
BLOCKWATCH: Leveraging Similarity in Parallel
Programs for Error Detection

Jiesheng Wei and Karthik Pattabiraman
Department of Electrical and Computer Engineering
The University of British Columbia (UBC), Canada.

{jwei, karthikp}@ece.ubc.ca

Abstract—The scaling of Silicon devices has exacerbated the
unreliability of modern computer systems, and power constraints
have necessitated the involvement of software in hardware error
detection. Simultaneously, the multi-core revolution has impelled
software to become parallel. Therefore, there is a compelling need
to protect parallel programs from hardware errors.

Parallel programs’ tasks have significant similarity in control
data due to the use of high-level programming models. In this
study, we propose BLOCKWATCH to leverage the similarity in
parallel program’s control data for detecting hardware errors.
BLOCKWATCH statically extracts the similarity among differ-
ent threads of a parallel program and checks the similarity
at runtime. We evaluate BLOCKWATCH on seven SPLASH-2
benchmarks to measure its performance overhead and error
detection coverage. We find that BLOCKWATCH incurs an
average overhead of 16% across all programs, and provides an
average SDC coverage of 97% for faults in the control data.

Keywords: Parallel programs, Control-data, SPMD, Static
Analysis, Runtime checks

I. INTRODUCTION

The continued scaling of Silicon devices has exacerbated
their unreliability and error-proneness. In the near future,
microprocessors will experience significantly higher rates of
hardware faults [1]. Processor faults have hitherto been masked
from software through redundancy at the hardware level [2]
(e.g., dual modular redundancy). However, as power con-
sumption becomes a first class concern in computer systems,
hardware-only solutions become infeasible due to their high
power costs. Therefore, software applications must be de-
signed to tolerate hardware faults.

On another front, the microprocessor industry has adopted
the multi-core paradigm, or the integration of multiple cores
on a single die. Already, eight-core processors are available
on the market, and the number of cores is expected to
increase in future generations [3]. The multi-core paradigm
has revolutionized software development, and industry experts
have predicted that parallel programs will become the de-facto
standard in the future [4]. Therefore, parallel programs that
run on future multi-core processors will need to be capable
of detecting and recovering from hardware errors. While
error recovery for parallel programs has received considerable
attention [5], efficient error detection remains a challenge.

In this paper, we explore the use of similarity among
tasks (i.e., threads) of a parallel program for runtime er-
ror detection. The similarity arises as a result of high-level
programming models, such as Single Program Multiple Data
(SPMD) paradigm. Our approach statically extracts the sim-
ilarity through compiler-based analysis, and inserts runtime
checks in the program. The runtime checks compare the

behaviors of the tasks at runtime, and flag any deviation from
the statically extracted similarity as an error. Because we
leverage similarity among a group of tasks for error detection,
we call our approach BLOCKWATCH1.

SPMD is the most commonly used style for parallel pro-
gramming [6], While there are many sources of similarity in an
SPMD program [7], we focus on the similarity of control-data
(i.e. the data that is used to make branch and loop decisions),
to detect faults that corrupt the control-data. We define two
threads as exhibiting control-data similarity at a branch if
the behavior of a thread for the branch is constrained by
the behavior of the other threads for the same branch. We
focus on control-data because: (1) control-data is critical for
the correctness of a program, and errors in this data lead
disproportionately to Silent Data Corruptions (SDCs)2 [8], (2)
SPMD programs exhibit substantial similarity in the control-
data (Section V), and (3) no software technique other than
duplication can protect this class of program data.

Duplication, or running two copies of a program and
comparing their outputs, has been used to detect errors in
sequential programs [9]. The main advantage of duplication
is that it is simple to apply and requires no knowledge of the
application. However, duplication has two main disadvantages
when applied to parallel programs. First, parallel programs are
often non-deterministic, and duplicated versions of a parallel
program may yield different results, thus rendering them
ineffective for error detection. Second, duplication requires
twice the amount of hardware resources, and hence reduces
the resources available for the actual program, thus leading to
significant slowdowns [10].

We are not the first to observe that parallel programs exhibit
similarity among their tasks - other techniques have used
parallel programs’ similarity for error detection [11], [12].
BLOCKWATCH differs from these techniques in two ways.
First, the other techniques learn the similarity by observing
the program at runtime, and may consequently incur false-
positives because they cannot distinguish between an unex-
pected corner case and a deviation due to an error. In contrast,
BLOCKWATCH is based on the static characteristics of the
program, which by definition, incorporates a superset of the
dynamic runtime behaviors, and hence has no false positives.
This is especially important in production settings where a
false-positive can trigger wasteful recovery. Secondly, BLOCK-
WATCH operates at the granularity of individual branches in
the program while the other techniques operate at the function

1BLOCKWATCH is a program for crime prevention by residents watching
for suspicious activities in a neighbourhood and reporting them.

2An SDC is a deviation from the output in an error-free execution.



or region granularities. As a result, BLOCKWATCH can detect
errors that affect a single branch, even if the error does not
cause deviations at other granularities. To our knowledge,
BLOCKWATCH is the first technique to statically extract the
similarity among a parallel programs’ tasks, and leverage it
for runtime error detection.

The main contributions we make in this paper are as follows:
1) Identify generic code patterns that characterize control-

data similarity in parallel programs.
2) Develop compiler techniques to statically extract the

control-data similarity patterns, and instrument the pro-
gram with runtime checks corresponding to the patterns.

3) Build a scalable, lock-free monitor for dynamically
executing the runtime checks inserted by the compiler.

4) Evaluate BLOCKWATCH on seven SPLASH-2 bench-
mark programs [13]. The results of our empirical eval-
uation show that BLOCKWATCH, (1) finds considerable
control-data similarity in the programs (50% to 95%),
(2) incurs average performance overheads of about 16%
across the programs (for 32 threads on a 32-core ma-
chine), and (3) provides average coverage of 97% for
transient errors in the control-data3.

Although the current implementation of BLOCKWATCH
focuses on control-data, it can be extended to detect faults
that propagate to regular instructions. Studies have shown that
around 80% of the runtime instructions in SPMD parallel
programs exhibit similarity [7], which means they can be
used for error detection.

BLOCKWATCH has three aspects that make it practical.
First, BLOCKWATCH does not require any modifications to
the hardware, and can work on today’s multi-core systems.
Secondly, it does not require any intervention from the pro-
grammer, and is fully automated. Finally, BLOCKWATCH
incurs no false positives (i.e., does not detect an error unless
one occurs in the program).

The rest of this paper is organized as follows: Section II
discusses the BLOCKWATCH approach with an example, while
Section III details its implementation. Section IV introduces
the experimental setup, and Section V presents the eval-
uation. Section VI quantitatively compares BLOCKWATCH
to software-based duplication. Finally, Section VII surveys
related work and Section VIII concludes the paper.

II. APPROACH

This section describes the high-level approach of BLOCK-
WATCH. Section II-A presents the fault model for BLOCK-
WATCH, while Section II-B lists the assumptions we make
about the parallel program. Section II-C uses an example
parallel program to illustrate the kinds of similarity considered
by BLOCKWATCH. Section II-D illustrates the runtime checks
introduced by BLOCKWATCH on the example program.

A. Fault Model

We consider transient or intermittent hardware faults that
affect at most one processor or core in a multi-processor or
multi-core processor. The fault can occur in the processor
datapath, control logic or memory elements in the core (e.g.,
caches). However, we assume that no more than one core or
processor is affected by a fault at any time. This is reasonable

3We measure coverage as fraction of errors that do not lead to SDCs.

as hardware faults are rare events (relative to the total time of
execution of a parallel program).

Our fault model also captures certain kinds of software
errors such as rare race conditions and memory corruption
errors that result in a thread deviating from its static semantics.
However, we do not consider software errors in this paper.

B. Assumptions on Parallel Program
We make three assumptions regarding the parallel program.

First, we assume that it is written using a shared memory
model, which is the common case with multi-core processors
today. We have implemented BLOCKWATCH for pthreads style
parallel programs, though it can be extended for other kinds
of shared memory parallel programs (e.g., CUDA programs).
Second, we assume that the parallel program is written in an
SPMD style. This ensures that the code to be executed by each
thread is identical, and hence it suffices to analyze the common
code to identify the similarity of branch runtime behavior
among threads. Finally, we assume that the entire source code
of the program is available for analysis by BLOCKWATCH.
If this is not the case, BLOCKWATCH will not be able to
statically extract the program’s similarity characteristics.

C. Control-data Similarity in Parallel Programs
We use Figure 1 to illustrate the presence of similarity in the

control-data of a parallel program. In Figure 1, the program
starts from function main(), which spawns nprocs threads, all
of which execute the function slave() concurrently. The slave()
function first assigns a unique thread ID procid to each thread
in line 17 - 20 in Figure 1. It then executes four branches
labeled 1 through 4 in the figure. The bold italic variables
in the slave() are either constants or global variables that are
shared among all threads. In this paper, we include loops in
our definition of branches.

We now illustrate the control-data similarity among the
program’s threads in Figure 1 for each of the four branches
in the slave() function. The generic code patterns that result
in the similarity are shown in Table I. The similarity of the
control-data in the four branches are as follows:

1) Branch 1: The branch condition tests equality of thread
ID and a constant 0. Because the constant is the same
for all threads, and the thread ID is different, at most one
thread will take the branch in a correct execution. This
would be classified as threadID according to Table I.

2) Branch 2: The variable i shares the same initial value,
increment value and end value among all threads. As-
suming there are no break statements in the loop, all
threads execute the same number of loop iterations. This
would be classified as shared according to Table I.

3) Branch 3: The variable gp[procid].num is thread local
and may be different for different threads. This would
be classified as none according to Table I.

4) Branch 4: The variable private is also thread local.
However, it’s value is either 1 or -1, depending on the
outcome of branch 3. Therefore, threads in which private
takes the same value will make the same decision in this
branch. This is classified as partial according to Table I.

Thus, the control-data for each of the four branches above
belongs to a different similarity category according to Table I.
The table also illustrates the type of similarity exhibited by
the branches belonging to each category. This similarity is
encoded as a runtime check in Section II-D.



Note that the similarity inference only relied on static
analysis of the program’s code, and did not require us to
execute it. In this example, we showed the analysis on the
program’s source code for simplicity. In reality, the analysis
is done on the program’s intermediate code generated by the
compiler (Section III-A).

1 int id = 0;
2 long im = DEFAULT N;
3 struct global private ∗gp;
4 int nprocs;
5
6 int main(int argc, char ∗argv[]) {
7 int i ;
8 nprocs = argv[1];
9 for( i = 0; i < nprocs; i++)

10 gp[id ]. num = rand();
11 for ( i = 0; i < nprocs; i++)
12 pthread create((void ∗)slave);
13 }
14
15 void slave() {
16 int private , procid;
17 pthread mutex lock();
18 // procid is the thread id
19 procid = id++;
20 pthread mutex unlock();
21 // Branch 1: threadID
22 if (procid == 0) {
23 ...
24 }
25 ...
26 // Branch 2: shared
27 for( i = 0 ; i <= im - 1; i = i + 1) {
28 ...
29 }
30 ...
31 // Branch 3: none
32 if (gp[procid ]. num > im - 1) {
33 private = 1 ;
34 } else {
35 private = -1 ;
36 }
37 ...
38 // Branch 4: partial
39 if ( private > 0) {
40 ...
41 }
42 }

Fig. 1. Sample pthreads parallel program to illustrate the static similarity
among all threads in the program. The comments indicate the similarity
categories for each branch according to the classification in Table I.

D. Runtime Checking
In the previous section, we saw how to statically identify the

similarity of the control data used in the branches in Figure 1.
In this section, we illustrate how the similarity can be encoded
as a runtime check within the program.

The basic idea is as follows: the statically inferred branch
similarity behavior among threads is consistent with the actual
runtime branch behavior similarity in an error-free execution.
However, if a hardware error propagates to the branch condi-
tion data of one thread and causes the branch’s outcome to flip,

TABLE I
BRANCH CONDITION SIMILARITY CATEGORY DEFINITION

Similarity
Cate-
gory

Static character-
istics of control
data

Branch runtime behav-
ior similarity

shared All operands of
the instruction
are shared
variables among
threads, such as
global variables
and constants

All threads take the
same decision at the
branch.

threadID One operand
depends on
thread ID, and
the remaining
operands are
shared variables

The branch decision
is related to thread ID
- threads of certain
thread IDs take the
same decision. For
example, if the condition
comparison statement is
an equality comparison
between thread ID and
shared variables, one
thread follows one
path and the remaining
threads follow the other
path at run time.

partial Local variables,
but these local
variables are as-
signed with one
of a small sub-
set of shared vari-
ables

The threads which are
assigned to the same
shared variabl take the
same decision.

none Local variables
that cannot be
statically inferred
to be similar
across threads

No known similarity in
branch runtime behavior
among the threads.

the program will deviate from the statically inferred behavior.
BLOCKWATCH detects the deviation and stops the program.

As an example, we use branch 1 in Figure 1 to explain the
runtime checks. As we show in Section II-C, branch 1 belongs
to category threadID according to the classification in Table I.
This means that no more than one thread (thread 0 in this case)
takes the branch. To check this constraint, we insert a call to
the checking code immediately after the branch decision to
record its status. Assume that a hardware error propagates to
procid variable in thread 2, thus causing it to take the branch.
This violates the constraint that no more than one thread takes
the branch, and is hence detected by the check.

III. IMPLEMENTATION

The implementation of BLOCKWATCH consists of two
steps. The first step is to infer the branches’ similarity category
through static analysis at compile time, and is described in



Section III-A. The second step is to compare the actual runtime
behaviors’ of the branches with the inferred behavior accord-
ing to the branches’ similarity categories using a runtime
monitor, and is described in Section III-B.

A. Similarity Category Identification
In this section, we introduce an algorithm to identify the

branches’ similarity categories. Our algorithm is implemented
as part of an optimizing compiler. The algorithm assumes that
the program has been translated into a low-level intermediate
representation (IR) by the compiler’s front-end. Therefore, all
the branches in the program, including those in loops, have
been explicitly represented as branch instructions prior to the
algorithm. Further, we assume that the IR uses Static Single
Assignment (SSA) form [14], which requires that a variable
be assigned exactly once in the program i.e., every variable in
the program has a unique instruction that assigns to it.

As we show in Section II, the similarity category of a branch
depends upon the nature of the variables used in the branch
condition i.e., whether they are shared, dependent on the thread
ID or local to the thread. Therefore, in order to infer the
similarity category of a branch, we need to find the similarity
categories of the operands used in the branch instruction.
However, the operands may themselves be produced by other
instructions, and hence we need to determine the operand type
of all instructions in the program. This determination is based
on whether each operand is derived from a shared variable
(shared), a variable containing the thread ID4 (threadID), or
from a local variable that can only take one of a small number
of shared variables (partial).

Initially, all instructions in the program are assigned a
classification of “NA”, or “Not Assigned”. Then instructions
that are directly assigned from the thread ID variable are
assigned to the category threadID. Similarly, instructions that
are directly assigned from a shared variable are assigned to
the category shared. After this step, the similarity categories
are propagated to other instructions in the program as follows:
(1) if it is a unary instruction, the similarity category of the
instruction is the same as that of its (only) operand, (2) if it
is a binary or ternary instruction, we consider each operand
separately and update the similarity category of the instruction
based on the rules in Table II.

Propagation Rules: Before we present the overall algo-
rithm, we first explain Table II. The rows of Table II corre-
spond to the current instruction’s similarity category, while the
columns correspond to the operand’s similarity category. The
entries in the table indicate the similarity category to which
the instruction should be assigned after processing the operand.
Because we process each operand separately and update the
instruction’s similarity category after doing so, the same table
applies for both binary and ternary instructions.

We explain the rationale behind Table II with an example.
Assume that the current instruction’s similarity category is
partial. This corresponds to the fifth row in Table II. If the
next operand belongs to category NA, then the instruction’s
category is set to NA and the inferring process ends for this
instruction (the instruction will be revisited later). If the next
operand is shared or partial, the instruction’s category is set to
partial because the instruction continues to depend on local

4We look for common code patterns that compute the thread ID. These can
be customized for different libraries.

TABLE II
RULES TO INFER INSTRUCTION’S SIMILARITY CATEGORY FROM ITS

CURRENT CATEGORY AND THE OPERAND’S CATEGORY

curr ins
operand

NA shared threadID partial none

NA NA shared threadID partial none
shared NA shared threadID partial none
threadID NA threadID threadID none none
partial NA partial none partial none
none NA none none none none

variables that may come from one of the shared variables.
If the next operand belongs to threadID, the instruction’s
category is set to none because the instruction depends neither
exclusively on one of several shared variables nor the thread
ID, and hence does not satisfy either category. If the next
operand belongs to none, then the instruction’s category also
becomes none as it depends on private variables. Note that
the inference rules are conservative: even if a single operand
belongs to category none, the instruction is updated to this
category (see optimizations for how to mitigate this effect).

One case where we deviate from the rules in Table II is
when a local variable is assigned with a shared value in one
path of an if-else branch but not assigned in another, or is
assigned different shared values in both paths. We update its
category to partial instead of shared at the convergence point
of the branch (i.e., the phi instruction in the SSA form). This
is because the shared value is only one possible value that the
variable may take at runtime. An example of this case occurs
in the variable private in Figure 1, which is assigned to one
of the two different constants 1 and −1 in the two outcomes
of branch 3. Hence, its category is assigned to partial.

Multiple Instances: Because a static branch in the program
may be executed multiple times e.g., if it is inside a loop or
the function containing it is called multiple times, its similarity
category may vary depending on the way we group the runtime
instances to check. We illustrate this case with an example
in Figure 2, which is adapted from FFT in the SPLASH-2
Benchmark Suite [13].

In Figure 2, there are two functions slave() and foo() that
are executed by each thread. The slave() function calls foo()
in two different places. Consider branch 1 which is inside
function foo(). The function is called at two different places
in slave(), each time with a different local variable. However,
in each invocation of the function, the local variable used in
the branch condition is the same, namely arg.

There are two ways to classify the similarity of this branch.
We can classify it as shared in which case we need to track
the value at each call site separately and ensure that we are
comparing the values from each call site separately. Another
possibility is to merge the values across the call sites, and treat
the branch as belonging to category partial, as it is derived
from multiple shared variables. In this case, we need not track
each invocation separately. We adopt the former policy in spite
of the additional performance overhead it entails, as it allows
us to perform tighter checks on the branch.

Algorithm: We now present the overall algorithm for
inferring each instruction’s similarity category in Figure 3.
The algorithm iterates over all instructions in the program and
updates the similarity category of each instruction by calling



1 bool test ;
2 void slave() {
3 ...
4 foo (1);
5 ...
6 if ( test ) {
7 foo (2);
8 }
9 ...

10 }
11 void foo( int arg) {
12 // Branch 2
13 for ( int i = 0; i < 5; i = i + 1) {
14 // Branch 1
15 if ( i < arg) {
16 ...
17 }
18 }
19 }

Fig. 2. Example code of multiple runtime instances of the same branch

1 map categorymap;
2 int main() {
3 bool changed = true;
4 while (changed) {
5 changed = false;
6 for ( inst in program) {
7 changed = visitInst ( inst ) || changed;
8 }
9 }

10
11 for (branch in program) {
12 if (branch in categorymap) {
13 branchcategory =
14 categorymap[branch];
15 } else {
16 branchcategory = ‘‘none’’ ;
17 }
18 }
19 }
20
21 bool visitInst ( inst ) {
22 Category category = NA;
23 for (op in operands) {
24 if (op is constant/global) {
25 category = lookupTable(
26 category, ‘‘ share’ ’ );
27 } else if (op is thread id) {
28 category = lookupTable(
29 category, ‘‘ threadID’ ’ );
30 } else if (op in categorymap) {
31 category = lookupTable(
32 category, categorymap[op]);
33 } else{ // op is NA
34 return false ;
35 }
36 }
37
38 Category old = categorymap[inst];
39 categorymap[inst] = category;
40 return (category != old );
41 }

Fig. 3. Pseudo-code to show the similarity category identification algorithm

TABLE III
EXAMPLE OF CATEGORY PROPAGATION ALGORITHM ON FIGURE 2

Variables
and
Branches

Initial 1st it-
eration

2nd it-
eration

3rd it-
eration

Final
Cate-
gory

test shared shared shared shared shared
arg NA shared shared shared shared
i NA shared shared shared shared
Branch 1 NA NA shared shared shared
Branch 2 NA NA shared shared shared

the visit function (lines 4 - 9) on the instruction. This process is
repeated until there are no more changes in the instructions’
similarity categories. The categorymap contains the inferred
categories of all similar branches at the end of the iterations.
The other branches are assigned to none in line 18.

The visitInst function(lines 23 - 36) takes an instruction as
an argument, and walks through each of its operands in turn.
For each operand, it infers the similarity category based on the
category of the operand or by looking up the operand in the
categorymap. Then it calls function lookupTable (not shown
in figure) with the current instruction’s category as well as
the category of the operand. The lookupTable function uses
Table II to find the similarity category of the current instruction
and update it accordingly.

Note that the algorithm terminates in a finite number of
iterations (say k) because the number of similarity categories is
finite and the updated categories in Table II flow monotonically
(i.e., in one direction only). Also, each iteration is proportional
to the number of instructions in the program (say N). In the
worst case, ‘k’ can be at most equal to ‘N’, and hence the
worst-case complexity of the algorithm is O(N2). In practice,
‘k’ is less than ten for the programs we studied.

Example: We illustrate the algorithm in Figure 3 with the
example in Figure 2. Table III shows the similarity categories
of the variables and branches in the example after each
iteration of the algorithm. The variables are used as proxies
for the instructions that define them (these are not visible at
the source code level) 5. The algorithm converges within three
iterations in this example. Note that the categories of the two
branches in the first iteration are NA because in SSA form,
the definition instruction of variable i has two operands: 0 and
i+ 1, and i+ 1 is executed after the branch 1 and branch 2.
Therefore, when we visit the two branches in the first iteration,
the category of i is still NA and hence the branches’ categories
are not updated. Later in this iteration, the category of i is
determined as shared and the two branches’ categories are
changed in the 2nd iteration, after which there are no more
changes and hence the process is terminated.

Optimizations: We perform two optimizations over the
base algorithm in Figure 3 to improve the coverage and the
performance of the technique.

Because the algorithm for inferring static branch similarity
is conservative, it will label some branches as none even
if there is a single operand that it determines as private
(not shared). However, in practice we find that considerable
similarity exists even in these branches, as the private variable
may have the same value across threads. We therefore promote

5In SSA form, instructions and variables are synonymous with each other.



such branches to the partial category and only compare the
threads which have the same value for the private variable.

In some cases, a branch can be executed by no more than
one thread at a time (e.g., branches inside critical sections).
We remove the checks on such branches as BLOCKWATCH
needs a minimum of two threads to detect errors that violate
the threads’ similarity. Checking such branches would incur
runtime overheads while providing no coverage benefit. We
assume that the program has no race conditions which violate
this constraint.

B. Runtime Checking
This section details the implementation of a runtime mon-

itor to check the statically inferred similar branches in Sec-
tion III-A. The monitor is spawned as a separate thread in
the program (BLOCKWATCH adds instrumentationto spawn
the monitor thread), and has three design goals as follows.

1) Asynchronous: The monitor must interfere minimally
with the program’s execution. In particular, it should not
be in the critical path of the program, and must execute
asynchronously with the program’s threads.

2) Unique branch identifier and fast lookup: The monitor
must assign a unique identifier for each runtime branch.
Moreover, given a specific branch identifier, it must be
possible to do a fast lookup of the branch’s runtime
characteristics of different threads. The two requirements
are important for correlating the information across
multiple threads when storing the branches’ runtime
behaviors.

3) Lock freedom: The monitor must acquire no locks, as
doing so may introduce deadlocks in the program, and
also lead to unnecessary serialization of the program.

Architecture: We achieve goals 1 and 3 through sepa-
rate lock-free front-end queues adapted from Lamport’s algo-
rithm [15] for each thread to send its branch information. The
monitor thread asynchronously scans the queues and processes
the information without using any locks. We achieve goal 2
through the use of a back-end hash table to store the branches
based on their identifiers. The architecture of the monitor is
illustrated in Figure 4.

Operation: The operation of the monitor is as follows:
• When a branch is executed by a thread in the program,

it will execute an instrumentation function that transfers
the branch’s information to the monitor. This function is
inserted by the compiler for the branches identified as
similar by the algorithm in Section III-A.

• The function appends the branch information to the
thread-specific front-end queue of the monitor (recall that
in a shared memory architecture, the entire address space
is visible to all the threads), without taking a lock. The
function returns immediately after the insertion.

• The monitor thread asynchronously removes the branch
information from the thread-specific front-end queues in
round robin fashion. No lock is required as the removal
is done from the front of the queue while the insertion is
done at the back. Further the queues are of fixed length6,
so there is no need to dynamically allocate memory.

• The monitor thread inserts the branch information into the
back-end hash-table using the identifier of the branch as

6We set the queue length to a sufficiently large value to prevent it from
being a bottleneck. This value can be modified if needed.

Fig. 4. Architecture of the runtime monitor in BLOCKWATCH

the key (see below). Thus, all instances of a given branch
across different threads will occupy the same entry in the
hash table.

• Once all threads have reported the outcomes of a specific
branch, the monitor checks them by reading the hash table
entry corresponding to the branch.

Instrumentation: We instrument the similar branches iden-
tified by the static analysis algorithm in Section III-A with
calls to our custom library, which send the branches’ runtime
behaviours to the monitor.

We illustrate the instrumentation with an example. Figure 5
shows the instrumentation added for branch 4 in Figure 1.
Recall that this branch belongs to the partial category. The
library calls are highlighted with boldface in Figure 5, and
consist of the following two functions.

• sendBranchCondition: Sends the branch condition to the
monitor, so that the monitor can check if all threads for
which the condition variable is identical, have the same
branch outcome.

• sendBranchAddr: Sends the branch address to the moni-
tor, so that the monitor can compare the target addresses
of all threads for which the condition is the same.

In both cases, the functions send the static branch identifier,
the outer loop iteration number, and the thread ID. The former
two fields are used to find the hash table key of the branch,
while the thread ID is used to identify which thread sends the
data.

Hash table Key: The hash table key of a branch is
obtained by combining its static identifier with a runtime
identifier. The static identifier encodes the static position of
the branch in the program. Each branch within a function
or loop is assigned the same static identifier. The runtime
identifier distinguishes among different instances of the branch
in different loop iterations and at different call sites (through
instrumentation). This is obtained by dynamically encoding
the call stack corresponding to the parent function’s invocation
and the loop iterations of outer loops. The combination of the



1 void slave() {
2 ...
3 sendBranchCondition(4 /∗static branch ID∗/, procid,
4 private /∗condition∗/ , loop iter );
5 /∗ loop iter here means the loop iteration
6 number of all outer loops∗/
7
8 // Branch 4: Partial
9 if ( private > 0) {

10 sendBranchAddr(4 /∗static branch ID∗/, procid,
11 TAKEN /∗behavior∗/, loop iter);
12 ...
13 } else {
14 sendBranchAddr(4 /∗static branch ID∗/, procid,
15 NOTTAKEN /∗behavior∗/, loop iter);
16 }
17 }

Fig. 5. Example code to show the instrumented program

static and runtime identifier yields a unique hash table key for
each runtime instance of a branch. This key is used to store
the information about the branch in the hash table by each
thread that executes it.

We implement the hash table as a two level table. In the
first level, the function’s call site ID (added by instrumented
code) and the static branch identifier is used to generate the
key. In the second level, the loop iteration number of all outer
loops is used to generate the key. We separate the function’s
call site IDs and the loop iteration numbers to achieve better
utilization of the memory and reduction of access times. We
describe these and other optimizations made to the hash table
in more detail in the technical report version of this paper [16].

IV. EXPERIMENTAL SETUP

In this section, we first describe the tools used in implement-
ing BLOCKWATCH. Then we describe the benchmarks used to
evaluate BLOCKWATCH. Finally, we discuss how we evaluate
the performance and the fault coverage of BLOCKWATCH.

Implementation Tools: We implement BLOCKWATCH
using the LLVM compiler infrastructure [17]. LLVM is a
compilation infrastructure for lifelong program analysis and
transformation. It has an intermediate representation (IR)
that uses Static Single Assignment (SSA) form. The IR is
manipulated by our custom passes before being compiled to
machine code. We first compile the program to LLVM IR
and apply BLOCKWATCH’s static analysis to: (1) analyze the
program’s IR and find the similarity category for each branch;
(2) instrument the program’s IR with calls to our custom
library. For each of the benchmarks, the static analysis and
instrumentation passes take less than 1 second on a quad-core
core i7 machine with 8 GB RAM. Finally, we compile the
instrumented IR to machine code on our target platform. We
also use the Boost library’s hash table in the runtime monitor’s
implementation [18].

Benchmarks: We use seven programs in the SPLASH-
2 Benchmark Suite [13] for evaluating BLOCKWATCH. The
SPLASH-2 Benchmark Suite has been extensively used for
studies of shared memory parallel programs. We use the de-
fault configurations of the suite except that we vary the number
of threads in order to study the scalability of BLOCKWATCH.
Table IV describes the characteristics of the programs. In the

table, the parallel section refers to the part of the program
which is executed concurrently by two or more threads.
Because BLOCKWATCH relies on the similarity across threads
to detect errors, we focus on the parallel section of the program
in reporting the similarity categories assigned to branches.

TABLE IV
CHARACTERISTICS OF BENCHMARK PROGRAMS

Benchmark Total
lines
of
code
(LOC)

LOC in
parallel
section

Total
number
of
branches

Number
of
branches
in
parallel
section

continuous
ocean

5329 4217 876 785

FFT 1086 561 110 44
FMM 4772 3246 395 321
non-
continuous
ocean

3549 2487 543 478

radix 1112 441 99 35
raytrace 10861 7709 726 268
water-
nsquared

2564 1474 144 103

Performance Evaluation: We evaluate the performance
overhead of BLOCKWATCH on a 32-core processor that con-
tains four 8-core AMD Opteron 6128 processors running at 2
Ghz each. In order to study the performance overhead and the
scalability of BLOCKWATCH, we vary the number of threads
from 1 to 32 and measure the time spent in the parallel section
of the program, both with and without BLOCKWATCH. We
do not measure the checking time of monitor thread, as the
monitor thread is executed asynchronously and hence does not
have a significant effect on the execution time of the program’s
parallel section. The SPLASH-2 programs can scale to at least
64 threads [13].

To measure the performance with 32 threads, we disable the
monitor thread during the execution of the main program so as
not to interfere with it. This is because our machine has only
32 cores and we need 33 threads to execute the program with
the monitor 7. We have verified that the difference in execution
times is negligible under this scenario for the 16 thread case.
Note that the threads still send the branch information to the
front-end queues of the monitor - the only difference is that
the monitor does not do anything with the information.

False Positives: To verify there are no false positives, we
perform 100 error-free runs for each program instrumented
by BLOCKWATCH and check if there are errors reported by
it. The results show that BLOCKWATCH does not report any
errors, i.e., there are no false positives.

Coverage Evaluation: We evaluate the error detection
coverage of BLOCKWATCH through fault injection studies.
Specially, we focus on detections of Silent Data Corruptions
(SDCs). SDCs are failures in which the program finishes

7We cannot set the thread number to 31 because the SPLASH-2 benchmarks
require the number of threads to be a power of 2.



executing but the output deviates from the golden result in
an error-free run. In this paper, we focus on SDCs because
crashes and hangs can be easily detected through other means
(e.g., heartbeats). Further, the program can be restarted from
a checkpoint upon a crash or a hang, and continued.

We build a fault injector with the PIN tool [19]. PIN
is a dynamic instrumentation framework for programs on
X86 processors. The goal of the fault injector is to simulate
transient hardware faults that propagate to a branch instruction
in exactly one thread of the program. We focus on branch
instructions because BLOCKWATCH targets hardware faults
that propagate to the control data of programs (i.e., data used
by branches) in this study.

The fault injection procedure consists of three steps. First,
we instrument an m-thread program using PIN and record the
number of branches executed by each thread of the program
at runtime (say ni where 0 < i < m). In the second step,
we randomly pick a thread from 1 to m, say j, and choose
the jth thread to inject faults. Then we select a number from
1 to nj , say k, and choose the kth branch of jth thread
at runtime to inject. Thirdly, we flip a single bit in either
the flag register or condition variable of the chosen branch
instruction of jth thread. The former fault leads to the branch
being flipped, i.e., going the wrong (but legal) way. This
is to verify the correctness of BLOCKWATCH in detecting
branch runtime behavior deviations. The latter fault may or
may not lead to the branch being flipped. For example, a
fault in a branch condition that flips the least significant bit of
the condition variable, may not affect the comparison being
performed by the branch. However, the corruption introduced
in the condition variable will persist even after the execution
of the branch, and is more representative of hardware faults
in the control data. This is to verify that the effectiveness of
BLOCKWATCH in detecting control-data errors. Only one fault
is injected in each run of the program to ensure controllability.

Because PIN can monitor all executed instructions in the
program, the fault injection considers all branches in the
program, and is not restricted to those that are instrumented by
BLOCKWATCH. However, we do not consider the instrumen-
tation added by BLOCKWATCH for injection, as errors that
affect these branches can at worst lead to additional crashes
or hangs, but not to SDCs, as they do not affect the program.

After injecting the fault, we track its activation and whether
it is detected by the monitor. If not, we let the program execute
to completion (if it does not crash/hang), and compare the
results with the golden result to measure the SDC percentage.

For each experiment, we inject 1000 faults of each type
and count how many faults are activated (over 75% of the
injected faults are activated in our experiments). We calculate
the coverage as the probability that an activated fault will not
lead to an SDC [20]. In other words, coverage = 1−SDCf ,
where SDCf is the fraction of activated faults that lead to an
SDC. Thus the coverage includes faults that lead to program
crashes or hangs as well as masked faults. In reality, even
an unprotected program will typically have non-zero coverage
due to natural redundancies and memory protections provided
by the operating system, and hence we measure the coverage
of the program both with and without BLOCKWATCH.

V. RESULTS

In this section, we first present the relative frequencies of the
branch similarity categories in the benchmark programs as dis-

covered by BLOCKWATCH. Then we present the performance
overheads and error detection coverage of BLOCKWATCH.

A. Similarity Category Statistics of Branches

We run the static analysis part of BLOCKWATCH on the
seven SPLASH-2 programs. Table V shows the number of
branches in each program that fall into the similarity cate-
gories in Table I, as discovered by the static analysis phase
of BLOCKWATCH. We also calculate the percentage of the
branches that belong to each similarity category based on the
total number of branches in the program’s parallel section.

TABLE V
SIMILARITY CATEGORY STATISTICS OF THE BRANCHES IN 7 PROGRAMS

Program Total No.(%) of branches of each category
shared threadID partial none

continuous
ocean

785 30
(4%)

12
(2%)

723
(92%)

20
(2%)

FFT 44 14
(32%)

11
(25%)

18
(41%)

1
(2%)

FMM 321 51
(16%)

8
(2%)

98
(31%)

164
(51%)

non-
continuous
ocean

478 22
(5%)

116
(24%)

329
(69%)

11
(2%)

radix 35 11
(31%)

9
(26%)

7
(20%)

8
(23%)

raytrace 268 12
(4%)

4
(1%)

117
(44%)

135
(51%)

water-
nsquared

103 34
(33%)

12
(12%)

26
(25%)

31
(30%)

The results in Table V are as follows. In general, between
49% to 98% of the branches fall into the shared, threadID and
partial categories. This means the BLOCKWATCH is able to
statically identify at least 50% of the branches as similar across
the seven programs. FMM and raytrace have relatively fewer
similar branches, as many branches in these programs have
both variables in the branch conditions to be local variables.
These branches are identified as belonging to category none
according to the propagation rules in Section III-A.

Thus we see that a significant fraction of branches in each
program are identified as similar by the static analysis phase
of BLOCKWATCH, and are hence eligible for checking in
the runtime phase. This shows that BLOCKWATCH can be
applied to commonly used parallel programs. Note that our
static analysis is rather conservative and hence these are lower
bounds on the number of similar branches in a program.

B. Performance Overheads

Figure 6 shows the execution times of the seven SPLASH-2
programs with BLOCKWATCH for 4 threads and 32 threads.
The results are normalized to the execution time of the
program without BLOCKWATCH (for the same number of
threads), and hence the baseline is 1.0.

From Figure 6, the geometric mean of the performance
overhead of BLOCKWATCH is 2.15X with 4 threads, and
1.16X with 32 threads. Thus the performance overhead of



Fig. 6. Execution time of program with BLOCKWATCH/ execution time of program without BLOCKWATCH. Lower is better

BLOCKWATCH with 32 threads is only 16%, and is lower
than that for 4 threads (see below for why).

Scalability: We study the scalability of BLOCKWATCH by
considering the variation of the geometric mean of the perfor-
mance overheads (across all 7 programs) with the number of
threads. The results are shown in Figure 7 as the number of
threads is varied from 1 to 32.

Fig. 7. Geometric mean of BLOCKWATCH overhead (baseline is program
without BLOCKWATCH) Vs. number of threads

In Figure 7, we find that the overhead of BLOCKWATCH
first increases as the number of threads increases from 1 to
2, and then decreases as the number of threads increases
from 2 to 32. The reason for the overhead increase from 1
to 2 threads is that the machine we use consists of four 8-
core processors and is not fully symmetric. This asymmetry
causes the memory access time to depend on where the threads
execute. When we increase the number of threads from 1 to 2,
the operating system assigns the 2 threads to cores in different
processors. Thus, the threads cannot share data at the cache
level and the memory access time increases. This hurts the
program with BLOCKWATCH more than the original program,
and the overhead of BLOCKWATCH increases.

The reason for the decrease of overhead from 2 to 32
threads is that when the number of threads doubles, the
work done by each thread reduces by half and so does the
number of branches executed by each thread. However, due to
communication and waiting among threads, the reduction in
execution time of the program is less than 2X. Nonetheless,
when the number of threads increases, the relative time spent

by BLOCKWATCH reduces and so does the overhead of
BLOCKWATCH (up to 32 threads in Figure 7).

C. Error Detection Coverage

We study the coverage of BLOCKWATCH under two kinds
of faults: branch-flip faults and branch-condition faults. The
former type of fault is guaranteed to flip the branch but does
not corrupt any program data directly. The latter type of fault
corrupts the branch’s condition data but does not necessarily
lead to branch flip.

The results are shown in Figure 8 and Figure 9. Note that
the coverage of y axis in both figures start from 50%. In
the figures, coverageoriginal is the coverage of the original
program, and coverageBLOCKWATCH is the coverage of the
program protected by BLOCKWATCH.

1) Coverage results for branch-flip faults: Figure 8
shows the coverage with and without BLOCKWATCH for
all programs under branch flip faults. Across the pro-
grams, the average coverageoriginal is 83%, while average
coverageBLOCKWATCH is 97% for the 4-thread program, and
98% for the 32-thread program. Other than raytrace, all pro-
grams have a coverage value between 99% - 100% when pro-
tected with BLOCKWATCH, whereas without BLOCKWATCH,
their coverage value is between 60% (radix) and 98% (FMM).
In other words, BLOCKWATCH detects almost all branch-flip
faults that cause SDCs for six of the seven programs.

For raytrace, the coverage with BLOCKWATCH is about
85%, which is comparable to the coverage obtained without
BLOCKWATCH (for both 4 and 32 threads). Thus, the cov-
erage benefit provided by BLOCKWATCH for this program is
negligible. There are two main reasons for this result. First,
raytrace makes extensive use of function pointers, that may
point to different functions for different threads at runtime.
Therefore, the number of threads that execute the same func-
tion is low, and hence BLOCKWATCH does not have enough
threads to compare at runtime. Second, BLOCKWATCH uses
the outer loops’ iteration numbers to generate the hash table
key for a branch (Section III-B). However, due to overhead
considerations, we choose to only check the branches whose
nesting levels are smaller than six. In other words, any branch
that occurs in loops deeper than six levels of nesting is not
checked by BLOCKWATCH. Raytrace has many loops deeper
than six levels of nesting which are not checked.



Fig. 8. coverageoriginal (baseline) and coverageBLOCKWATCH (aggregated number) for branch-flip faults: The dark part is due to the detection provided
by BLOCKWATCH. Higher is better.

2) Coverage results for branch-condition faults: Figure 9
shows the results of coverage of the seven programs both
with and without BLOCKWATCH, when faults are injected into
the branch’s condition data. The results are similar to those
in Figure 8. For example, when BLOCKWATCH is used, the
coverage increases from 90% to 97% for both the 4-thread
and 32-thread cases. However, the average coverageoriginal
value is 90%, which is much higher than the coverageoriginal
for branch-flip faults (average 83%). This is because unlike
branch-flip faults, branch-condition faults may or may not
cause the branch to flip, and branch flips are more likely to
lead to SDC in the programs.

VI. DISCUSSION

In this section, we compare the error-detection coverage
and performance overhead of BLOCKWATCH with that of
software-based duplication. Duplication is a general technique
that can protect programs from a large class of errors. How-
ever, we focus on control-data errors in this section as this is
the focus of BLOCKWATCH.

Coverage: Our results show that BLOCKWATCH improves
the SDC coverage of the SPLASH-2 programs under both
branch-flip faults and branch-condition faults. Other than ray-
trace, all programs have a coverage value between 98% and
100% for errors in the control data. This indicates that when
the program is protected with BLOCKWATCH, the percentage
of SDCs is less than 2% for 6 of the 7 programs. To our
knowledge, duplication is the only other generic technique that
can provide near 100% coverage for SDCs. However, it has
other disadvantages (see below).

The coverage results can be improved in several ways: for
example, we use a fairly conservative method to classify the
branches’ category in this study, the result of which is that
there are some branches that may have runtime similarities but
are not checked by BLOCKWATCH. Therefore, it is possible
to improve the coverage of BLOCKWATCH by using a more
aggressive static analysis or by incorporating the program’s
dynamic information in the classification of the branches.

Performance: The average performance overhead of
BLOCKWATCH is 115% for 4 threads and 16% for 32 threads.
In contrast, software-based duplication incurs overheads of
200% to 300% for sequential programs [10]. Although this
overhead can be reduced through the use of speculative

optimizations, doing so is not straightforward for parallel
programs due to their non-determinism. Thus, the overhead
of BLOCKWATCH is comparable to that of software-based
duplication in the 4-thread case, but is almost an order of
magnitude lower in the 32-thread case.

Further, BLOCKWATCH is scalable while duplication is not.
This is because duplication requires program determinism,
which may not hold for parallel programs. This problem can
be solved by using determinism inducing techniques [21],
[22]. However, determinism inducing techniques require the
replica threads and the programs’ threads to follow the same
execution order. Forcing execution order among threads incurs
communication and waiting overheads that are proportional to
the number of threads in the program, and does not scale. In
contrast, BLOCKWATCH scales as it neither requires program
determinism nor locking.

BLOCKWATCH can be optimized to further reduce its over-
head. For example, our current implementation adds checks for
every branch that is eligible for checking. However, there may
be many branches that depend on the same set of variables, and
faults propagating to the data will affect all of them. Therefore,
it is sufficient to check one of the branches.

As we scale BLOCKWATCH to higher numbers of threads,
it is possible that the monitor itself becomes a bottleneck. To
alleviate this, we can have multiple monitor threads structured
in a hierarchical fashion, each of which is assigned to a sub-
group of threads. This is an avenue for future work.

VII. RELATED WORK

We classify related work into six broad categories. Because
we discuss duplication in detail in Section VI, we do not
consider it here.

Control-flow checking: Control-flow Checking (CFC) tech-
niques such as ECCA [23], PECOS [24] and CFCSS [25]
check the conformance of the program’s control-flow to its
static control flow graph. However, CFC techniques cannot
detect errors that propagate to the control data and lead to
a valid but incorrect branch outcome, i.e., control-data errors
that result in the branch going the other way than its error-free
behavior. BLOCKWATCH detects this class of errors.

Statistical techniques: AutomaDeD [11] uses Semi-
Markov Models (SMMs) to find parallel tasks that devi-
ate from other tasks’ behavior. AutomaDeD is similar to



Fig. 9. coverageoriginal (baseline) and coverageBLOCKWATCH (aggregated number) for branch-condition faults: The dark part is due to the detection
provided by BLOCKWATCH. Higher is better

BLOCKWATCH in that both techniques consider deviations as
detections. However, AutomaDeD differs from BLOCKWATCH
in three ways. First, AutomaDeD requires the programmer to
annotate their code with region identifiers which are used as
the building blocks of the SMMs. Second, AutomaDeD is
targeted towards software bugs during debugging, and not at
runtime hardware errors. Finally, AutomaDeD learns SMMs
at runtime, and can incur false-positives.

Mirgorodskiy et al. [12] use statistical techniques based on
function execution times in parallel programs’ tasks to detect
outliers. However, this approach does not detect errors that
do not cause a noticeable difference in the execution times
of functions. Their approach also incurs false-positives as the
execution times are learned at runtime.

Invariant based Checks: DMTracker [26] leverages invari-
ants on data movement to find bugs in MPI-based parallel
programs. They leverage the observation that MPI programs
have regular communication patterns, which gives rise to
invariants on the transfer of data among the different tasks.
DMTracker differs from BLOCKWATCH in three ways. First,
the invariants are specific to MPI-based programs, and do
not apply for shared memory parallel programs. Second, the
invariants derived by DMTracker pertain to the messages sent
by the program, and not necessarily to the control-data. Finally,
DMTracker attempts to learn the pattern of data transfer at
runtime and may hence incur false-positives.

FlowChecker [27] also finds errors by tracking invari-
ants on communication operations in MPI parallel programs.
FlowChecker extracts message intentions, which are matching
pairs of sends and receive MPI calls, and checks whether
the message flows in the underlying MPI library match the
extracted intentions. The goal of FlowChecker is to find bugs
in MPI libraries that cause data loss or lead to mismatched
messages, rather than detect runtime hardware errors.

Static and Dynamic Analysis: Static analysis has been
extensively used for verifying in parallel programs [28], [29].
In these cases, the goal is to find bugs in the program, rather
than detect runtime errors arising in hardware. Pattabiraman et
al. [30] use static analysis to derive runtime error detectors for
sequential programs. Their technique differs from ours in three
ways. First, they confine themselves to critical variables that
have high fanout in the program. Second, they duplicate the

backward slice of the critical variable, and compare the value
computed by the slice with that in the program. This approach
will not work for non-deterministic parallel programs. Finally,
they use support from the hardware to track control-flow
within the program, and hence require hardware modifications.

Dynamic analysis techniques detect errors by learning in-
variants over one or more executions [31], [32], [33]. These
techniques target only sequential programs, and hence do not
consider similarity across threads . Yim et. al. [34] propose
a technique to learn invariants for GPU programs, and use
the invariants for detecting errors. However, their focus is on
errors that can cause large deviations in the output as GPU
programs are inherently error-tolerant. A generic problem with
all dynamic techniques is that of false-positives, which can
trigger unwanted detection and recovery.

Algorithmic techniques: Algorithm-based Fault Tolerance
(ABFT) is an error detection technique for specialized parallel
computations such as matrix manipulation and signal process-
ing [35], [36]. Sloan et al. [37] develop error-resilient gradient
descent algorithms for stochastic processors, or processors that
allow variation-induced errors to occur by drastically shaving
off design margins in order to save power. Finally, Geist et al.
develop a class of naturally fault-tolerant algorithms for certain
classes of iterative parallel computations [38]. While these
techniques are efficient, they only protect programs of the
specific type they target. In contrast, BLOCKWATCH targets
general-purpose parallel programs.

Similarity based performance improvement: Long et
al. [7] exploit the similarity in SPMD applications for per-
formance improvement. They merge instruction fetching if
certain instructions are the same among different threads and
merge instruction execution if the instructions and their input
operands are shared among different threads. However, they
do not leverage the similarity for error checking.

VIII. CONCLUSION

This paper presented BLOCKWATCH to detect control-data
errors in SPMD parallel programs. BLOCKWATCH statically
infers the similarity of the program’s control-data across
threads, and checks their conformance to the inferred sim-
ilarity at runtime. Upon detecting a violation, it raises an
exception and reports the error. Experimental results show that



BLOCKWATCH increases the average SDC coverage across
seven programs from 83% (90%) to 97% for branch-flip
faults (branch-condition faults), while incurring only 16%
overhead in the 32 thread case (on a 32 core machine).
BLOCKWATCH is automated, incurs zero false-positives and
can run on unmodified hardware, thus making it suitable for
today’s multicore processors.

Future work will consist of extending BLOCKWATCH to
other classes of parallel programs (than pthreads-style pro-
grams), and to other program data (in addition to control-data).
We will also explore optimizations to reduce the performance
overhead of BLOCKWATCH even further.
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