lower voltage level and correcting errorth wi
software techniques [33]. However, Half-wits fail to exiplthe
full potential of power reduction because it provides saevell of
reliability to both critical and non-critical data. The cbimation of
Half-wits and Flikker will achieve more power savings.

8. Alternatives to Flikker

In this section, we consider alternative technologies tkkEl and
qualitatively discuss the relative costs and benefits ofFiiiker
technique vis-a-vis these technologies.

than bandwidth, this delay is likely to increase in futureasm
phones. While it is possible to accelerate the process bingiout
only selected portions of the memory state, the challenydsing
so are similar to those faced by Flikker. In particular, thegoam-
mer must identify critical data in the application and bepared to
restore the application based only on the critical data.

Phase-Change Memory (PCM)is an emerging technology
that offers better write performance and longer lifetimetirlash.
Some recent proposals [25] have called for the partial oepheent
of DRAMSs with PCMs in mobile devices. However, due to its ever
head in dynamic power and access latency, PCM is not expected
to completely replace DRAMSs, but instead to be used for high-
endurance but infrequently accessed data [25]. Flikkeratsmbe
applied in this context by storing the critical data only oGNP
memory. This will allow the refresh rate of the entire DRAMayr
to be reduced rather than partition the array into the hajtesh
and low-refresh part as done by Flikker. This is an avenudufor
ture investigation.

ECC memory is widely used in systems that require extreme
relibility. To enable error correction, ECC memory empldyath
extra storage and logic, which consumes power. As a resGIf E
memory is not suitable for power-constrained systems. &d#st
of our knowledge, fault-tolerant refresh reduction [22itie only
technique that utilizes ECC memory for refresh power raduact
However, this technique targets the system scenario whage o
idle power consumption is considered. Hence, dynamic pomer
sumed in the logic circuit is eliminated from the power owat
of ECC in this technique. An additional factor to considettie
increased cost of ECC memory, which may be a significant bot-
tleneck to its adoption in commodity systems. Studies hhog/a
that this cost may be as high as 25% in some systems [9].

9. Conclusion and Future Work

We present Flikker, a novel technique to save refresh power i
DRAMSs. Flikker enables programmers to partition the agtian
data based on its criticality and lowers the refresh ratdefpart

of memory containing the non-critical data to save powelisTh
separation introduces a modest amount of data corruptidhein
non-critical data, which is tolerated by the natural enesHience

of many applications. We prototyped the Flikker approachaon
mobile device (using simulation), and find that it saves leetw
20-25% of total DRAM power in memory systems with less than
1% performance degradation and almost no loss in applitatio
reliability. Flikker represents a novel tradeoff in systenesign,
namely trading off hardware reliability for power-savings an
application-aware manner, as hardware only needs to béiasee
as the software requires.

Flikker can also be applied to data-center applicationsubse
they, (1) exhibit high variations in workloads and have édesable
periods of inactivity, (2) consume significant power in idh®de
due to over-engineering, and (3) are inherently errotiezgiand
do not have to be 100% accurate [2]. Understanding the beéfit
Flikker in this domain is a direction for future research.
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