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Abstract—Smart grids are replacing traditional power grids
and smart meters are one of the key components of smart grids.
Rapid deployment of smart grids has resulted in development
of advanced metering infrastructures (AMI) without adequate
security planning. In this paper we propose a systematic
method for modeling functionalities of smart meters and
deriving attacks that can be mounted on them. We apply
our method to a real open source meter, implement two of
the derived attacks, and measure their performance/memory
overheads.
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I. I NTRODUCTION

Smart grids are poised to replace traditional power grids
in North America and Europe. Unlike traditional grids, smart
grids use Advanced Metering Infrastructure (AMI) with two-
way communication capabilities. AMI meters have a key
role in providing monitoring and control capabilities for
smart grids. Unfortunately, rapid deployment of smart grids
has resulted in developing advanced metering infrastructure
without adequate security and reliability planning [8], [14],
[19]. Current estimates indicate that in the US alone, $6
billion is lost by providers due to fraud [12]. The finan-
cial benefits that would be accrued from tampering with
smart metering devices makes security of smart meters an
important issue. Currently, to our knowledge, there is no
systematic procedure to make smart meter software resilient
to attacks and as a result, many vulnerabilities and attacks
continue to be discovered against these systems [7], [11],
[15].

In this paper, we propose a systematic way of modeling
the procedures implemented for the smart meter software
and performing security analysis of these procedures. By
systematic, we mean a model-based, step by step approach
that is amenable to be automated. Building a systematic
method for performing the security analysis will remove the
errors resulting from ad hoc analysis techniques and provide
an accurate way to perform penetration testing, and fix the
design flaws found.

Existing work on building models and systematic tech-
niques to provide security for smart meters either target
the network communications of smart meters, or testing of
the meters based on existing generic attacks. For example,
Berthier et al. [3] model the normal behavior of the com-
munication of the meters and propose a specification-based

intrusion detection system (IDS) based on their model. But
this does not cover the vulnerabilities of the software running
on the meter. McLaughlin et al. [13] propose a systematic
way to perform penetration testing for the meters, given the
attack model. However, there is no well-defined mechanism
to build the attack models.To the best of our knowledge, we
are the first to provide a model for security analysis of the
software executed by the meter. In this paper, we make the
following contributions:

• We characterize the step-by-step operations of generic
smart meter software.

• We propose an abstract model for the meter which
provides a systematic way to analyze software attacks
against the meter.

• We map the abstract model to the implementation of a
real meter based on an open source stack.

• We implement two attacks on the real meter based on
our abstract model and measure their CPU and memory
overheads respectively to quantify their stealthiness.

In this paper, we assume that an adversary can obtain sys-
tem level access to the smart meter. This can be obtained by
exploiting known vulnerabilities in the meter or by obtaining
the meter’s root password. The threat model is detailed in
Sec. III-C. Also the implications of this assumption are
discussed in Sec. V. While we have shown the applicability
of our method on one smart meter in Sec. IV, it is based on a
generic model and therefore, we believe that it is applicable
to other meters as well.

Although we do not propose protection mechanism for
smart meters in this paper, we believe that the results of
our work can be used to build security mechanisms tailored
for advanced metering infrastructures. Unlike general pur-
pose computers, smart meters are low capacity computing
devices and are limited in computational resources. On the
other hand, generic security mechanisms such as intrusion
detection systems incur high performance overheads, mak-
ing them unsuitable for meters [8], [9]. Therefore security
mechanisms for smart meters must be carefully tailored
to specifically target the attacks associated with advanced
metering infrastructure to comply with the constraints and
requirements of these systems. Using our model, through
detecting and analyzing attacks against smart meters and
performing feature extraction for them, we can build security
mechanisms at the operating system or application level that



effectively address the attacks.
Further, our model can be used in the design phase of soft-

ware production for smart meters. Many detected attacks can
therefore be addressed by making corrections in the design
decisions and adding security measures and components in
the design phase to build more secure software.

II. BACKGROUND

Hardware based approaches provide security through spe-
cial hardware modules, such as a Trusted Platform Module
(TPM) [16]. For the case of smart meters, pushing the
security down to hardware level has disadvantages. First,
TPMs incur high cost, and using them in millions of meters,
makes their use an expensive proposition. Further, hardware
based solutions are difficult to update. The cost, memory
and power limitation of smart meters make the use of TPM-
based techniques impractical [8].

Current intrusion detection systems (IDS) for addressing
security of smart meters are mostly limited to security of
the communication link. Berithier et al. [2], propose some
guidelines to build intrusion detection systems for advanced
metering infrastructure. In recent work [3], they propose
a specification-based intrusion detection system for smart
meters that monitors the communication links and detects
abnormality in the traffic according to a previously built
model. Intrusion detection systems by themselves, cannot
fully secure smart meters, as they may have false negatives
that allow attackers to bypass the security mechanism by
exploiting software vulnerabilities. Therefore, protecting the
meter at the software level is a necessary complement to
intrusion detection systems.

Software verification techniques such as Pioneer [17] and
oblivious hashing [5] verify the integrity of software on a
third party machine by executing an instance of the program
on a remote server. Considering the scale of smart metering
networks, this imposes a high overhead on the server which
makes these techniques impractical for smart metering in-
frastructure. LeMay et al. [10] propose a virtualization-based
architecture for remote attestation of smart meters to ensure
the integrity of the meter software and hardware. Remote
attestation techniques do not ensure that the software running
on the meter does not have any vulnerabilities. Even if the
software running on the system is legitimate, it can still have
vulnerabilities that let an adversary attack the smart meter.
Hence, this work does not address the problem of studying
the smart meter software to analyze attacks applicable to it.

Unlike the other prior work, in this paper, we focus on se-
curity analysis of the software running on the smart meters.
We propose an abstract model that provides a systematic
method to analyze security attacks against the meters. A
similar approach is taken by [13] in which a technique for
performing penetration testing based on generic attacks is
presented. The technique uses generic attack trees to find
attacks on the meter. However, there is no well-defined
procedure to build the generic attack trees. In contrast,
we propose a generic model and technique for deriving a
comprehensive set of attacks on the smart meters.

III. A PPROACH

A. Terms

In this section, we define the terms “abstract model” and
“concrete model” that we use in the paper.

Abstract model: Abstract model represents the behavior
of the software running on the meter. It consists of a collec-
tion of interconnected blocks where each block represents
a set of software procedures of the smart meter and the
connections between the blocks represent the execution flow
among those procedures.

Concrete model: Concrete model is an instantiation of the
abstract model for the software running on a specific meter.
In the concrete model, the blocks of the abstract model are
decomposed into the code level procedures that implement
the functionality of that block.

B. Overview

In this section, we propose a systematic approach for
analyzing security of smart meters. Our systematic approach
extracts all the important components of the smart meter and
highlights the vulnerabilities and attacks that target those
components. Compared to ad hoc techniques, the systematic
approach is a consistent way to analyze a smart meter’s
security and is less likely to miss the important and critical
components of the meter with undetected vulnerabilities.
Further, it is amenable to automation.

Our approach to building a systematic method of analyz-
ing security of smart meters is based on building an abstract
model of the meter. Smart meters are computing devices
and can be considered as small general purpose computers.
However, unlike general purpose computers, smart meters
are low-powered, low-capacity and are designed to carry out
a specific set of operations. As a result, we build an abstract
model for the activity of the smart metering device based
on its architecture and use cases. We design our model to
be general enough to be able to represent a wide range of
smart meters, while at the same time be detailed enough to
identify specific vulnerabilities and possible attacks against
functionality of the meter.

To perform security analysis of the meter, we derive an
attack table from the abstract model. We traverse the model
step by step and according to the procedures defined for
each block of the model we define the attacks that target or
affect those procedures (Table I). Building the attack table
based on the abstract model obviates the need for coming up
with generic attack trees as done in [13]. Later in Sec. IV,
we will show how to derive a concrete model of the meter’s
implementation from the abstract model.

C. Threat Model

In this paper, we consider the adversary to be a malicious
user who has obtained system level access to the meter,
even for a small period of time. We discuss the implications
of this assumption in Sec. V. The attack vectors that our
abstract model considers include all software attacks against
the procedures running by the meter including man in the



middle attacks, buffer overflow attacks, etc. In this paper,
we show how our adversary model results in performing
stealthy attacks that do not change the normal behavior of
the meter, but result in the meter transmitting incorrect data
to the utility server. These attacks are difficult to be detected
by the utility server as they do not disrupt or change the
services provided by the meter. We do not consider privacy
issues of smart meters and the meter’s availability, i.e., denial
of service attacks in our model.

D. Abstract Model

We classify the procedures in a smart meter into two broad
categories, namely control procedures and communication
procedures. Control procedures involve receiving data from
sensors, calculating consumption information, and process-
ing data and commands coming from the utility server.
Communication procedures involve sending and receiving
data to/from the server and passing the data to the processes
in charge of control operations. To build an abstract model of
the smart meter, we create the building blocks of the opera-
tions defined for the control and communication procedures
and model the execution flow among these operations. The
abstract model of the smart meter is presented in Fig. 1. Be-
low, we discuss each block. These operations correspond to
our complete abstract model presented in Fig. 1. Operations
1 through 6 represent control procedures and operations 7
through 13 represent communication procedures:

1) Initializing: When starting, the meter initializes the
sensors, communication interfaces, variables, etc.

2) Reading input commands that have been sent by the
utility server: The meter periodically checks for any
input command from the utility server.

3) Processing the input commands: Any incoming com-
mand from the server is parsed and checked for
validity and destination. If the command is approved,
it will be executed.

4) Reading data from sensors: Processing sensor data is
done using a microcontroller. The main procedure in
charge of processing consumption data periodically
collects input data from all the channels associated
with the sensors by scanning the input pins.

5) Producing consumption information: At each scan,
for each channel, a number of samples are read and
averaged. Based on the time between two consecutive
scanning of each channel, the consumption data is
added together.

6) Passing consumption data to the communication pro-
cesses: After specific number of cycles of collecting
data from channels and computing consumption data,
the data are passed to another procedure to be trans-
mitted to the server.

7) Receiving consumption information from the con-
troller process: This procedure checks for the avail-
ability of new consumption information.

8) Checking for the accessibility of the server: Depending
on the network interface installed on the meter, net-
work communication is done through 3G, LAN, etc.

Attack Target Block Example

Data spoofing 6, 7, 10 Creating a middle process to provide
fake data to the communication

procedures on behalf of the
control procedures

Physical memory 9, 10 Modifying/erasing data
on the flash memory

Physical 4, 6, 7, 8 Tampering with network connectivity,
heat attack to flash memory

Buffer 6 Filling receiver buffer
with dummy data so that the

legitimate command is dropped
Eavesdropping 11, 12 Recording outgoing/incoming traffic

Table I
ATTACK TABLE . COLUMN1: CATEGORY OF THE ATTACK, COLUMN2:

BLOCKS OF THE ABSTRACT MODEL TO WHICH THE ATTACK IS APPLIED,
COLUMN3: AN INSTANCE OF THE ATTACK.

Based on this, network connectivity is verified through
different means such as checking with a DNS.

9) Saving data to the physical storage: The meter can
be equipped with a physical storage such as flash
memory. The meter writes data on a physical storage
so that it does not have to send data to the server every
cycle. This also provides tolerance against network
disconnections.

10) Reading data from the physical storage: Before data
is transmitted to the utility server, all the unsent old
data is also retrieved from the physical storage and
transmitted to the server.

11) Submitting data to the utility server: The meter trans-
mits data to the utility server through its network
interface.

12) Checking for incoming commands from the server:
The meter periodically checks the input buffer for
incoming information from the utility server.

13) Passing the incoming commands to the controller pro-
cesses: incoming commands are passed to the process
in step 2 to be processed.

To derive the attack table from the abstract model, we
traverse the model step by step and according to the func-
tionality of each block, define the attacks that target those
functionalities. For instance, there is a message passing step
(for passing consumption data) between blocks 6 and 7 of
our model (Fig. 1). This procedure is vulnerable to man in
the middle attack and data spoofing. Therefore, we create an
entry for “Data Spoofing” in the first column of the attack
table (Table I). In the second column, we list the ’id’ of
the blocks of the abstract model that this attack targets (6,
7, 10), and in the third column, list instances of the attacks
that can perform data spoofing. Table I is compacted due
to space limitations. In Sec. IV we present more details on
implementing two attacks based on the concrete model of
the meter built based on our abstract model.
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Figure 1. Abstract model for the smart meter

IV. EVALUATION

A. Testbed

We implement our solution for SEGMeter, an open source
smart meter from smart energy groups [18] (Fig. 2). SEGMe-
ter consists of two main boards: 1) an Arduino board [1] with
ATMEGA32x series microcontroller which is connected to a
set of sensors, receives sensor data, and calculates consump-
tion information and, 2) a gateway board which has LAN
and wifi network interfaces, and communicates with the
utility server. The gateway board runs the Linux Kernel to
which, we have obtained the root password (see Sec. III-C).
The boards communicate with each other through a serial
interface. The meter software is split between the two
boards, with the communication procedures running on the
gateway board and the control procedures on the Arduino
board

B. Implementation

To build the concrete model of the meter, we map each
block in the abstract model to the corresponding functions in
the meter software that implement the functionality of that
block. This process is done manually. But since the abstract
model contains the information regarding the functionality of
each block, we complete the mapping and build the concrete
model in a quick and effortless fashion. For most cases, we
were able to identify the corresponding functions for each
block by only considering the name of the functions without
knowing their details. After building the concrete model of
the meter, we walk through the attack table derived from the

Figure 2. SEGMeter: our open source meter testbed

segMeterHandler()

collectChannels()
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Figure 3. Concrete model for portion of the abstract model

abstract model. According to the components each attack is
targeting in the abstract model, we map the attack to the
corresponding procedures in the concrete model of the meter.
We then implement the attack targeting those procedures and
evaluate the vulnerability of the meter against the attack.

Following the abstract model, we create the complete
concrete model of SEGMeter. The model is complex, and
hence, we discuss only a portion of it here (Fig. 3) which
corresponds to the control procedures (blocks 1 to 6) in the
abstract model.

For blocks 1 through 6, we identify the procedures in
the code that implement the functionality of the procedures
associated with each block. We model the flow of the
functions based on the way they are called in the code.
We present the concrete model for the control procedures in
Fig. 3 and detail the content of each block in the following:

1) In the first block, the functionssetup(), segMeterIni-
tialize(), and serialInitialize(), are initialization pro-
cedures. These functions define the input and output
pins, settings of the serial interface, type of sensors
for each channel and also initialize the variables.

2) In the second block,serialHandler() handles input
commands. It reads data from the serial interface and
stores them in a buffer.

3) In the third block, parseCommand(),
seg command.parse(), and relayCommand(), process
the input commands. These functions verify the



structure of the commands, validate if the commands
are intended for the meter (comparing the name of the
meter with the node name in the command string),
and execute the command.

4) In the fourth block, segMeterHandler()and col-
lectChannels()handle sensor data. These functions
go through all the channels for a specific number
of cycles (currently set to 30) and according to the
type of sensor associated with each channel, call the
appropriate functions to calculate consumption data at
each cycle based on a predefined formulation.

5) In the fifth block,collectChannelTransduced()andcol-
lectChannelRMS()perform consumption calculation
tasks. These functions are called according to the
type the sensor for each channel and calculate the
average energy for one cycle. They return the results
to collectChannels().

6) In the sixth block, powerOutputHandler() and
sendMessage()format the consumption data in a buffer
and pass the buffer to serial output.

We note that there is not necessarily a one-to-one mapping
between the abstract model and the concrete model of the
meter. For instance, “Reading data from sensors” and “cal-
culating consumption data” (blocks 4 and 5), are two distinct
blocks with a directed edge from data-reading block to
consumption-calculation block. When we map these blocks
to the corresponding functions in the implemented code,
the flow is fromCollectChannel()to CollectChannelTrans-
duced()/CollectChannelRMS()and back tocollectChannels()
again (from block 4 to block 5 and then back to block
4 again). It means that the consumption is calculated in
collectChannelTransduced()and then the result is returned to
collectChannels(). This is slightly different from the abstract
model in which the flow is from block 4 to block 5 and then
to block 6.

C. Attacks

We implement two attacks based on the concrete model
of SEGMeter. These attacks are data spoofing attacks from
our attack table that affect blocks 6, 7, and 10 of the ab-
stract model. We call these attacks communication interface
attack and physical memory attack. Both attacks attempt to
fraudulently tamper with energy consumption recorded by
the meter.

Communication interface attack: This attack is associ-
ated with blocks 6 and 7 of the abstract model and targets
the communication link between these blocks. As presented
in Fig. 4, “pass data” block consists of two functions of
powerOutputHandler()andsendMessage(). These functions
are part of the process that is running on a microcontroller
installed on the Arduino board. The Arduino board is
equipped with a serial port to which thesendMessage()
function passes the consumption data. The serial port is
connected to the gateway board. A process called ser2net
runs on the gateway board which acts as a proxy between
the serial port and other processes on the gateway board. It
opens a network port to pass the data from serial port to the

ser2net

Config file

Port: 2000

serial_handler():

Listening to the

port 2000

6! Pass data to be sent to the server

7! Receiver consumption data 

from the controller

powerOutputHandler():

For each channel: save 

(channelID, energy, 

power) in the buffer

Output data through 

the serial port

sendMessage():

Figure 4. Concrete model for blocks 6 and 7 of the abstract model

communication processes. The port through which ser2net
process is communicating is specified in a config file inside
SEGMeter and is set to 2000. The function corresponding to
“receive consumption data” block (block no. 7 in the abstract
model) is calledserialHandler()which connects to port 2000
and communicates with it to receive consumption data. We
wrote a fake ser2net process which, at startup, replaces the
original ser2net process and starts listening to port 2000.We
reverse engineered the communication protocol between the
gateway board and Arduino board and discovered how con-
sumption data and time stamps are arranged in a string and
passed through the serial port. Through this, the fake ser2net
process produces fake consumption data, and through port
2000, passes it toserialHandler().

Physical memory attack: This attack takes advantage of
the fact that the meter writes consumption data to the flash
memory whenever the network is not available. In case of
network disconnection, the status of the meter changes to
’disconnected’. The next time that the connectivity check
is successful, the status of the meter will be changed to
’reconnected’. During the time period from ’disconnected’to
’reconnected’, the consumption data is stored on flash mem-
ory in the file “segnode name.dat”, where “nodename” is
replaced with the name of the meter. The meter continues
working in ’disconnected’ mode for 10 minutes and then it is
automatically restarted. We wrote a script that deactivates the
network interface, and overwrites the data file with fake data
during the ’disconnected’ period. Our script reactivates the
network interface before the 10 minute time period is over
to prevent the meter from restarting and enabling the meter
to transmit the fake data. Activating the script periodically
can significantly modify the power consumption.

CPU and memory overhead: In order to evaluate the de-
tection potential of the attacks, we measure their overheads
in terms of CPU and memory. Running the top command
on the meter, which provides real-time status of processor
activities, shows CPU overhead of 0% for both of the attack
processes. We extract the information regarding the resident
set in physical memory (VmRSS) for each of the attack



processes. This information is obtained from the status file
inside theproc/pid folder, wherepid is the process id of
each attack process. For the communication interface attack,
memory consumption is 564KB which is 4% of the total
memory. This number for the physical memory attack is
656KB which is 4.7% of the total memory. These numbers
show that the implemented attacks impose low CPU and
memory overhead on the meter which makes it difficult for
a generic security mechanism to detect them.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed an abstract model for smart
meter software that allows us to systematically extract and
analyze the attacks that can be applied against the meter.
We mapped the abstract model to an implementation of a
real open-source smart meter and implemented two attacks
against the meter based on our model. Below, we discuss
some of the directions in which we can expand this work.

Applicability to other meters : Commercial smart meters
do not make their code available and we did not have access
to any other meters to do further experiments. However, it is
important to note that since our model is built in a workflow
fashion, it is very flexible in terms of adding functionalities
to the model. One of our future directions is to evaluate our
model using smart meters from different vendors.

Threat model: The threat model in the paper (Sec. III-C)
assumes that the attacker has system level access to the
meter. System level access can be obtained through recov-
ering the root password or exploiting a vulnerability in the
system. For example [13] has shown the applicability of
password recovery attack on a smart meter. Also, similar to
any other computing systems, smart meters are potentially
vulnerable to exploits such as buffer overflow attacks. In
another example, [4] shows that an attacker can gain system
level access to a modern car and control it by mounting a
buffer overflow attack. Relaxing the assumption of system-
level access on the threat model is a direction for future
work.

Characteristics of attacks: It is important to note that
the attacks presented in this paper are stealthy attacks. This
means that it is difficult for the utility server to notice
anything out of ordinary on the meter side. Further, the
system level operations involved in these attacks (reading
from/writing to data file in physical memory, interprocess
communication, etc.) are all operations expected from legit-
imate processes running on the meter. Hence, detecting these
attacks is a future challenge for intrusion detection systems.
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