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Abstract— This paper introduces SymPLFIED, a program-level 
framework that allows specification of arbitrary error detectors and 
the verification of their efficacy against hardware errors.  
SymPLFIED comprehensively enumerates all transient hardware 
errors in registers, memory, and computation (expressed 
symbolically as value errors) that potentially evade detection and 
cause program failure. The framework uses symbolic execution to 
abstract the state of erroneous values in the program and model 
checking to comprehensively find all errors that evade detection.  We 
demonstrate the use of SymPLFIED on a widely deployed aircraft 
collision avoidance application, tcas. Our results show that the 
SymPLFIED framework can be used to uncover hard-to-detect 
catastrophic cases caused by transient errors in programs that may 
not be exposed by random fault injection based validation. Further, 
the errors exposed by the framework help us formulate a set of error 
detectors for the application to avoid the catastrophic case and other 
incorrect outcomes.   
Index Terms— Fault injection, Model checking, Error detection 

1 INTRODUCTION 
Error detection mechanisms are vital for building highly 
reliable systems. However, generic detection mechanisms 
such as exception handlers can take millions of processor 
cycles to detect errors in programs [3]. In the intervening time, 
the program can execute with the activated error and perform 
harmful actions such as writing incorrect state to the file 
system. There has been significant work on efficiently placing 
and deriving error detectors for programs [1], [2]. An 
important challenge is to enumerate the set of errors the 
mechanism fails to detect, either from a known set or an 
unknown set. Typically, verification techniques target the set 
of errors that the detector is defined to detect. While this is 
valuable, one cannot predict the kinds of errors that may 
occur in the field, and hence it is important to evaluate 
detectors under arbitrary conditions in order to emulate those 
in the field.   
Fault injection is a well-established technique to evaluate the 
coverage of error detection mechanisms [4], [5].   However, 
due to its inherent statistical nature, fault injection may miss 
“corner cases” that escape detection and cause the program to 
fail. Thus, there is a compelling need to develop a formal 
framework to reason about the efficiency of error detectors as 
a complement to traditional fault injection. While formal 
frameworks have been developed before, each addresses a 
specific error detection mechanism (for example, replication in 
[12]), and cannot be easily extended to general detection 
mechanisms.  
This paper presents SymPLFIED, a framework for verifying error 
detectors in programs using symbolic execution and model checking. 

The goal of the framework is to expose error cases that would 
potentially escape detection and cause program failure. To the 
best of our knowledge, SymPLFIED is the first framework that 
models the effect of arbitrary hardware errors on software, 
independent of the underlying detection mechanism. It uses model 
checking [18] to exhaustively enumerate the consequences of 
the symbolic errors on the program1. The analysis is 
completely automated and does not miss errors that might 
occur in a real execution. However, as a result of abstracting 
erroneous values, it may discover errors that do not manifest 
in the real execution of the program2, i.e., false-positives. 
The paper makes the following contributions: 
1. Introduces a formal model to represent programs 

expressed in a generic assembly language, and reasons 
about the effects of errors originating in hardware and 
propagating to the software application without 
assuming specific error detection mechanisms. 

2. Specifies the semantics of general error detectors using 
the same formalism, which allows verification of their  
detection capabilities. 

3. Represents errors using a single symbol, thereby 
coalescing multiple error values into a single symbolic 
value in the program. This includes both single- and 
multi-bit errors in the register file, main memory, cache, 
as well as errors in computation and control-logic. 

4. Evaluates the framework on a real application (tcas) and 
discovers non-trivial cases of errors that escape detection. 

Previous work [16] has analyzed the effect of hardware errors 
on programs expressed in a high-level language (e.g. Java). 
Errors are modeled as bit flips in single data variable(s) in the 
program. While this is an important step, it suffers from 
several limitations, namely (1) low-level hardware errors can 
affect multiple program variables and impact the program’s 
control-flow (while modeling control-flow errors is possible in 
high-level languages, it is less fine-grained), (2) errors in 
special-purpose registers such as the stack pointer are difficult 
to model in the high-level language, and (3) errors in the 
language’s library functions cannot be modeled as the 
libraries may be written in a different language than the 
program (while this limitation may be overcome by writing a 
contract for the library function, such contracts require 
manual specification and are time and effort intensive). 
This paper considers programs represented at the assembly 
language level. The value of using assembly language is that 
many low-level hardware errors that impact the program can 
be represented at this level. Further, the entire application, 
including runtime libraries, is amenable to analysis at the 
assembly language level. It can be argued that in order to 
really analyze the impact of hardware errors, we need to 
model systems at even lower levels, e.g. the register-transfer 
level (RTL). However, the consequent state space explosion 
when analyzing the program at such low levels can render the 
approach impractical. Therefore, we believe that the assembly 
language level constitutes a judicious tradeoff between 
                                                             

1 In this paper, we use the term model checking to refer to exhaustive state 
space enumeration. This is also known as explicit state model checking.   

2 While SymPLFIED symbolically abstracts error values, it requires concrete 
inputs for the program in order to perform its analysis. 
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scalability and representativeness.  
In order to evaluate the framework, the effects of hardware 
transient errors are considered on a commercially deployed 
application, tcas. The framework identified errors that lead to 
a catastrophic outcome in the application in a reasonable 
amount of time (less than five minutes when run on a cluster). 
However, a random fault injection experiment did not find 
any catastrophic scenario in a comparable amount of time, or 
when run for more than three times as much time as 
SymPLFIED. Further, the results from SymPLFIED were used 
to design error detectors for the tcas program. The detectors 
were found to be effective in avoiding the catastrophic 
scenario, although they suffer from some limitations that 
SymPLFIED identifies. Finally, SymPLFIED is also 
demonstrated on a larger program, replace to demonstrate its 
scalability. 

2 RELATED WORK 
Prior literature related to this work is classified into the 
following categories: 
Error Detection: Many error detection mechanisms have been 
proposed in the literature, along with formal proofs of their 
correctness [10], [11]. However, the verification methodology 
is usually tightly coupled with the mechanism under study. 
For example, [11] proposes and verifies a control-flow 
checking technique by constructing a hypothetical program 
augmented with the technique and model-checks the program 
for missed detections. The program is carefully constructed to 
exercise all possible cases of the control-flow checking 
technique. However, it is non-trivial to construct such 
representative programs for other error detection 
mechanisms. 
Perry et al. [12] propose the use of type-checking to verify the 
fault-tolerance provided by a specific error detection 
mechanism, namely compiler-based instruction duplication. 
The paper proposes a detailed machine model for executing 
programs. The faults in the fault model (Single-Event Upsets) 
are represented as transitions in the machine model. The 
advantage of the technique is that it allows reasoning about 
the effect of low-level hardware faults on the whole program, 
rather than on individual instructions or data. However, the 
detection mechanism (duplication) is tightly coupled with the 
machine model, due to inherent assumptions that limit error 
propagation in the program and may not hold in programs 
protected with other mechanisms than duplication.  
Other recent work proposes a formal logic to verify programs 
under a wide range of fault models and detection techniques 
[13]. The technique presented in [13] either accepts or rejects a 
program based on whether the detectors successfully detect 
an error. However, it does not consider the consequences of 
the error on the program. As a result, the program may be 
rejected by the technique even though the error is benign and 
has no effect on the program.   
Symbolic execution has been used for a wide variety of 
software testing and maintenance purposes [14]. The main 
idea in these techniques is to execute the program with 
symbolic values rather than concrete values and to abstract 
the program state as symbolic expressions. An example of a 
commercially deployed symbolic execution technique to find 
bugs in programs is Prefix [15]. However, Prefix assumes that 
the hardware does not experience errors during program 
execution. 
A symbolic approach for injecting faults into programs was 
introduced in [16]. The goals of this approach are similar to 

ours, namely to verify properties of fault-tolerance 
mechanisms in the presence of hardware errors. The 
technique reasons about the effect of single bit-flips on 
programs written in the Java language. However, as pointed 
out earlier, a hardware error can have wide-ranging 
consequences on the program, which cannot be easily 
modeled at the high level. 
Further, the technique presented in [16] uses theorem proving 
to verify the error resilience of programs. Theorem proving 
has the intrinsic advantage that it is naturally symbolic and 
can reason about the non-determinism introduced by errors. 
However, theorem proving requires considerable 
programmer intervention and expertise, and cannot be 
completely automated for many important classes of 
programs.  
Program verification techniques have been used to prove 
that a program’s code satisfies a programmer-supplied 
specification [7]. The specification precisely outlines the 
expected result of the program given certain initial conditions. 
Typically, program verification techniques are geared towards 
finding software defects and assume that the hardware and 
the program environment are error free. In other words, they 
prove that the program satisfies the specification provided the 
hardware platform on which the program is executed does 
not experience errors. Further, program verification 
techniques operate on an abstract representation of the 
program extracted from the program code. The abstractions 
are derived based on the specific property being checked and 
cannot be used for evaluating the program under arbitrary 
hardware errors as such errors may not manifest in the 
abstraction. 
Formal techniques have also been extensively applied to 
microprocessor verification [6]. The techniques attempt to 
prove that the implementation of the processor conforms to an 
architectural specification usually in the form of a processor 
reference manual. Processor verification techniques typically 
focus on unmasking hardware design defects, as opposed to 
transient errors due to electrical disturbances or radiation.  
Soft-errors in hardware: The techniques presented in [8] and 
[9] consider the effects of hardware transient errors (soft 
errors) on error detection mechanisms implemented in 
hardware. While these techniques are useful for applications 
implemented as hardware circuits, it is not clear how the 
technique can be extended for reasoning about the effects of 
errors on programs. This is because programs are normally 
executed on general-purpose processors in which the 
manifestation of a low-level error is different from an error in 
a hardware implementation of the application. 
Summary: The formal techniques considered in this section 
predominantly fall into the category of software-only 
techniques which do not consider hardware errors [7], or into 
the category of hardware-only techniques which do not 
consider the effects of errors on software [6].  Further, existing 
verification techniques are often coupled with the detection 
mechanism (e.g., duplication) being verified [11], [12]. 
Therefore, there exists no generic technique that allows 
reasoning about the effects of arbitrary hardware faults on 
software, and can be combined with an arbitrary fault model 
and detection technique(s). This is important for enumerating 
all hardware transient errors that would escape detection and 
cause programs to fail. Moreover, the technique must be 
automated. This paper answers the question: “Is it possible to 
develop a framework to reason about the effects of arbitrary hardware 
errors on applications in an automated fashion, to understand where 
error detection mechanisms fail in detecting errors?“. 

xxxx-xxxx/0x/$xx.00 © 200x IEEE 
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3 APPROACH 
This section, introduces the conceptual model of the 
SymPLFIED framework and also the technique used by 
SymPLFIED to symbolically propagate errors in the program. 
The categories of errors considered are also discussed.  

3.1 Framework 
The SymPLFIED framework accepts a program with or without 
error detectors, and enumerates all errors (in a particular class) that 
would not be detected by the detectors (if any) and lead to program 
failure. Figure 1 presents the conceptual design flow of the 
SymPLFIED framework.  
Inputs: The inputs to the framework are (1) a program written 
in a target assembly language (e.g., MIPS) along with its 
inputs, (2) error detectors embedded in the program code 
(optionally), and (3) a class of hardware errors to be 
considered (e.g., control-flow errors, register file errors) by the 
system. Note that the error detectors are not a necessity. In 
Section 6.2, we deploy the framework on the tcas program 
which has no embedded error detectors.  
Assembly Language: We define a generic assembly language 
in which programs are represented for formal analysis by the 
framework. Because the language defines a set of architectural 
abstractions found in many common Reduced Instruction Set 
Computer (RISC) architectures, it is portable across these 
architectures [26]. The assembly language has direct support 
for (1) input/output operations, so that programs can be 
analyzed independent of the Operating System (OS), (2) 
invocation of error detectors using special annotations, called 
CHECK, which allows detectors to be represented in line with 
the program’s text, and (3) exception handling and reporting 
of errors without the need for an Operating System (OS).   

Operation: The program is expressed using a generic 
assembly language described in Section 5. This language is 
automatically translated into a formal mathematical model 
that can be represented in the Maude system [17]. Since the 
abstraction is close to the actual program in assembly 
language it is sufficient for the user to formulate generic 
specifications, such as an incorrect program outcome or an 
exception being thrown. Such a low-level abstraction of the 
program is useful to reason about hardware errors.  
The formal model can be rigorously analyzed under error 
conditions against the above specifications using techniques 
such as model checking and theorem-proving. In this paper, 
model checking is used because it is completely automated and 

requires no programmer intervention3. However, the SymPLFIED 
framework supports the use of theorem-proving and other 
formal tools provided in the Maude system if desired [19]. 
Outputs: The framework uses the technique described in 
section 3.2 and outputs either of the following: 
1. Proof that the program with the embedded detectors is 

resilient to the error class considered. 
2. A comprehensive set of all errors belonging to the error 

class that evade detection and potentially lead to program 
failure (crash, hang, or incorrect output).  

Components: The framework consists of the following 
models: 
• Machine Model: Models the formal semantics of the 

machine on which the program is to be executed (e.g., 
registers, memory, instructions, etc.).  

• Error Model: Specifies error classes and error 
manifestations in the machine on which the program is 
executed. e.g., errors in the class register errors can 
manifest in any register in the machine. 

• Detector Model: Specifies the format of error detectors 
and their execution semantics.  

By representing all three models in the same formal framework, we 
can reason about the effects of errors (in the error model) on both 
programs, represented in the machine model and on detectors, 
represented in the detector model, in a unified fashion. 
Extensibility: The models described above are decoupled 
from each other and can be composed together in a plug-and-
play fashion. For example, the machine model can be replaced 
with a model corresponding to a different architecture 
without changing either the error model or the detector 
model. Similarly, the detector and error models can be 
modified independent of the other models. This is because 
each model exposes well-defined interfaces to the other 
models, and as long as the interfaces are obeyed, the 
implementation of the models can be modified independently. 
Correctness: In order for the results of the formal analysis to 
be trustworthy, the model must be provably correct. There are 
two aspects to the verification of correctness, namely: 
[1] The model must satisfy certain properties such as 

termination, coherence, and sufficient completeness [17].,  
[2] The model must be an accurate representation of the 

system being modeled.  
The first requirement can be satisfied by formally analyzing 
the specification using automated checking tools for each 
desirable property listed above. This is obtained for free by 
expressing the model using Maude’s language, as Maude has 
formal tools to check the conformance of the model to the 
properties [19]. We do not discuss this part of the analysis. 
However, the second requirement is much harder to ensure as 
it cannot be checked by formal tools and is usually left to the 
model creator. We validate the model (Section 6.3) by injecting 
thousands of faults into a processor simulator, SimpleScalar 
[21] and comparing the results with those from SymPLFIED.  

3.2 Symbolic Fault Propagation 
The SymPLFIED approach represents the state of all 
erroneous values in the program using the abstract symbol 
err. The err symbol is propagated to different locations in the 
program during execution using simple error propagation 
rules (shown in section 5.2). The symbol also introduces non-
determinism in the program when used in the context of 
comparison and branch instructions or as a pointer operand in 
memory operations. Because the same symbol is used to 
represent all erroneous values in the program, the approach 
                                                             

3 Of course, the results from model checking still need human interpretation. 

Figure 1: Conceptual representation of the SymPLFIED 
Framework 
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distinguishes program states based on where errors occur 
rather than on the nature of the individual error(s). As a 
result, it avoids state explosion and can keep track of all 
possible places in the program the error may propagate to 
starting from its origin.  
However, because errors in data values are not distinguished 
from each other, the set of error states corresponding to a fault 
is over approximated. This can result in the technique finding 
erroneous program outcomes that may not occur in a real 
execution. For example, if an error propagates from a program 
variable A to another variable B, the variable B’s value is 
constrained by the value of the variable A. In other words, 
given a concrete value of A after it has been affected by the 
error, the value of B can be uniquely determined.  
The SymPLFIED technique on the other hand, would assign a 
symbolic value of err to both variables, and would not capture 
the constraint on B due to the variable A. As a result, it would 
not be able to determine the value in register B even when 
given the value in register A. This may result in the technique 
discovering spurious program outcomes. Such spurious 
outcomes are termed false-positives.  
While SymPLFIED may uncover false-positives, it will never miss 
an outcome that may occur in the program due to the error (in a real 
execution). This is because SymPLFIED systematically explores 
the space of all possible manifestations of the error on the 
program. Hence, the technique is complete, meaning it finds all 
error manifestations, but is not always accurate.  
Completeness is more important than accuracy from the point of 
view of designing detection mechanisms, as we can always augment 
the set of error detectors to conservatively protect against a few false-
positives. While a small number of false-positives can be 
tolerated, it must be ensured that the technique does not find 
too many false-positives as the cost of developing detectors to 
protect against the false-positives can overwhelm the benefits 
of detection. SymPLFIED uses a custom constraint solver to 
remove false-positives as much as possible (Section 5.2).   

3.3 Categories of Errors Considered 
SymPLFIED considers transient errors in memory/registers, 
computation and control-logic, which manifest in the 
architectural state of the processor. The reason it is possible to 
represent such a broad class of errors in the model is because 
the program is represented in assembly language, which 
exposes its low-level state to the framework.  
Errors in memory/registers are modeled by replacing the 
contents of the memory location or register by the symbol err. 
No distinction is made between single- and multi-bit errors.  
Errors in computation are modeled based on where they occur 
in the processor pipeline and how they affect the architectural 
state. The manifestation of these errors is shown in Table 1.  
Errors in the processor’s control logic (such as in the register 
renaming unit) are modeled based on their manifestation in 
the other parts of the processor. These are also shown in Table 
1.  

3.4 Scalability and Guarantees 
As in most model checking approaches, the exhaustive search 
performed by SymPLFIED can be exponential in the number 
of instructions executed by the program in the worst case. 
However, the error detection mechanisms in the program can 
be used to optimize the state space exploration process. For 
example, if a certain code component protected with detectors 
is proved to be resilient to all errors of a particular class, then 
such errors can be ignored when considering the space of 
errors that can occur in the system as a whole. This suggests a 

hierarchical approach, where first the detection mechanisms 
deployed in each component are proved effective, and then 
inter-component interactions are considered. 

Because SymPLFIED exhaustively explores every possible 
consequence of an error in the program, it guarantees the 
completeness of the failure outcomes produced due to the 
error. However, there are two barriers to achieving this 
guarantee in practice. First, the model checker may terminate 
before exploring the entire space if it runs out of memory or 
resources. While we specify a timeout for each model 
checking task to limit the total number of states explored by 
the model-checker, some tasks run out of memory even before 
this timeout is reached, thereby voiding the guarantee   The 
second barrier to achieving the guarantee is that SymPLFIED 
does not consider the interactions of the program with its 
environment. For example, a real-time program may miss its 
deadlines due to delays introduced by the error; or the 
program may invoke a system-call with the wrong arguments 
due to the error, leading to its termination.  

4 EXAMPLES 

This section illustrates the SymPLFIED approach in the 
context of an application that calculates the factorial of a 
number shown in Figure 2.  The program is represented in the 
generic assembly language presented in Section 3.1. The 
details of the language are presented in Table 4. 

4.1 Error Injection 
We illustrate our approach with an example of an injected 
error in the program shown in Figure 2A. Assume that a fault 
occurs in register $3 (which holds the value of the loop 
counter variable) in line 8 of the program after the loop 
counter is decremented (subi $3 $3 1). The effect of the fault is 
to replace the contents of the register $3 with err. The loop 
back-edge is then executed and the loop condition is 
evaluated by (setgt $5 $3 $4). Since $3 has the value err in it, it 
cannot be determined if the loop condition evaluates to true or 
false. Therefore, the execution is forked so that the loop 
condition evaluates to true in one case and to false in the other 
case. The true case exits immediately and prints the value 
stored in $2. Since the error can occur in any loop iteration, the 
value printed can be any of the following: 1!, 2!, 3!, 4!, 5!.  
The false case continues executing the loop and the err value is 
propagated from register $3 to register $2 due to the 
multiplication operation (mul $2 $2 $3). The program then 
executes the loop back-edge and evaluates the branch 
condition. Again, the condition cannot be resolved as register 
$3 is still err. The execution is forked again and the process is 
repeated ad-infinitum. In practical terms, the loop is 
terminated after a certain number of instructions and the 
value err is printed, or the program times out (due to a 
watchdog mechanism) and is stopped. 
Complexity: Note that in order for a physical fault injection 
approach to discover the same set of outcomes for the 
program as SymPLFIED, it would need to inject all possible 
values (in the integer range) into the loop counter variable. 
This can correspond to 2k cases in the worst case, where k is 
the number of bits used to represent an integer. In contrast, 
SymPLFIED considers at most (n+1) possible cases, in this 
example, where n is the number of iterations of the loop. This 
is because each fork of the execution at the loop condition 
results in the true case exiting the loop and the program. In the 
general case though, SymPLFIED  needs to consider 2n cases. 
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Table 1: Computation error categories and how they are modeled by SymPLFIED 
Fault 
origin 

Error 
symptom 

Conditions under 
which modeled Modeling procedure 

Instructions writing to a destination (e.g., 
add) - change the output target  

err in both the original and faulty targets 
(register or memory) 

Instructions with no target (e.g., nop) – 
replace with instructions with targets (e.g., 
add) 

err in the new wrong target (register or 
memory) Instruction 

Decoder 

One of the 
fields of an 
instruction is 
corrupted 

One valid instruction is 
converted to another 
valid instruction 

Instructions with a single destination (,e.g. 
add)– replace with instruction with no target 
(e.g., nop) 

err in the original target location (register 
or memory) 

Errors in register data bus err in source register(s) of the current 
instruction 

Error in cache bus err in target registers of load instructions 
to the location 

Address or 
Data Bus 

Data read 
from memory, 
cache or 
register file is 
corrupted 

Single and multiple bit 
errors in the bus during 
instruction execution 

Error in memory bus err in target register of load instructions to 
the location 

Processor 
Functional 
Unit 

Functional 
unit output is 
corrupted  

Single and multiple bit 
errors in 
registers/memory 

Functional unit output to register or memory 
err in register or memory file being 
written to by the current instruction 

Fetch from an erroneous location due to 
error in PC 

PC is changed to an arbitrary but valid 
code location 

Instruction 
Fetch 
Mechanis
m 

Errors in the 
fetch unit 

Single or multiple bit 
errors in PC or 
instruction Error in instruction while fetching it from the 

instruction cache 
Modeled as errors with their origin in the 
instruction decoder (see row 1 of table) 
Destination register has an err in both the 
original and faulty registers. Register 

rename error 

An architectural register 
mapped to an incorrect 
physical register 

Instruction reads from or writes to erroneous 
register instead of the correct register 
according to the instruction. Source register has err in source operand 

Forwarding 
unit error 

Instruction can read 
sources from one of 
many functional units 

An incorrect functional unit’s output is 
provided as the source for the instruction 

err in source operand Control 
Logic 

Scheduler 
error 

Scheduler checks for 
operands that are about 
to become ready 

Scheduler errors sets operand ready bit high 
even though operands are not yet ready 

err in the source operand (reads stale 
value) 

 
(A)) 
1            ori  $2  $0  #1      --- initial product p = 1 
2             read $1                 --- read i from input 
3             mov $3, $1 
4            ori $4 $0 #1         --- for comparison  purposes 
 loop:     setgt $5 $3 $4      --- start of loop 
6             beq  $5 0 exit      ---- loop condition : $3 > $4 
7             mult $2 $2 $3              ---- p = p * i 
8            subi $3 $3 #1               ---- i = i - 1 
9             beq  $0 #0 loop           --- loop backedge 
exit:     prints "Factorial = " 
11             print $2         
12             halt             
(B)  
1           ori  $2  $0  #1                   --- initial product p = 1 
2           read $1                              --- read i from input 
3           mov $3, $1 
4           ori $4 $0 #1                       --- for comparison purposes 
 loop:  setgt $5 $3 $4                     --- start of loop 
6             beq  $5 0 exit  
7            check ($4 < $3)) 
8             mov $6, $2 
9            mult $2 $2 $3          ---- p = p * i 
10            check ($2 >= $6 * $1) 
11           subi $3 $3 #1          ---- i = i - 1 
12            beq  $0 #0 loop       --- loop backedge 
exit:     prints "Factorial = " 
14            print $2         
15            halt             

Figure 2: Program to compute factorial with (A) no 
error detectors, and (B) embedded error detectors. 

 

4.2 Error Detection  
We now discuss how SymPLFIED supports error 
detection mechanisms in the program. Figure 2B shows 
the program in Figure 2A augmented with error 
detectors. Recall that detectors are invoked through 
special CHECK annotations as explained in Section 3.1. 

The error detectors together with their supporting 
instructions (mov instruction in line 8) are shown in bold. 
The same error is injected as before in register $3 (the new 
line number is 11). As shown in Section 4.1, the loop back-
edge is executed and the execution is forked at the loop 
condition ($3 > $4). 
The true case exits immediately, while the false case 
continues executing the loop. The false case “remembers” 
that the loop condition ($3 < $4) is false by adding this as 
a constraint to the search. The false case then encounters 
the first detector that checks if ($4 < $3). The check always 
evaluates to true because of the constraint and hence does 
not detect the error (it may detect other errors however). 
The program continues execution and the error 
propagates to $2 in the mul instruction. However, the 
value of $2 from the previous iteration does not have an 
error in it, and this value is copied to register $6 by the 
mov instruction in line 8. Therefore, when the second 
detector is encountered within the loop (line 10), the left 
side of the check evaluates to err and the right side 
evaluates to ($6 * $1). 
The execution is forked once again at the second detector 
into true and false cases. The true case continues execution 
and propagates the error in the program as before. The 
false case of the check throws an exception and the 
detector fails, thereby detecting the error.  The constraints 
for the false case, namely ($6 * $3 >= $6 * $1) are also 
remembered. Based on this constraint, as well as the 
earlier constraint ($3 > $4), the constraint-solver deduces that 
the second detector will detect the error if and only if the fault 
in register $3 causes it to have a value greater than the initial 
value read from the input (stored in register $1).  
The programmer can then formulate a detector to handle 
the case when the error causes the value of register $3 to 
be lesser than the original value in register $1. Therefore, 
the errors that evade detection are made explicit to the 



PATTABIRAMAN ET AL.:  SYMPLFIED 6 

 

programmer (or to an automated mechanism) who can 
make an informed decision about handling the errors.  
The error considered above is only one of many possible 
errors that may occur in the program. These errors are too 
numerous for manual inspection and analysis as done in 
this example. Moreover, not all these errors evade 
detection in the program and lead to program failure. 
The main advantage of SymPLFIED is that it can quickly 
isolate the errors that would evade detection and cause program 
failure from the set of all possible transient errors that can occur 
in the program. It can also show the programmer an execution 
trace of how the error evaded detection and led to the failure. 
This is important in order to understand the weaknesses in 
existing detection mechanisms and improve them. 

5 IMPLEMENTATION 
We have implemented the SymPLFIED framework using 
the Maude rewriting logic system.  
Rewriting logic is a general-purpose logical framework 
for specification of programming languages and systems. 
Maude is a high-performance reflective language and 
system supporting both equational and rewriting logic 
specification and programming for a wide range of 
applications [17].  The main advantage of Maude is that it 
allows a wide variety of formal analysis techniques to be applied 
on the same specification. [19] provides a primer on Maude. 
Custom Translator: In order to make programs for 
existing architectures compatible with SymPLFIED, we 
provide a facility to translate programs written in the 
target architecture’s assembly language into 
SymPLFIED’s assembly language. While we support only 
the MIPS instruction set, it is possible to also support 
other RISC architectures (see Appendix C for details). 
In this section, we describe the details of the machine, 
detector and error models, and model checking.  

5.1 Machine Model 
This section describes the machine model for executing 
assembly language programs using Maude.  
Equations and Rules: As far as possible, we have used 
equations instead of rewrite rules for specifying the 
models. The main advantage of using equations is that 
Maude executes equations much faster than rewrite rules. 
However, equations must be deterministic and cannot 
accommodate ambiguity. The machine model is 
completely deterministic because for a given instruction 
and input sequence, the final state can be uniquely 
determined in the absence of errors. Therefore the 
machine model can be represented entirely using 
equations. The detection model is also deterministic and 
uses only equations. However, the error model is non-
deterministic and hence requires rewrite rules.  
Assumptions: The following assumptions are made by 
the machine model when executing a program. Section 
5.5 discusses the implications of these assumptions. 
• An attempt to fetch an instruction from an invalid 

code address results in an “illegal instruction” 
exception being thrown. The set of valid addresses is 
defined at program load time by the loader. 

• Memory locations are defined when they are first 
written (by store instructions). An attempt to read 
from undefined memory location results in an 
“illegal address” exception being thrown. Note that 
the program loader initializes all static data locations 
prior to the program being loaded. 

• Program instructions are assumed to be immutable 
and hence cannot be overwritten during execution.  

• Arithmetic operations are supported only on integers 
and not on floating point numbers. 

Machine State: The central abstraction used in the 
machine model is the notion of machine state, which 
consists of the mutable components of the processor’s 
structures. The machine state is carried from instruction 
to instruction in program execution order, with each 
instruction optionally looking up and/or updating the 
state’s contents. The machine state is obtained by 
concatenating one or more of the machine elements in a 
single ‘soup’ of entities. For example, the soup, PC(pc) 
regs(R) mem(M) input(In) output(out), represents a machine 
state in which the (1) current program counter is denoted 
by pc, (2) register file is denoted by R, (3) memory is 
denoted by M, and (4) input and output streams are in 
and out respectively. Note that the program’s code is not 
considered part of the machine state as it is assumed to be 
immutable. 
Logical Organization: The machine model is divided into 
six sub-models, each of which represents a specific aspect 
of the machine being modeled.  The sub-models and their 
functionality are described in Table 2. 
 
Table 2: Sub-models of the machine model  
Sub-
model  

Functionality 

Fetch and 
Decode 

Retrieves instructions from code memory and converts 
them to a form suitable for execution 

Register Implements register file lookups and update 
operations 

Memory  Implements memory lookups and update operations 
Exception Handles error conditions and exceptional cases 

encountered by the program at runtime 
Stream  Represents input, output, and error streams of a 

program. Needed to implement console and file I/O 
Execute  Executes an instruction by updating the state of the 

machine  
 
We consider each of the sub-models in Table 2 as follows: 
Fetch/Decode sub-model: This sub-model defines the 
operations to retrieve an instruction from code-memory 
and interpret it. As mentioned before, code is stored in a 
separate memory and is not part of the machine state.  In 
the equations below, C represents the code memory, L 
represents the address of the fetched instruction, and I 
represents the instruction stored at location L. 
 

ceq fetch( [L | I] C, L ) = I  if notTerminal(L) . 
ceq fetch( C, L ) = throw( instException L ) if notTerminal(L) . 

 
In the above equations, note that the fetch process 
requires that the program has not terminated (i.e., the halt 
or throw instructions are executed). Further, Maude 
follows a “match-first” strategy for equations and hence 
the first equation is used for matching the labels of 
instructions in the code memory (as it is written first in 
the module). Only if the first equation does not return any 
match is the second equation triggered, which throws an 
instException. 
Currently, there is no separate model for decode as 
instructions are directly stored in their decoded form in 
code memory. This is because the interpretation of an 
instruction does not depend on previous instructions in a 
RISC processor (which is what we model). 
Register sub-model: The register file is modeled as an 
array of 32 general purpose integer registers. We do not 
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currently model floating-point registers. The program 
counter is not part of the register file, but is stored 
separately as part of the machine state. The equations for 
reading and writing to registers are as follows. In the 
equations, R refers to the register file, r refers to a specific 
register, and v, v1, v2 are values4. 
 

ceq R(r = v) [r] = ( v ) if ( r =/= $(0) ) . 
ceq R[r] = ( 0 ) if ( r == $(0) ). 

ceq ( (r = v1 ) R ) [ r <- v2 ] = ( ( r = v2 ) R ) if ( r =/= $(0) ) . 
ceq ( R [ r <- v2 ] ) = R if ( r == $(0) ) . 

 
The first two equations correspond to reading of registers 
in the register file and the next two correspond to writing 
of registers. Note that updates to register $0 are ignored 
as the register $0 is hardwired to 0 in the MIPS processor.  
Memory sub-model: Memory is modeled similar to the 
register file, but with three important differences: First, 
new locations can be added to the memory when they are 
first written to in the program. Second, memory reads 
and writes need to be aligned to the word size of the 
machine or else an alignment exception is thrown 
(addresses in unaligned loads and stores are aligned 
before being issued). Finally, reads of an uninitialized 
memory location will throw an exception. 
The equations below represent the modeling of the above-
described behavior. M represents the memory state, a 
represents an address, and v, v1, v2 represent values.  
 

eq (a = v) M [a] = v . 
ceq M [a] = memException(a) if isAligned(a) . 

ceq M [a] = alignException(a) . 
eq ( ( (a = v2) M ) [a <- v1] ) = (a = v1) M . 

ceq ( M [a <- v1] ) =  ((a = v1) M) if isAligned(a) . 
ceq ( M [a <- v1] ) = exMem(alignException(a), M) . 

 
Exception sub-model: The exception sub-model includes 
the exceptions that are thrown in the machine sub-model. 
The default action on an exception is to terminate 
execution and print the exception to the output stream. 
Table 3 shows the list of supported exceptions. The 
equation to throw an exception is presented later. 
 
Table 3: Exceptions supported in the machine model 
Exception Type Explanation 
memException Address not found in memory 
instException Address does not contain valid instruction 
divException Attempt to divide by 0 in ALU instruction 
checkException Check failed (corresponds to detector model) 
IOException Input stream empty or output stream full 
alignException Address not aligned to word size of MIPS 
timeoutException Program timed out after N instructions 
 
Stream sub-model: The stream sub-model provides an 
abstraction of the input-output interface for the program. 
This is required since we do not model the operating 
system. Each program is assumed to have an input 
stream and an output stream by default. The program 
may request to open other streams to model file 
operations. The only operations allowed on a stream are 
reading the next value or appending a value to the 
stream. These are expressed by the operators << and >> 
respectively; however, the equations are not presented. 
Execute Sub-model: The execute sub-model is used to 
execute instructions in the machine and is responsible for 
updating the machine state. It defines the initial state of 
the machine and starts executing the program.   
                                                             

4 A value can be an integer or the err symbol (denotes an error). 

The command to start a program takes as argument the 
program and its inputs. Its equation is as follows: 

eq start(pgm, input) = { C, < fetch(C, 0), initState(input) > } . 
In the above equation, the <_,_> operator represents the 
machine state obtained by executing an instruction (given 
by the first argument) on a machine state (given by the 
second argument). C represents the code of the program 
and is written outside the state to enable faster rewriting 
by Maude (as it is assumed to be immutable). The {_,_}  
operator groups together the code and the machine state 
into what is known as a super-state. Super-states represent 
intermediate stages of the program’s execution. 
The initial state of the machine (initState) is as follows:  
• The program counter is initialized to the first 

instruction of the program (instruction 0). 
• The register file is initialized to all zeroes. 
• The input stream is initialized to the program’s input 

and the output stream is cleared. 
• The memory contents of the program are cleared and 

the address 0 is initialized to the value 0. 
Instruction Classes: Table 4 presents a comprehensive 
view of the instructions supported by SymPLFIED.  
 
Table 4: Assembly language instructions supported 
Instruction Semantics 

Arithmetic Instructions 
movi rd, imm R[ rd ]  imm 
mov rd, rs R[rd]  R[rs] 
addi rd, rs, imm  R[rd]  R[rs] + imm 
add rd, rs, rt R[rd]  R[rs] + R[rt]  
subi rd, rs, imm  R[rd]  R[rs] – imm 
sub rd, rs, rt R[rd]  R[rs] - R[rt]  
mult rd, rs, rt  R[rd]  R[rs] * R[rt] 
div rd, rs, rt R[rd]  R[rs] / R[rt]  

Branch Instructions 
beq rs, v, addr if (R[rs] == v) jump to addr 
beqi rs, v, rd if (R[rs] == v) jump to R[rd] 
balr rs, addr R[rs]  PC; jump to addr 
balri rs, rd R[rs]  PC; jump to R[rd] 

Logical Instructions 
shl rd, rs, rt R[rd]  R[rs] << R[rt] 
shr rd, rs, rt R[rd]  R[rs] >> R[rt] 
and rd, rs, rt R[rd]  R[rs] & R[rt] 
or rd, rs, rt R[rd]  R[rs] | R[rt] 
xor rd, rs, rt R[rd]  R[rs] ^ R[rt] 
not rd, rs R[rd]  ~R[rs] 
shli rd, rs, imm R[rd]  R[rs] << imm 
shri rd, rs, imm R[rd]  R[rs] >> imm 
andi rd, rs, imm R[rd]  R[rs] & imm 
ori rd, rs, imm R[rd]  R[rs] | imm 
xori rd, rs, imm R[rd]  R[rs] ^ imm 
noti rd, imm R[rd]  ~imm 

Load/Store Instructions 
ldo rt, rs, a R[rt]  Mem[ R[rs] + a ] 
ld rd, rt, rs R[rd]  Mem[ R[rs] + R[rt] ] 
sto rt, rs, a Mem[ R[rs] + a ]  R[rt] 
st rd, rt, rs Mem[ R[rd] + R[rt] ]  R[rd] 

Special Instructions 
read rs R[rs]  Input stream 
print rt R[rt]  Output stream 
throw Ex Cause exception Ex to be thrown 
halt halt the machine 
prints Str Str  Output stream 
nop Do nothing 
check Expr if (! Expr) throw CheckException 

Comparison Instructions 
setlt rd, rs, rt R[rd]  (R[rs] < R[rt]) 
setgt rd, rs, rt R[rd]  (R[rs] > R[rt]) 
seteq rd, rs, rt R[rd]  (R[rs] == R[rt]) 
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We consider example instructions from each instruction 
class and illustrate the equations used to model them. 
These equations use primitives defined in other sub-
models (e.g., the fetch primitive). 

1. Arithmetic Instruction: Consider the execution 
of the addi instruction, which adds the value v to the 

register given by rs and stores the results in register rd. 
eq { C,  < addi rd rs v , PC(pc) regs(R) S > } = { C, < fetch( C, pc ), 

PC(next(pc)) regs(R[rd] <- R[rs] + v) S > } . 

The elements of the machine state in the above equations are 
composable, and hence can be matched with a generic symbol S 
representing the “rest of the state”. This allows new machine 
state elements to be added without modifying existing 
equations that do not manipulate the new state.  
2. Branch Instructions:  Consider the example of 
the beq rs, v, l instruction, which branches to the code label 
l if and only if the register rs contains the constant value v. 
The equation for beq is similar to the equation for the addi 
operation except that it uses the in-built if-then-else 
operator of Maude. 
 
eq { C , < beq rs v l , pc(PC) regs(R) S > } =    if isEqual(R[rs], v)   then { C, 

< fetch(C, pc), PC(next(pc)) regs(R) S >}  else { C, < fetch(C, l), PC(l) 
regs(R) S >} fi . 

Note the use of the isEqual primitive rather than a direct 
== to compare the values of the register rs and the 
constant value v. This is because the register rs may 
contain the symbolic constant err and hence needs to be 
resolved accordingly (by the error model). 
3. Load/Store Instructions:  Consider the example 
of the instruction ldo rt, rs, a which loads the value in the 
memory location at the address given by adding the 
offset a to the value in the register rs.  The equation for 
this instruction is as follows. 
 
eq { C , < ldo rt rs a , PC(pc) regs(R) mem(M) S > } = { C, < fetch(C, pc), 
C(next(pc)) mem(M) regs(R[rt] <- M[a + R[rs]]) > } . 

4. Input/Output Operations: Input and output 
operations are supported natively on the machine since 
the operating system is not modeled. An example is the 
print instruction whose equation is as follows.  
 

eq { C, < print rs, PC(pc) regs(R) output(O) S > } = { C, < fetch(C, pc), 
PC(next(pc)) regs(R) output(O << R[rd]) S > } . 

5. Special Instructions: These instructions are 
responsible for starting and stopping the program, e.g., 
halt and throw instructions to terminate the program.  
The halt instruction sets the program counter of the 
program to done, to indicate to the fetch sub-model to stop 
fetching instructions. Its equation is given by: 
 

eq { C, < halt , PC(pc) S > } = PC(done) S .  
 
The throw instruction is similar except that it sets the 
program counter to crash and prints the exception. 

 
eq { C, < throw e, PC(pc) out(O) S >}  = ( PC(crash) ex(e) out( pc >> (" : " 

>> (toString(e2) >> O)) ) S ) . 
 

Both equations transform the super state prior to their 
execution into a machine state. This is because the model-
checker (Section 5.4) searches for machine states only and 
the above transformations ensure that the terminating 
states of the program are returned by the search. 

5.2 Error Model 
The overall approach to error injection and propagation 
was discussed in Section 3.2. In this section, we discuss 
the implementation of the approach in Maude. The error 
model is divided into five sub-models as follows: 
Error Injection sub-model: The error-injection sub-model 
is responsible for introducing symbolic errors into the 
program during its execution. The injector can be used to 
inject the err symbol into registers, memory locations, or 
the program counter when the program reaches a specific 
location in the code. This is implemented by adding a 
breakpoint mechanism to the machine model. The choices 
of the breakpoint as well as the register/memory location 
to inject into are made non-deterministically using 
rewrite rules as follows: 
 
rl allErrors( [L | I] C, input, type ) => injectStart( [L | I] C, In, type, L ) . 

eq injectStart(C, input, type, pc) = injectError( { C, < fetch(C, st), 
initState(input) bkpts(pc) > }, type ) . 

crl injectError( { C, < I, PC(pc) bkpts(BL) S>, CtrlError) => {C, <I, 
PC(err) S>} if pc in BL . 

rl injectError( { C, < I, Regs( R (r = v) ) PC(pc) bkpts(BL) S>, RegError) 
=> {C, <I, Regs( R (r = err) S>} if pc in BL . 

rl injectError( { C, < I,Mem(M (a =v) ) PC(pc) bkpts(BL) S>, MemError) 
=> {C, <I, Mem(M (a = err)) PC(pc) bkpts(BL) S>}} if pc in BL . 

 
In the above equations, the allErrors function injects all 
possible faults of a certain type (control, register, or 
memory) into the program by systematically enumerating 
each location in the program and calling the injectStart 
function on the location. The injectStart function starts the 
program after setting a breakpoint at the location. When 
the program’s execution reaches the breakpoint, the 
injectError function is invoked, which injects the fault by 
setting the corresponding location to err. In the case of 
control errors, the err location is the program counter. In 
the case of register errors, the err location can be any 
register in the register file. In the case of memory errors, 
the err location can be any initialized memory location.  
Error Propagation sub-model: Once an error has been 
injected, it is allowed to propagate through the equations 
for executing the program in the machine model. The 
semantics of error propagation are also described by 
equations as shown below (I represents an integer below).  
 

eq err + err = err .    eq err + I = err  .     eq I + err = err .   
eq err – err = err .    eq err – I = err  .     eq I – err = err . 

eq err * I = if (I==0) then 0 else err fi .     
 eq I * err = if (I==0) then 0 else err fi .  

eq err / I = if (I==0) then throw divException  else err fi . 
eq I / err = if isEqual(err, 0) then throw divException else err fi .  

eq err * err = if isEqual(err, 0) then 0 else err fi . 
eq err / err = if isEqual(err, 0) then throw divException else err fi  . 

    
In other words, any arithmetic operation involving the err 
value also evaluates to err (unless it is multiplied by 0, in 
which case it evaluates to 0). Note also how the divide-
by-zero case is handled by throwing a divException. 
Comparison Handling Sub-model: The rules for 
comparisons involving one or more err values are 
expressed as rewrite rules as they are non-deterministic in 
nature. For example, the rewrite rules for the isEqual 
operator used in section 5.1 are as follows: 
 

 rl isEqual(I, err) => true .  rl isEqual(I, err) => false .  
rl  isEqual(err, err) => true .  rl isEqual(err, err) => false . 

 
The comparison operators involving err operands 
evaluate to either true or false non-deterministically. This 
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is equivalent to forking the program’s execution into the 
true and false cases. However, once the execution has 
been forked, the outcome of the comparison is 
deterministic and subsequent comparisons involving the 
same unmodified locations must return the same 
outcome (otherwise false-positives will result). This can 
be accomplished by updating the state (after forking the 
execution) with the results of the comparison. In the true 
case of the isEqual primitive, the location being compared 
can be updated with the value it is being compared to. 
However, the false case is not as simple, as it needs to 
“remember” that the location involved in the comparison 
is not equal to the value it is compared with. The same 
issue arises in the case of non-equality comparisons, such 
as isGreaterThan, isLesserThan, isNotGreaterThan and 
isNotLesserThan. This is handled by the Constraint 
tracking sub-model. 
Constraint Tracking and Solving Sub-model: A new 
structure called the ConstraintMap is added to the 
machine state in Section 5.1. The ConstraintMap structure 
maps each register or memory location containing err to a 
set of constraints that are satisfied by the value in the 
location. An example of a set of constraints for a location 
is the following: notGreaterThan(5) notEqualTo(2) 
greaterThan(0). This indicates that the location can take 
any integer value between 0 and 5 excluding 0 and 2 but 
including 5. The constraints for a location are updated 
whenever a comparison is made based on the location if 
and only if it contains the value err. Constraints are also 
updated by arithmetic operations involving 
addition/subtraction. Multiplication/division operations 
are not considered. For a given location, it may not be 
possible to find an integer value that satisfies all its 
constraints (un-satisfiable constraints). The model-checker 
terminates the search when it comes to a state with un-
satisfiable constraints.  
The constraint solver determines whether a set of 
constraints is satisfiable. For example, the constraints 
notGreaterThan(5) GreaterThan(10) are unsatisfiable. The 
constraint solver also simplifies the constraints for a 
location. For example, the constraints notGreaterThan(5) 
notGreaterThan(3) can be simplified to the constraint 
notGreaterThan(3). The equations for the constraint 
tracking and solving sub-model are omitted due to space 
constraints.  
Memory- and Control Handling Sub-model: Memory 
and control errors are non-deterministic and hence their 
semantics are expressed using rewrite rules as follows:  
Errors in jump or branch targets: The program either jumps 
to an arbitrary (but valid) code location or throws an 
“illegal instruction” exception. The rewrite rules follow: 
 

rl  fetch( [L | I] C, E ) => beq $(0) #(0) L . 
rl fetch( C, E ) => instException . 

 
Errors in pointer values of loads:  The program either 
retrieves the contents of an arbitrary location in memory 
or throws a memory or alignment exception as follows: 
 

rl ( (a = v1) M) [ err ] => v1 . 
rl ( M) [ err ] => memException(0) . 
rl ( M) [ err ] => alignException(0) . 

 
Errors in pointer values of stores: The program either 
overwrites the contents of an arbitrary memory location, 
or throws an alignment exception. We do not consider 
writes to locations outside the set of locations defined in 

the program as such locations are not read by the 
program. 
 

rl (a = v1) M) [ err <- v2 ] => ( (a = v2) M) . 
rl  ( (a = v1) M) [ err <- v2 ] =>  M [ a <- alignException(0) ] . 

5.3 Detector Model 
Error detectors are defined as executable checks in the 
program that test whether a given memory location or 
register satisfies an arithmetic or logical expression. For 
example, a detector can check if the value of register $(5) 
equals the sum of the values in the register $(3) and 
memory location (1000) at a given program counter 
location. If the values do not match, an exception is 
thrown and the program is halted.  
In our implementation, each detector is assigned a unique 
identifier and the CHECK instructions encode the 
identifier of the detector they want to invoke in their 
operand fields. The detectors themselves are written 
outside the program, and the same detector can be 
invoked at multiple places within the program’s code 
with its identifier.  
We assume that the execution of a detector does not fail. This 
assumption is further considered in Section 5.5. 
A detector is written in the following format: 
det (ID, Register Name or Memory Location to Check, 
Comparison Operation, Arithmetic Expression ) 
The arguments of the detector are as follows: 
(1) The first argument of the detector is its identifier.  
(2) The second argument is the register or memory 

location checked by the detector. 
(3) The third argument is the comparison operation, 

which can be any of ==, =/=, >, <, <= or >=.  
(4) The final argument is the arithmetic expression that is 

used to check the detector’s register or memory 
location and is expressed in the following format: 

 

Expr :: = Expr + Expr | Expr – Expr | Expr * Expr | Expr / Expr |@ (c) 
| ! (Reg Name) | *(memory address) 

Using the above notation, the detector introduced earlier 
would be written as: det(4,  $(5), == , ! ( $3 ) + *(1000) ). 
Detectors are implemented using equations, as their 
behavior is deterministic in the absence of errors. The 
equations for the detector’s execution are independent of 
the equations in the machine model, and hence are not 
affected by errors introduced in the machine other than 
those that are present in the registers or memory locations 
used in the detector’s expression.  Execution of a detector 
also updates the constraints for the checked location in 
the ConstraintMap structure described in section 5.2.  
The following equations evaluate an expression e used 
within a detector on the machine state S. In the equations 
below, e1 and e2 are expressions, a is an address, and r is 
a register name. i is an integer constant. 
 

eq eval( e1 + e2, S ) =  eval(e1, S) + eval(e2, S) . 
eq eval( e1 * e2, S ) =  eval(e1, S) * eval(e2, S) . 

eq eval( e1 / e2, S ) =  eval(e1, S) quo eval(e2, S) . 
eq eval( e1 - e2, S ) =  eval(e1, S) - eval(e2, S) . 

eq eval( !(r), regs(R) S ) = R[ r ]  . 
eq eval( *(a), mem(M) S ) = M[ a ] . 

eq eval( @(i), S ) = i . 
 
We define the applyCheck operation to evaluate a detector 
on a machine state. If the detector returns true (i.e., 
passes), the machine state is returned. Otherwise, a 
checkException is thrown. We consider the applyCheck 
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equation for a detector with the == operator below. The 
equations for other operations are similar. 
 

eq < I, applyCheck( det( i, rd,  ==, e ) , regs(R) S ) > = 
 if ( isEqual( R[rd], eval(e, regs(R) S) ) ) then < I, regs(R) S > else < ( throw 

(checkException i) ), regs(R) S >  fi . 
 
Note that we can represent any detector in the 
framework, as long as the detector can be written as an 
algebraic or logical expression. The detectors considered 
in many prior studies fall into this category [1], [2]. 
However, we cannot represent detectors that use timing 
information. This is an avenue for future investigation. 

5.4 Model Checking 
The exhaustive search feature of Maude is used to model-
check programs [17]. The aim of the search command is to 
expose interesting “outcomes” of the program caused by 
a particular class of faults. The “outcome” is a user-
defined function on the machine state described in 
Section 5.1 and must be specified as part of the search 
command.  Note that while it is relatively straightforward 
to specify outcomes in terms of the program’s final 
outcome or states, doing so at intermediate points of its 
execution requires knowledge of the assembly language 
code. For the programs we have considered however (i.e., 
tcas, replace), this has not been an issue.  
As an example, the following search command obtains 
the set of executions of the program that will print a value 
of 1 without crashing, under all single errors in registers 
(one per execution). As mentioned in Section  5.1, only 
terminating program states are found by the search. 

 
search allErrors(program, input, regErrors ) =>! (S:MachineState) such 

that not (output(S) contains 1) and (getException(S)==0) . 
 
The search command systematically explores the search 
space in a breadth-first manner starting from the initial 
state and obtaining all final states that satisfy the user-
defined predicate, which can be any formula in first-order 
logic. The programmer can query how specific final states 
were obtained or print out the search graph, which will 
contain the entire set of states that have been explored by 
the model checker (these features are part of Maude). This 
will help the programmer understand how the injected 
error(s) lead to the outcome(s) of the search.  
Termination: In the absence of errors, most programs can 
be modeled as finite-space systems provided (1) they 
terminate after a finite amount of time or (2) they perform 
repetitive actions without terminating but revisit states. 
However, errors can cause the state space to become 
infinitely large, as the program may loop infinitely due to 
the error. This is not possible in practice, as the program 
data is physically represented as bits and there are only a 
finite number of bits available in a machine. However, the 
state space may become so large that it is impossible to 
explore fully in a reasonable amount of time.  
In order to ensure that the model checking terminates in a 
reasonable time, the number of instructions that is 
allowed to be executed by the program must be bounded. 
This bound is referred to as the timeout. After the 
specified number of instructions is exceeded, a “timed 
out” exception is thrown and the program is halted. This 
functionality may be provided by a watchdog timer.  
The timeout must be conservatively chosen to encompass 
the number of instructions executed by the program 
during all correct executions in the absence of errors.   

The question of how to choose an appropriate timeout is 
outside the scope of this paper. However, we find that the 
time taken by the search is not sensitive to the actual 
value of the timeout (provided it is finite). This is because 
the execution time of the search is dominated by rewrite 
rules. A conservative timeout potentially increases the 
number of equations executed by Maude, but does not 
affect the execution of rewrite rules.  

5.5 Discussion 
In this section, we consider some of the trade-offs made in 
the implementation of SymPLFIED and its impact on the 
scalability of the tool and the accuracy of the results.  
Machine Model: The machine model makes a number of 
assumptions regarding memory accesses and control-
flow instructions (see Section 5.1 for a detailed list). These 
assumptions limit the number of states that must be 
considered by SymPLFIED under an error. For example, 
by assuming that any access to uninitialized memory 
location results in an exception, we need to consider only 
initialized memory locations when performing a memory 
access with an erroneous address, thus ensuring that the 
analysis is independent of the environment. However, we 
may miss error outcomes in which the program continues 
executing after reading from uninitialized locations. 
Nonetheless, this is a reasonable assumption as the values 
in uninitialized locations are non-deterministic and the 
program may behave unpredictably after reading them. 
Fault Model: We assume that errors can occur only in the 
architectural state of the processor. This assumption is 
reasonable as only faults that propagate to the 
architectural state can impact the application. However, 
the error may occur during the execution of the 
instruction (i.e., in the processor’s pipeline), and may or 
may not manifest in its output (for example, errors in the 
memory stage of non-memory instructions may not have 
an impact on the instruction). Modeling such effects 
would require a detailed model of the processor’s 
internals, which would blow up the state space explored 
by SymPLFIED. Therefore, we assume that any error 
during the execution of an instruction affects its target 
register (or memory address).  
Detection Model: We assume that errors cannot occur 
during the execution of detectors. This is because we 
assume that at most one error occurs in the program, and 
an error in the detector means that the program is error-
free (note that this does not preclude an error originating 
in the program and propagating to the detector). 
Therefore, an error in the detectors can at worst lead to 
the program being stopped and not executed to 
completion. Such errors can never lead to incorrect 
outputs or safety violations, which are the focus of 
SymPLFIED. Further, it is possible to realize this 
assumption in practice by implementing the detector on a 
separate piece of hardware called the Reliability and 
Security Engine (RSE) [24].  
Other Limitations: We currently do not support 
interrupts and Direct Memory Access (DMA) operations 
in SymPLFIED. Further, memory mapped input-output 
or file-seeking operations are not supported. These 
constructs are typically used only by systems code and 
are platform dependent. We do not consider systems code 
in order to ensure that SymPLFIED is platform neutral.  
Finally, while SymPLFIED symbolically considers all 
possible errors in the program, it needs a concrete input 
to perform the analysis. This is because SymPLFIED 
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explicitly enumerates every state of the program under a 
set of faults, and hence needs a concrete starting point to 
begin the exploration, which is provided by the input. 

6 RESULTS 
This section reports our experience in using SymPLFIED 
on the tcas application [22], which is widely used as an 
advisory tool in air traffic control for ensuring minimum 
vertical separation between two aircrafts and hence avoid 
collisions. In the final part of this section, we report the 
results of applying SymPLFIED on the replace program of 
the Siemens suite to understand the effects of scaling to 
larger programs. Our goal is to demonstrate the 
capabilities of the SymPLFIED framework for exposing 
gaps in error detectors rather than to identify specific 
vulnerabilities in the applications studied.  
We have implemented SymPLFIED using Maude version 
2.4. Our implementation consists of about 2000 lines of 
uncommented Maude code split into 35 modules. The 
core of SymPLFIED consists of about 54 rewrite rules and 
384 equations.  
We also built a custom translator to convert MIPS 
assembly language as represented by the SimpleScalar 
simulator’s Portable Instruction Set Architecture (PISA) 
[21]. To use our framework, the developer needs to 
compile their code with SimpleScalar’s  compiler (gcc), 
and then run our translator on the assembly file . We also 
wrote scripts to translate the counter examples found by 
SymPLFIED to the MIPS assembly language. 
Tcas: The application consists of about 140 lines of C 
code, which is compiled to 913 lines of MIPS assembly 
code. This in turn is translated to 800 lines of 
SymPLFIED’s assembly code (by our custom translator).  
Table 5 shows the functions in tcas, and the number of 
lines of code in them (both C and SymPLFIED assembly). 
tcas takes as input a set of 12 parameters indicating the 
positions of the two aircrafts and prints a single number 
as its output. The output can be one of the following 
values: 0, 1, or 2, where 0 indicates that the condition is 
unresolved, 1 indicates an upward advisory (ascend), and 
2 indicates a downward advisory (descend). Based on 
these advisories, the aircraft operator can choose to ignore 
the warning or increase or decrease the aircraft’s altitude.  
 
Table 5: Functions in tcas and their sizes 
Function LOC 

(source) 
Lines of 
SymPLFIED’s 
assembly 

ALIM 3 14 
Alt_sep_test 27 77 
Initialize 6 15 
Non_Crossing_Biased_Climb 16 44 
Non_Crossing_Biased_Descend 16 44 
Own_Above_Threat 3 12 
Own_Below_Threat 3 12 
Inhibit_Biased_Climb 3 12 
Main 16 20 

6.1 Experimental Setup 
Our goal is to find whether a transient error occurring in 
the register file during the execution of tcas can lead to the 
program producing an incorrect output (i.e., a wrong 
advisory). We chose an input for tcas in which the upward 
advisory ‘1‘ will be produced under error-free execution. 
We directed SymPLFIED to search for runs in which the 

program did not throw an exception5 and produced a 
value other than 1 under the assumption of a single 
register error during its execution. We chose a timeout 
value of 10000 instructions, which is more than 10 times 
the number of instructions executed in a fault-free run.  
Optimization: The total number of injections performed 
by SymPLFIED is (800 * 32), since there are 32 registers in 
the machine, and each instruction in the program is 
chosen as a breakpoint for the injection. In order to 
reduce the state space of the model checker, we inject 
errors only into the registers used in each instruction of 
the program. Further, we inject the error just before the 
instruction that uses the register, and check whether the 
instruction is executed to measure the fault’s activation. 
The effect of the injection is equivalent to injecting the 
register at an arbitrary code location such that the error is 
activated at the instruction.  
Parallelism: The injections with SymPLFIED were started 
on a cluster of 150 AMD Opteron processors running at 2 
GHz with 2 GB of RAM. The search command is split into 
multiple smaller searches, each of which sweeps a 
particular section of the program code looking for errors 
that satisfy the search conditions. Each node in the cluster 
can perform the smaller searches independently, and the 
results are pooled together to find the overall set of errors. 
The maximum number of errors found by each search 
task was capped at 1,000 and a maximum of 30 minutes 
was allotted for the task to complete. 
Validation: We augmented the SimpleScalar simulator 
[21] with the capability to inject errors into the source and 
destination registers of all instructions in the program. 
For each register we injected three extreme values in the 
integer range as well as three random values.  

6.2 SymPLFIED Injections into tcas 
For the injections on the tcas application, SymPLFIED 
found only two cases where an output of 1 (upward 
advisory) is converted to an output of 2 (downward 
advisory). This advisory can potentially be catastrophic as 
it is difficult to distinguish from the correct outcome of 
tcas, and can result in a mid-air collision if followed. 
Later in this section, we discuss the catastrophic outcomes 
in more detail. We first discuss the overall results of the 
injections excluding the catastrophic cases. These 
consisted of cases where (1) tcas printed an output of 0 
(unresolved) in place of 1, (2) the output was outside the 
range of the allowed values printed by tcas, and (3) 
numerous cases where the program exited or aborted 
prematurely. We do not consider these cases as 
catastrophic because tcas is only an advisory tool and the 
operator can ignore the advisory if he or she determines 
that the output produced by tcas is incorrect. We also 
found violations in which the value is computed correctly 
but printed incorrectly. We do not consider these cases as 
catastrophic because the real implementation of tcas may 
have a different output method. Section 6.4 presents a 
detailed analysis of the cases uncovered by tcas.   
Running Time: Of the 150 search tasks started on the 
cluster, only 85 tasks completed within the allotted time 
of 30 minutes. We report results only from the tasks that 
completed. Of the 85 tasks that completed, 70 tasks did 
not find any errors that satisfy the conditions in the 
search command. These 70 tasks completed within 1 
minute (overall). The remaining 15 tasks completed and 
                                                             

5 As such exceptions will result in crashes, and not incorrect outputs. 
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found errors. The time taken by all the completed tasks 
(including the one that found the catastrophic outcome) is less 
than 4 minutes (240 seconds), and the average time for task 
completion is 64 seconds (ranges from 1 second to 240 seconds). 
Since we performed this study, we have made a number 
of improvements to the SymPLFIED framework and are 
able to run the framework on a single machine (core i-7 
processor at 2.5 GHz) with 8 Gigabytes of RAM. On this 
machine, we decomposed the above search task into 
eighteen parallel tasks, which were started in parallel. All 
but two of the tasks completed within two hours (these 
tasks were terminated by us). Since the processor has four 
cores, this time corresponds to a total running time of 8 
hours. Thus, the total execution time on a single machine 
was less than the total time on the cluster.  We use the 
more conservative cluster times for comparison with 
SimpleScalar injections in Section 6.3. 
Note that the running time of SymPLFIED is dependent 
on the efficiency of the Maude model checker. Because 
Maude uses explicit state exploration, it can incur very 
high memory overheads. More efficient model checking 
approaches can alleviate the overhead and allow us to 
scale to larger programs. We do not consider such 
approaches however, as the goal of SymPLFIED is to 
demonstrate the feasibility of reasoning about hardware 
errors at the software level. It is worth noting that even 
though we do not use the fastest model-checking 
approach, we were able to uncover catastrophic failures 
in the tcas application in less time than an equivalent fault 
injection campaign (Section 6.3). 
Catastrophic outcome: In order to understand the 
catastrophic error that lead to the incorrect value of 2, we 
show an excerpt from the tcas code in Figure 33. The code 
corresponds to the function alt_sep_test, which tests the 
minimum vertical separation between two aircrafts and 
returns an advisory. This function in turn calls the 
function Non_Crossing_Biased_Climb() and the 
Own_Above_Threat() function to decide if an upward 
advisory is needed for the aircraft. It then checks if a 
downward advisory is needed by calling the function 
Non_Crossing_Biased_Descend() and the function 
Own_Below_Threat(). If neither advisory nor both 
advisories are needed, it returns the value 0 (unresolved). 
Otherwise, it returns the computed advisory. 
We note that the tcas application (and system) has been 
extensively verified and checked for safety violations [22]. 
Nevertheless, the application has no detectors in its code. 
As mentioned in Section 3.1, SymPLFIED does not need 
error detectors in order to analyze the application.   
The error under consideration occurs in the body of the 
called function Non_Crossing_Biased_Climb() and corrupts 
the value of register $31 which holds the function return 
address (this is the calling convention in the MIPS 
processor that SymPLFIED emulates [21]).  Therefore, 
instead of control being transferred to the instruction 
following the call to the function 
Non_Crossing_Biased_Climb() in alt_sep_test(), the control 
gets transferred to the statement alt_sep = 
DOWNWARD_RA in the function. This causes the 
function to return the value 2 instead of the value 1, 
which is printed by the program. An analogous case 
exists for the function Non_Crossing_Biased_Descend, 
which is also called by the alt_sep_test function. We do not 
discuss this case in the interest of space.  We have verified 
that the errors exposed above are not false-positives by 
performing targeted injections into the registers at the 

locations identified by SymPLFIED using the augmented 
SimpleScalar simulator (Section 6.3).  
Note that the above error occurs in the stack, which is part of 
the runtime support added by the compiler. Hence, in order to 
discover this error, we need a technique like SymPLFIED that 
can reason at the assembly language (or lower) level. This 
shows the value of modeling low-level details in reasoning 
about transient-error propagation in programs.  

6.3 SimpleScalar Injection Results  
We performed over 6000 fault injection runs on the tcas 
application using the modified SimpleScalar simulator to 
see if we can find the catastrophic outcome outlined 
above. Both SymPLFIED and SimpleScalar were run for 
the same amount of time. Recall that the SymPLFIED 
injections were run with 150 tasks on the cluster, and each 
completed task took a maximum time of 4 minutes. This 
constitutes 10 hours in total. In this time, SimpleScalar 
was able to inject 6000 faults into the tcas program. The 
results of the injections are summarized in column 2 of 
Table 6 (numbers within parentheses represent the 
absolute number of injections). The results show that the 
SimpleScalar injections were unable to uncover even a 
single scenario with the catastrophic outcome of ‘2’. 
In order to uncover the catastrophic error scenario using 
random fault injections, not only must the error be 
injected into register $31 in the 
Non_Crossing_Biased_Climb function, the address of the 
assignment statement must be chosen to be injected in 
register $31 in Figure 33. Otherwise, the catastrophic 
scenario will not be exposed by the random injections.  
We also extended the SimpleScalar based fault injection 
campaign to inject 41000 register faults to check if any of 
the injected errors lead to the catastrophic outcome. The 
fault injection campaign took about 35 hours to complete. 
Note that this corresponds to over three times the time 
taken by SymPLFIED. However, the campaign was still 
unable to find an error leading to the catastrophic 
outcome. The results are shown in column 3 of Table 6. 
 

Table 6: SimpleScalar fault injection results 
Program Outcome Percentage 

 # faults = 6253 # faults = 41082 
0 1.86% (117)  2.33% (960) 
1 53.7% (3364) 56.33% (23143) 
2 0% (0) 0% (0) 

Other 0.5% (29) 1.0% (404) 
Crash 43.4% (2718) 40.43% (16208) 
Hang 0.4% (25) 0.8% (327) 

6.4  SymPLFIED Results: Analysis 
In this section, we analyze the results obtained by 
SymPLFIED with the goal of understanding the dominant 
failure modes of the tcas application. Table 7 shows the 
results of the analysis. The first column of the table is the 
output produced by SymPLFIED, the second and third 
columns are the functions and the registers into which the 
errors were injected, and the fourth column is the total 
number of injections that resulted in the output. 
The outputs in Table 7 fall into the following categories. 
First, there are invalid values such as 740 and 122, which 
are produced by the program due to the injected errors 
(i.e., values other than 0, 1 and 2). The second category 
corresponds to valid but incorrect outputs such as 0 and 
2. These outputs are difficult to distinguish from the 
correct output of tcas, which is 1 for this input.  
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int alt_sep_test()  { 
    enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF); 
    tcas_equipped = Other_Capability == TCAS_TA; 
    intent_not_known = Two_of_Three_Reports_Valid &&               (Other_RAC == NO_INTENT); 
    alt_sep = UNRESOLVED; 
    if (enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped)) { 
 need_upward_RA = Non_Crossing_Biased_Climb() && Own_Below_Threat(); 
 need_downward_RA = Non_Crossing_Biased_Descend() && Own_Above_Threat(); 
 if (need_upward_RA && need_downward_RA) 
     alt_sep = UNRESOLVED; 
 else if (need_upward_RA) 
     alt_sep = UPWARD_RA; 
 else if (need_downward_RA) 
     alt_sep = DOWNWARD_RA; 
 else 
     alt_sep = UNRESOLVED; 
        } 
        return alt_sep; } 

Figure 33: Portion of tcas code corresponding to the catastrophic outcome
 
Table 7: Results obtained by SymPLFIED on tcas 
Outp
ut  

Function(s) Regist
er(s) 

No. of 
injectio
ns 

740 initialize, 
Non_crossing_biased_climb, 
Alt_sep_test 

$31 20 

Err Alt_sep_test $2 9 
Exit All functions  $31 96 
[1] A

b
o
r
t 

[2] All functions  [3] $
3
1 

96 

122 Alt_sep_test $31 2 
2 Non_Crossing_Biased_Climb, 

Non_Crossing_Biased_Descend 
$31 20 

0 All functions  $31 
$29 
$2, $3 
$4, $5 

254 

9936 Non_Crossing_Biased_Climb, 
Non_Crossing_Biased_Descend, 
Alt_sep_test 

$31 30 

empty All functions  96 
 
,Third, the application may exit early, abort due to an 
assertion violation or produce no output. These categories 
have been represented by “Exit”, “Abort”, and “Empty”. 
These are different from crashes as the application does 
not raise an exception, but instead exits gracefully. 
Finally, the application may print the value Err if an 
injection is performed into register $2 in the alt-sep-test 
function (register $2 holds the return value). 
We can see from Table 7 that most of the wrong outputs 
are caused by errors in the return address register $31. 
Therefore, incorrect return addresses are the dominant 
cause of non-crash causing errors in the tcas application. 
Further, the catastrophic outcome discussed in 6.2 was 
also due to corruption of the return address register. 
Therefore, in Appendix A, we design error detectors to 
check the return address register to detect these errors. In 
Appendix B, we investigate the resilience of the tcas 
program to memory errors, with and without detectors.  

6.5 Application to Larger Programs 
In order to evaluate the scalability of SymPLFIED, we 
analyzed the replace program using SymPLFIED. replace is 
the largest of the Siemens benchmarks suite [20]. Our 
custom translator translates the program to 1550 lines of 
Maude code spanning 22 functions.  

Using the same experimental setup as described in 
Section 6.1, we ran SymPLFIED on the replace program to 
find all single register errors (that lead to an incorrect 
outcome of the program). The overall search was 
decomposed into 312 parallel tasks. Of these, 202 
completed execution within the allotted time of 30 
minutes. In 148 of the completed search tasks, either the 
error was benign or the program crashed due to the error, 
while 54 of the search tasks found error(s) leading to 
incorrect outcome. These tasks took 10 minutes on 
average to find the error. More details about the results 
for injections into replace may be found in the technical 
report version of this paper [27]. 

7 CONCLUSION 
This paper presented SymPLFIED a modular, flexible 
framework for performing symbolic fault injection and 
evaluating error detectors in programs. We have 
implemented the SymPLFIED framework for a MIPS-like 
processor using the Maude rewriting logic engine. We 
demonstrate the SymPLFIED framework on a widely 
deployed application tcas, and use it to find a transient 
error that can lead to catastrophic consequences.   
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