
PATTABIRAMAN ET. AL.: SYMPLFIED 1

SymPLFIED: Symbolic Program Level Fault Injection and
Error Detection Framework

Karthik Pattabiraman, Member IEEE, Nithin M. Nakka, Zbigniew Kalbarczyk, Member IEEE, and
Ravishankar K. Iyer,Fellow IEEE

Abstract— This paper introduces SymPLFIED, a program-level
framework that allows specification of arbitrary error detectors and
the verification of their efficacy against hardware errors.
SymPLFIED comprehensively enumerates all transient hardware
errors in registers, memory, and computation (expressed
symbolically as value errors) that potentially evade detection and
cause program failure. The framework uses symbolic execution to
abstract the state of erroneous values in the program and model
checking to comprehensively find all errors that evade detection. We
demonstrate the use of SymPLFIED on a widely deployed aircraft
collision avoidance application, tcas. Our results show that the
SymPLFIED framework can be used to uncover hard-to-detect
catastrophic cases caused by transient errors in programs that may
not be exposed by random fault injection based validation. Further,
the errors exposed by the framework help us formulate a set of error
detectors for the application to avoid the catastrophic case and other
incorrect outcomes.
Index Terms— Fault injection, Model checking, Error detection

1 INTRODUCTION
Error detection mechanisms are vital for building highly
reliable systems. However, generic detection mechanisms
such as exception handlers can take millions of processor
cycles to detect errors in programs [3]. In the intervening time,
the program can execute with the activated error and perform
harmful actions such as writing incorrect state to the file
system. There has been significant work on efficiently placing
and deriving error detectors for programs [1], [2]. An
important challenge is to enumerate the set of errors the
mechanism fails to detect, either from a known set or an
unknown set. Typically, verification techniques target the set
of errors that the detector is defined to detect. While this is
valuable, one cannot predict the kinds of errors that may
occur in the field, and hence it is important to evaluate
detectors under arbitrary conditions in order to emulate those
in the field.
Fault injection is a well-established technique to evaluate the
coverage of error detection mechanisms [4], [5]. However,
due to its inherent statistical nature, fault injection may miss
“corner cases” that escape detection and cause the program to
fail. Thus, there is a compelling need to develop a formal
framework to reason about the efficiency of error detectors as
a complement to traditional fault injection. While formal
frameworks have been developed before, each addresses a
specific error detection mechanism (for example, replication in
[12]), and cannot be easily extended to general detection
mechanisms.
This paper presents SymPLFIED, a framework for verifying error
detectors in programs using symbolic execution and model checking.

The goal of the framework is to expose error cases that would
potentially escape detection and cause program failure. To the
best of our knowledge, SymPLFIED is the first framework that
models the effect of arbitrary hardware errors on software,
independent of the underlying detection mechanism. It uses model
checking [18] to exhaustively enumerate the consequences of
the symbolic errors on the program1. The analysis is
completely automated and does not miss errors that might
occur in a real execution. However, as a result of abstracting
erroneous values, it may discover errors that do not manifest
in the real execution of the program2, i.e., false-positives.
The paper makes the following contributions:
1. Introduces a formal model to represent programs

expressed in a generic assembly language, and reasons
about the effects of errors originating in hardware and
propagating to the software application without
assuming specific error detection mechanisms.

2. Specifies the semantics of general error detectors using
the same formalism, which allows verification of their
detection capabilities.

3. Represents errors using a single symbol, thereby
coalescing multiple error values into a single symbolic
value in the program. This includes both single- and
multi-bit errors in the register file, main memory, cache,
as well as errors in computation and control-logic.

4. Evaluates the framework on a real application (tcas) and
discovers non-trivial cases of errors that escape detection.

Previous work [16] has analyzed the effect of hardware errors
on programs expressed in a high-level language (e.g. Java).
Errors are modeled as bit flips in single data variable(s) in the
program. While this is an important step, it suffers from
several limitations, namely (1) low-level hardware errors can
affect multiple program variables and impact the program’s
control-flow (while modeling control-flow errors is possible in
high-level languages, it is less fine-grained), (2) errors in
special-purpose registers such as the stack pointer are difficult
to model in the high-level language, and (3) errors in the
language’s library functions cannot be modeled as the
libraries may be written in a different language than the
program (while this limitation may be overcome by writing a
contract for the library function, such contracts require
manual specification and are time and effort intensive).
This paper considers programs represented at the assembly
language level. The value of using assembly language is that
many low-level hardware errors that impact the program can
be represented at this level. Further, the entire application,
including runtime libraries, is amenable to analysis at the
assembly language level. It can be argued that in order to
really analyze the impact of hardware errors, we need to
model systems at even lower levels, e.g. the register-transfer
level (RTL). However, the consequent state space explosion
when analyzing the program at such low levels can render the
approach impractical. Therefore, we believe that the assembly
language level constitutes a judicious tradeoff between

1 In this paper, we use the term model checking to refer to exhaustive state
space enumeration. This is also known as explicit state model checking.

2 While SymPLFIED symbolically abstracts error values, it requires concrete
inputs for the program in order to perform its analysis.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
• Karthik Pattabiraman is with the Department of Electrical and Computer

Engineering, University of British Columbia. E-mail: karthikp@ece.ubc.ca
• Nithin Nakka is with Nexstest Systems, a Teradyne, Inc. company. Email:

Nithin.Nakka@Nextest.com.
• Zbigniew Kalbarczyk is with the Coordinated Science Laboratory,

University of Illinois at Urbana-Champaign. E-mail: kalbarcz@illinois.edu
• Ravishankar Iyer is with the Coordinated Science Laboratory, University of

Illinois at Urbana-Champaign. E-mail: rkiyer@illinois.edu
Manuscript received Aug 16, 2012. Please note that all acknowledgments should be
placed at the end of the paper, before the bibliography.

PATTABIRAMAN ET. AL.: SYMPLFIED 2

scalability and representativeness.
In order to evaluate the framework, the effects of hardware
transient errors are considered on a commercially deployed
application, tcas. The framework identified errors that lead to
a catastrophic outcome in the application in a reasonable
amount of time (less than five minutes when run on a cluster).
However, a random fault injection experiment did not find
any catastrophic scenario in a comparable amount of time, or
when run for more than three times as much time as
SymPLFIED. Further, the results from SymPLFIED were used
to design error detectors for the tcas program. The detectors
were found to be effective in avoiding the catastrophic
scenario, although they suffer from some limitations that
SymPLFIED identifies. Finally, SymPLFIED is also
demonstrated on a larger program, replace to demonstrate its
scalability.

2 RELATED WORK
Prior literature related to this work is classified into the
following categories:
Error Detection: Many error detection mechanisms have been
proposed in the literature, along with formal proofs of their
correctness [10], [11]. However, the verification methodology
is usually tightly coupled with the mechanism under study.
For example, [11] proposes and verifies a control-flow
checking technique by constructing a hypothetical program
augmented with the technique and model-checks the program
for missed detections. The program is carefully constructed to
exercise all possible cases of the control-flow checking
technique. However, it is non-trivial to construct such
representative programs for other error detection
mechanisms.
Perry et al. [12] propose the use of type-checking to verify the
fault-tolerance provided by a specific error detection
mechanism, namely compiler-based instruction duplication.
The paper proposes a detailed machine model for executing
programs. The faults in the fault model (Single-Event Upsets)
are represented as transitions in the machine model. The
advantage of the technique is that it allows reasoning about
the effect of low-level hardware faults on the whole program,
rather than on individual instructions or data. However, the
detection mechanism (duplication) is tightly coupled with the
machine model, due to inherent assumptions that limit error
propagation in the program and may not hold in programs
protected with other mechanisms than duplication.
Other recent work proposes a formal logic to verify programs
under a wide range of fault models and detection techniques
[13]. The technique presented in [13] either accepts or rejects a
program based on whether the detectors successfully detect
an error. However, it does not consider the consequences of
the error on the program. As a result, the program may be
rejected by the technique even though the error is benign and
has no effect on the program.
Symbolic execution has been used for a wide variety of
software testing and maintenance purposes [14]. The main
idea in these techniques is to execute the program with
symbolic values rather than concrete values and to abstract
the program state as symbolic expressions. An example of a
commercially deployed symbolic execution technique to find
bugs in programs is Prefix [15]. However, Prefix assumes that
the hardware does not experience errors during program
execution.
A symbolic approach for injecting faults into programs was
introduced in [16]. The goals of this approach are similar to

ours, namely to verify properties of fault-tolerance
mechanisms in the presence of hardware errors. The
technique reasons about the effect of single bit-flips on
programs written in the Java language. However, as pointed
out earlier, a hardware error can have wide-ranging
consequences on the program, which cannot be easily
modeled at the high level.
Further, the technique presented in [16] uses theorem proving
to verify the error resilience of programs. Theorem proving
has the intrinsic advantage that it is naturally symbolic and
can reason about the non-determinism introduced by errors.
However, theorem proving requires considerable
programmer intervention and expertise, and cannot be
completely automated for many important classes of
programs.
Program verification techniques have been used to prove
that a program’s code satisfies a programmer-supplied
specification [7]. The specification precisely outlines the
expected result of the program given certain initial conditions.
Typically, program verification techniques are geared towards
finding software defects and assume that the hardware and
the program environment are error free. In other words, they
prove that the program satisfies the specification provided the
hardware platform on which the program is executed does
not experience errors. Further, program verification
techniques operate on an abstract representation of the
program extracted from the program code. The abstractions
are derived based on the specific property being checked and
cannot be used for evaluating the program under arbitrary
hardware errors as such errors may not manifest in the
abstraction.
Formal techniques have also been extensively applied to
microprocessor verification [6]. The techniques attempt to
prove that the implementation of the processor conforms to an
architectural specification usually in the form of a processor
reference manual. Processor verification techniques typically
focus on unmasking hardware design defects, as opposed to
transient errors due to electrical disturbances or radiation.
Soft-errors in hardware: The techniques presented in [8] and
[9] consider the effects of hardware transient errors (soft
errors) on error detection mechanisms implemented in
hardware. While these techniques are useful for applications
implemented as hardware circuits, it is not clear how the
technique can be extended for reasoning about the effects of
errors on programs. This is because programs are normally
executed on general-purpose processors in which the
manifestation of a low-level error is different from an error in
a hardware implementation of the application.
Summary: The formal techniques considered in this section
predominantly fall into the category of software-only
techniques which do not consider hardware errors [7], or into
the category of hardware-only techniques which do not
consider the effects of errors on software [6]. Further, existing
verification techniques are often coupled with the detection
mechanism (e.g., duplication) being verified [11], [12].
Therefore, there exists no generic technique that allows
reasoning about the effects of arbitrary hardware faults on
software, and can be combined with an arbitrary fault model
and detection technique(s). This is important for enumerating
all hardware transient errors that would escape detection and
cause programs to fail. Moreover, the technique must be
automated. This paper answers the question: “Is it possible to
develop a framework to reason about the effects of arbitrary hardware
errors on applications in an automated fashion, to understand where
error detection mechanisms fail in detecting errors?“.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

PATTABIRAMAN ET. AL.: SYMPLFIED 3

3 APPROACH
This section, introduces the conceptual model of the
SymPLFIED framework and also the technique used by
SymPLFIED to symbolically propagate errors in the program.
The categories of errors considered are also discussed.

3.1 Framework
The SymPLFIED framework accepts a program with or without
error detectors, and enumerates all errors (in a particular class) that
would not be detected by the detectors (if any) and lead to program
failure. Figure 1 presents the conceptual design flow of the
SymPLFIED framework.
Inputs: The inputs to the framework are (1) a program written
in a target assembly language (e.g., MIPS) along with its
inputs, (2) error detectors embedded in the program code
(optionally), and (3) a class of hardware errors to be
considered (e.g., control-flow errors, register file errors) by the
system. Note that the error detectors are not a necessity. In
Section 6.2, we deploy the framework on the tcas program
which has no embedded error detectors.
Assembly Language: We define a generic assembly language
in which programs are represented for formal analysis by the
framework. Because the language defines a set of architectural
abstractions found in many common Reduced Instruction Set
Computer (RISC) architectures, it is portable across these
architectures [26]. The assembly language has direct support
for (1) input/output operations, so that programs can be
analyzed independent of the Operating System (OS), (2)
invocation of error detectors using special annotations, called
CHECK, which allows detectors to be represented in line with
the program’s text, and (3) exception handling and reporting
of errors without the need for an Operating System (OS).

Operation: The program is expressed using a generic
assembly language described in Section 5. This language is
automatically translated into a formal mathematical model
that can be represented in the Maude system [17]. Since the
abstraction is close to the actual program in assembly
language it is sufficient for the user to formulate generic
specifications, such as an incorrect program outcome or an
exception being thrown. Such a low-level abstraction of the
program is useful to reason about hardware errors.
The formal model can be rigorously analyzed under error
conditions against the above specifications using techniques
such as model checking and theorem-proving. In this paper,
model checking is used because it is completely automated and

requires no programmer intervention3. However, the SymPLFIED
framework supports the use of theorem-proving and other
formal tools provided in the Maude system if desired [19].
Outputs: The framework uses the technique described in
section 3.2 and outputs either of the following:
1. Proof that the program with the embedded detectors is

resilient to the error class considered.
2. A comprehensive set of all errors belonging to the error

class that evade detection and potentially lead to program
failure (crash, hang, or incorrect output).

Components: The framework consists of the following
models:
• Machine Model: Models the formal semantics of the

machine on which the program is to be executed (e.g.,
registers, memory, instructions, etc.).

• Error Model: Specifies error classes and error
manifestations in the machine on which the program is
executed. e.g., errors in the class register errors can
manifest in any register in the machine.

• Detector Model: Specifies the format of error detectors
and their execution semantics.

By representing all three models in the same formal framework, we
can reason about the effects of errors (in the error model) on both
programs, represented in the machine model and on detectors,
represented in the detector model, in a unified fashion.
Extensibility: The models described above are decoupled
from each other and can be composed together in a plug-and-
play fashion. For example, the machine model can be replaced
with a model corresponding to a different architecture
without changing either the error model or the detector
model. Similarly, the detector and error models can be
modified independent of the other models. This is because
each model exposes well-defined interfaces to the other
models, and as long as the interfaces are obeyed, the
implementation of the models can be modified independently.
Correctness: In order for the results of the formal analysis to
be trustworthy, the model must be provably correct. There are
two aspects to the verification of correctness, namely:
[1] The model must satisfy certain properties such as

termination, coherence, and sufficient completeness [17].,
[2] The model must be an accurate representation of the

system being modeled.
The first requirement can be satisfied by formally analyzing
the specification using automated checking tools for each
desirable property listed above. This is obtained for free by
expressing the model using Maude’s language, as Maude has
formal tools to check the conformance of the model to the
properties [19]. We do not discuss this part of the analysis.
However, the second requirement is much harder to ensure as
it cannot be checked by formal tools and is usually left to the
model creator. We validate the model (Section 6.3) by injecting
thousands of faults into a processor simulator, SimpleScalar
[21] and comparing the results with those from SymPLFIED.

3.2 Symbolic Fault Propagation
The SymPLFIED approach represents the state of all
erroneous values in the program using the abstract symbol
err. The err symbol is propagated to different locations in the
program during execution using simple error propagation
rules (shown in section 5.2). The symbol also introduces non-
determinism in the program when used in the context of
comparison and branch instructions or as a pointer operand in
memory operations. Because the same symbol is used to
represent all erroneous values in the program, the approach

3 Of course, the results from model checking still need human interpretation.

Figure 1: Conceptual representation of the SymPLFIED
Framework

PATTABIRAMAN ET. AL.: SYMPLFIED 4

distinguishes program states based on where errors occur
rather than on the nature of the individual error(s). As a
result, it avoids state explosion and can keep track of all
possible places in the program the error may propagate to
starting from its origin.
However, because errors in data values are not distinguished
from each other, the set of error states corresponding to a fault
is over approximated. This can result in the technique finding
erroneous program outcomes that may not occur in a real
execution. For example, if an error propagates from a program
variable A to another variable B, the variable B’s value is
constrained by the value of the variable A. In other words,
given a concrete value of A after it has been affected by the
error, the value of B can be uniquely determined.
The SymPLFIED technique on the other hand, would assign a
symbolic value of err to both variables, and would not capture
the constraint on B due to the variable A. As a result, it would
not be able to determine the value in register B even when
given the value in register A. This may result in the technique
discovering spurious program outcomes. Such spurious
outcomes are termed false-positives.
While SymPLFIED may uncover false-positives, it will never miss
an outcome that may occur in the program due to the error (in a real
execution). This is because SymPLFIED systematically explores
the space of all possible manifestations of the error on the
program. Hence, the technique is complete, meaning it finds all
error manifestations, but is not always accurate.
Completeness is more important than accuracy from the point of
view of designing detection mechanisms, as we can always augment
the set of error detectors to conservatively protect against a few false-
positives. While a small number of false-positives can be
tolerated, it must be ensured that the technique does not find
too many false-positives as the cost of developing detectors to
protect against the false-positives can overwhelm the benefits
of detection. SymPLFIED uses a custom constraint solver to
remove false-positives as much as possible (Section 5.2).

3.3 Categories of Errors Considered
SymPLFIED considers transient errors in memory/registers,
computation and control-logic, which manifest in the
architectural state of the processor. The reason it is possible to
represent such a broad class of errors in the model is because
the program is represented in assembly language, which
exposes its low-level state to the framework.
Errors in memory/registers are modeled by replacing the
contents of the memory location or register by the symbol err.
No distinction is made between single- and multi-bit errors.
Errors in computation are modeled based on where they occur
in the processor pipeline and how they affect the architectural
state. The manifestation of these errors is shown in Table 1.
Errors in the processor’s control logic (such as in the register
renaming unit) are modeled based on their manifestation in
the other parts of the processor. These are also shown in Table
1.

3.4 Scalability and Guarantees
As in most model checking approaches, the exhaustive search
performed by SymPLFIED can be exponential in the number
of instructions executed by the program in the worst case.
However, the error detection mechanisms in the program can
be used to optimize the state space exploration process. For
example, if a certain code component protected with detectors
is proved to be resilient to all errors of a particular class, then
such errors can be ignored when considering the space of
errors that can occur in the system as a whole. This suggests a

hierarchical approach, where first the detection mechanisms
deployed in each component are proved effective, and then
inter-component interactions are considered.

Because SymPLFIED exhaustively explores every possible
consequence of an error in the program, it guarantees the
completeness of the failure outcomes produced due to the
error. However, there are two barriers to achieving this
guarantee in practice. First, the model checker may terminate
before exploring the entire space if it runs out of memory or
resources. While we specify a timeout for each model
checking task to limit the total number of states explored by
the model-checker, some tasks run out of memory even before
this timeout is reached, thereby voiding the guarantee The
second barrier to achieving the guarantee is that SymPLFIED
does not consider the interactions of the program with its
environment. For example, a real-time program may miss its
deadlines due to delays introduced by the error; or the
program may invoke a system-call with the wrong arguments
due to the error, leading to its termination.

4 EXAMPLES

This section illustrates the SymPLFIED approach in the
context of an application that calculates the factorial of a
number shown in Figure 2. The program is represented in the
generic assembly language presented in Section 3.1. The
details of the language are presented in Table 4.

4.1 Error Injection
We illustrate our approach with an example of an injected
error in the program shown in Figure 2A. Assume that a fault
occurs in register $3 (which holds the value of the loop
counter variable) in line 8 of the program after the loop
counter is decremented (subi $3 $3 1). The effect of the fault is
to replace the contents of the register $3 with err. The loop
back-edge is then executed and the loop condition is
evaluated by (setgt $5 $3 $4). Since $3 has the value err in it, it
cannot be determined if the loop condition evaluates to true or
false. Therefore, the execution is forked so that the loop
condition evaluates to true in one case and to false in the other
case. The true case exits immediately and prints the value
stored in $2. Since the error can occur in any loop iteration, the
value printed can be any of the following: 1!, 2!, 3!, 4!, 5!.
The false case continues executing the loop and the err value is
propagated from register $3 to register $2 due to the
multiplication operation (mul $2 $2 $3). The program then
executes the loop back-edge and evaluates the branch
condition. Again, the condition cannot be resolved as register
$3 is still err. The execution is forked again and the process is
repeated ad-infinitum. In practical terms, the loop is
terminated after a certain number of instructions and the
value err is printed, or the program times out (due to a
watchdog mechanism) and is stopped.
Complexity: Note that in order for a physical fault injection
approach to discover the same set of outcomes for the
program as SymPLFIED, it would need to inject all possible
values (in the integer range) into the loop counter variable.
This can correspond to 2k cases in the worst case, where k is
the number of bits used to represent an integer. In contrast,
SymPLFIED considers at most (n+1) possible cases, in this
example, where n is the number of iterations of the loop. This
is because each fork of the execution at the loop condition
results in the true case exiting the loop and the program. In the
general case though, SymPLFIED needs to consider 2n cases.

PATTABIRAMAN ET AL.: SYMPLFIED 5

Table 1: Computation error categories and how they are modeled by SymPLFIED
Fault
origin

Error
symptom

Conditions under
which modeled Modeling procedure

Instructions writing to a destination (e.g.,
add) - change the output target

err in both the original and faulty targets
(register or memory)

Instructions with no target (e.g., nop) –
replace with instructions with targets (e.g.,
add)

err in the new wrong target (register or
memory) Instruction

Decoder

One of the
fields of an
instruction is
corrupted

One valid instruction is
converted to another
valid instruction

Instructions with a single destination (,e.g.
add)– replace with instruction with no target
(e.g., nop)

err in the original target location (register
or memory)

Errors in register data bus err in source register(s) of the current
instruction

Error in cache bus err in target registers of load instructions
to the location

Address or
Data Bus

Data read
from memory,
cache or
register file is
corrupted

Single and multiple bit
errors in the bus during
instruction execution

Error in memory bus err in target register of load instructions to
the location

Processor
Functional
Unit

Functional
unit output is
corrupted

Single and multiple bit
errors in
registers/memory

Functional unit output to register or memory
err in register or memory file being
written to by the current instruction

Fetch from an erroneous location due to
error in PC

PC is changed to an arbitrary but valid
code location

Instruction
Fetch
Mechanis
m

Errors in the
fetch unit

Single or multiple bit
errors in PC or
instruction Error in instruction while fetching it from the

instruction cache
Modeled as errors with their origin in the
instruction decoder (see row 1 of table)
Destination register has an err in both the
original and faulty registers. Register

rename error

An architectural register
mapped to an incorrect
physical register

Instruction reads from or writes to erroneous
register instead of the correct register
according to the instruction. Source register has err in source operand

Forwarding
unit error

Instruction can read
sources from one of
many functional units

An incorrect functional unit’s output is
provided as the source for the instruction

err in source operand Control
Logic

Scheduler
error

Scheduler checks for
operands that are about
to become ready

Scheduler errors sets operand ready bit high
even though operands are not yet ready

err in the source operand (reads stale
value)

(A))
1 ori $2 $0 #1 --- initial product p = 1
2 read $1 --- read i from input
3 mov $3, $1
4 ori $4 $0 #1 --- for comparison purposes
 loop: setgt $5 $3 $4 --- start of loop
6 beq $5 0 exit ---- loop condition : $3 > $4
7 mult $2 $2 $3 ---- p = p * i
8 subi $3 $3 #1 ---- i = i - 1
9 beq $0 #0 loop --- loop backedge
exit: prints "Factorial = "
11 print $2
12 halt
(B)
1 ori $2 $0 #1 --- initial product p = 1
2 read $1 --- read i from input
3 mov $3, $1
4 ori $4 $0 #1 --- for comparison purposes
 loop: setgt $5 $3 $4 --- start of loop
6 beq $5 0 exit
7 check ($4 < $3))
8 mov $6, $2
9 mult $2 $2 $3 ---- p = p * i
10 check ($2 >= $6 * $1)
11 subi $3 $3 #1 ---- i = i - 1
12 beq $0 #0 loop --- loop backedge
exit: prints "Factorial = "
14 print $2
15 halt

Figure 2: Program to compute factorial with (A) no
error detectors, and (B) embedded error detectors.

4.2 Error Detection
We now discuss how SymPLFIED supports error
detection mechanisms in the program. Figure 2B shows
the program in Figure 2A augmented with error
detectors. Recall that detectors are invoked through
special CHECK annotations as explained in Section 3.1.

The error detectors together with their supporting
instructions (mov instruction in line 8) are shown in bold.
The same error is injected as before in register $3 (the new
line number is 11). As shown in Section 4.1, the loop back-
edge is executed and the execution is forked at the loop
condition ($3 > $4).
The true case exits immediately, while the false case
continues executing the loop. The false case “remembers”
that the loop condition ($3 < $4) is false by adding this as
a constraint to the search. The false case then encounters
the first detector that checks if ($4 < $3). The check always
evaluates to true because of the constraint and hence does
not detect the error (it may detect other errors however).
The program continues execution and the error
propagates to $2 in the mul instruction. However, the
value of $2 from the previous iteration does not have an
error in it, and this value is copied to register $6 by the
mov instruction in line 8. Therefore, when the second
detector is encountered within the loop (line 10), the left
side of the check evaluates to err and the right side
evaluates to ($6 * $1).
The execution is forked once again at the second detector
into true and false cases. The true case continues execution
and propagates the error in the program as before. The
false case of the check throws an exception and the
detector fails, thereby detecting the error. The constraints
for the false case, namely ($6 * $3 >= $6 * $1) are also
remembered. Based on this constraint, as well as the
earlier constraint ($3 > $4), the constraint-solver deduces that
the second detector will detect the error if and only if the fault
in register $3 causes it to have a value greater than the initial
value read from the input (stored in register $1).
The programmer can then formulate a detector to handle
the case when the error causes the value of register $3 to
be lesser than the original value in register $1. Therefore,
the errors that evade detection are made explicit to the

PATTABIRAMAN ET AL.: SYMPLFIED 6

programmer (or to an automated mechanism) who can
make an informed decision about handling the errors.
The error considered above is only one of many possible
errors that may occur in the program. These errors are too
numerous for manual inspection and analysis as done in
this example. Moreover, not all these errors evade
detection in the program and lead to program failure.
The main advantage of SymPLFIED is that it can quickly
isolate the errors that would evade detection and cause program
failure from the set of all possible transient errors that can occur
in the program. It can also show the programmer an execution
trace of how the error evaded detection and led to the failure.
This is important in order to understand the weaknesses in
existing detection mechanisms and improve them.

5 IMPLEMENTATION
We have implemented the SymPLFIED framework using
the Maude rewriting logic system.
Rewriting logic is a general-purpose logical framework
for specification of programming languages and systems.
Maude is a high-performance reflective language and
system supporting both equational and rewriting logic
specification and programming for a wide range of
applications [17]. The main advantage of Maude is that it
allows a wide variety of formal analysis techniques to be applied
on the same specification. [19] provides a primer on Maude.
Custom Translator: In order to make programs for
existing architectures compatible with SymPLFIED, we
provide a facility to translate programs written in the
target architecture’s assembly language into
SymPLFIED’s assembly language. While we support only
the MIPS instruction set, it is possible to also support
other RISC architectures (see Appendix C for details).
In this section, we describe the details of the machine,
detector and error models, and model checking.

5.1 Machine Model
This section describes the machine model for executing
assembly language programs using Maude.
Equations and Rules: As far as possible, we have used
equations instead of rewrite rules for specifying the
models. The main advantage of using equations is that
Maude executes equations much faster than rewrite rules.
However, equations must be deterministic and cannot
accommodate ambiguity. The machine model is
completely deterministic because for a given instruction
and input sequence, the final state can be uniquely
determined in the absence of errors. Therefore the
machine model can be represented entirely using
equations. The detection model is also deterministic and
uses only equations. However, the error model is non-
deterministic and hence requires rewrite rules.
Assumptions: The following assumptions are made by
the machine model when executing a program. Section
5.5 discusses the implications of these assumptions.
• An attempt to fetch an instruction from an invalid

code address results in an “illegal instruction”
exception being thrown. The set of valid addresses is
defined at program load time by the loader.

• Memory locations are defined when they are first
written (by store instructions). An attempt to read
from undefined memory location results in an
“illegal address” exception being thrown. Note that
the program loader initializes all static data locations
prior to the program being loaded.

• Program instructions are assumed to be immutable
and hence cannot be overwritten during execution.

• Arithmetic operations are supported only on integers
and not on floating point numbers.

Machine State: The central abstraction used in the
machine model is the notion of machine state, which
consists of the mutable components of the processor’s
structures. The machine state is carried from instruction
to instruction in program execution order, with each
instruction optionally looking up and/or updating the
state’s contents. The machine state is obtained by
concatenating one or more of the machine elements in a
single ‘soup’ of entities. For example, the soup, PC(pc)
regs(R) mem(M) input(In) output(out), represents a machine
state in which the (1) current program counter is denoted
by pc, (2) register file is denoted by R, (3) memory is
denoted by M, and (4) input and output streams are in
and out respectively. Note that the program’s code is not
considered part of the machine state as it is assumed to be
immutable.
Logical Organization: The machine model is divided into
six sub-models, each of which represents a specific aspect
of the machine being modeled. The sub-models and their
functionality are described in Table 2.

Table 2: Sub-models of the machine model
Sub-
model

Functionality

Fetch and
Decode

Retrieves instructions from code memory and converts
them to a form suitable for execution

Register Implements register file lookups and update
operations

Memory Implements memory lookups and update operations
Exception Handles error conditions and exceptional cases

encountered by the program at runtime
Stream Represents input, output, and error streams of a

program. Needed to implement console and file I/O
Execute Executes an instruction by updating the state of the

machine

We consider each of the sub-models in Table 2 as follows:
Fetch/Decode sub-model: This sub-model defines the
operations to retrieve an instruction from code-memory
and interpret it. As mentioned before, code is stored in a
separate memory and is not part of the machine state. In
the equations below, C represents the code memory, L
represents the address of the fetched instruction, and I
represents the instruction stored at location L.

ceq fetch([L | I] C, L) = I if notTerminal(L) .
ceq fetch(C, L) = throw(instException L) if notTerminal(L) .

In the above equations, note that the fetch process
requires that the program has not terminated (i.e., the halt
or throw instructions are executed). Further, Maude
follows a “match-first” strategy for equations and hence
the first equation is used for matching the labels of
instructions in the code memory (as it is written first in
the module). Only if the first equation does not return any
match is the second equation triggered, which throws an
instException.
Currently, there is no separate model for decode as
instructions are directly stored in their decoded form in
code memory. This is because the interpretation of an
instruction does not depend on previous instructions in a
RISC processor (which is what we model).
Register sub-model: The register file is modeled as an
array of 32 general purpose integer registers. We do not

PATTABIRAMAN ET AL.: SYMPLFIED 7

currently model floating-point registers. The program
counter is not part of the register file, but is stored
separately as part of the machine state. The equations for
reading and writing to registers are as follows. In the
equations, R refers to the register file, r refers to a specific
register, and v, v1, v2 are values4.

ceq R(r = v) [r] = (v) if (r =/= $(0)) .
ceq R[r] = (0) if (r == $(0)).

ceq ((r = v1) R) [r <- v2] = ((r = v2) R) if (r =/= $(0)) .
ceq (R [r <- v2]) = R if (r == $(0)) .

The first two equations correspond to reading of registers
in the register file and the next two correspond to writing
of registers. Note that updates to register $0 are ignored
as the register $0 is hardwired to 0 in the MIPS processor.
Memory sub-model: Memory is modeled similar to the
register file, but with three important differences: First,
new locations can be added to the memory when they are
first written to in the program. Second, memory reads
and writes need to be aligned to the word size of the
machine or else an alignment exception is thrown
(addresses in unaligned loads and stores are aligned
before being issued). Finally, reads of an uninitialized
memory location will throw an exception.
The equations below represent the modeling of the above-
described behavior. M represents the memory state, a
represents an address, and v, v1, v2 represent values.

eq (a = v) M [a] = v .
ceq M [a] = memException(a) if isAligned(a) .

ceq M [a] = alignException(a) .
eq (((a = v2) M) [a <- v1]) = (a = v1) M .

ceq (M [a <- v1]) = ((a = v1) M) if isAligned(a) .
ceq (M [a <- v1]) = exMem(alignException(a), M) .

Exception sub-model: The exception sub-model includes
the exceptions that are thrown in the machine sub-model.
The default action on an exception is to terminate
execution and print the exception to the output stream.
Table 3 shows the list of supported exceptions. The
equation to throw an exception is presented later.

Table 3: Exceptions supported in the machine model
Exception Type Explanation
memException Address not found in memory
instException Address does not contain valid instruction
divException Attempt to divide by 0 in ALU instruction
checkException Check failed (corresponds to detector model)
IOException Input stream empty or output stream full
alignException Address not aligned to word size of MIPS
timeoutException Program timed out after N instructions

Stream sub-model: The stream sub-model provides an
abstraction of the input-output interface for the program.
This is required since we do not model the operating
system. Each program is assumed to have an input
stream and an output stream by default. The program
may request to open other streams to model file
operations. The only operations allowed on a stream are
reading the next value or appending a value to the
stream. These are expressed by the operators << and >>
respectively; however, the equations are not presented.
Execute Sub-model: The execute sub-model is used to
execute instructions in the machine and is responsible for
updating the machine state. It defines the initial state of
the machine and starts executing the program.

4 A value can be an integer or the err symbol (denotes an error).

The command to start a program takes as argument the
program and its inputs. Its equation is as follows:

eq start(pgm, input) = { C, < fetch(C, 0), initState(input) > } .
In the above equation, the <_,_> operator represents the
machine state obtained by executing an instruction (given
by the first argument) on a machine state (given by the
second argument). C represents the code of the program
and is written outside the state to enable faster rewriting
by Maude (as it is assumed to be immutable). The {_,_}
operator groups together the code and the machine state
into what is known as a super-state. Super-states represent
intermediate stages of the program’s execution.
The initial state of the machine (initState) is as follows:
• The program counter is initialized to the first

instruction of the program (instruction 0).
• The register file is initialized to all zeroes.
• The input stream is initialized to the program’s input

and the output stream is cleared.
• The memory contents of the program are cleared and

the address 0 is initialized to the value 0.
Instruction Classes: Table 4 presents a comprehensive
view of the instructions supported by SymPLFIED.

Table 4: Assembly language instructions supported
Instruction Semantics

Arithmetic Instructions
movi rd, imm R[rd]  imm
mov rd, rs R[rd]  R[rs]
addi rd, rs, imm R[rd]  R[rs] + imm
add rd, rs, rt R[rd]  R[rs] + R[rt]
subi rd, rs, imm R[rd]  R[rs] – imm
sub rd, rs, rt R[rd]  R[rs] - R[rt]
mult rd, rs, rt R[rd]  R[rs] * R[rt]
div rd, rs, rt R[rd]  R[rs] / R[rt]

Branch Instructions
beq rs, v, addr if (R[rs] == v) jump to addr
beqi rs, v, rd if (R[rs] == v) jump to R[rd]
balr rs, addr R[rs]  PC; jump to addr
balri rs, rd R[rs]  PC; jump to R[rd]

Logical Instructions
shl rd, rs, rt R[rd]  R[rs] << R[rt]
shr rd, rs, rt R[rd]  R[rs] >> R[rt]
and rd, rs, rt R[rd]  R[rs] & R[rt]
or rd, rs, rt R[rd]  R[rs] | R[rt]
xor rd, rs, rt R[rd]  R[rs] ^ R[rt]
not rd, rs R[rd]  ~R[rs]
shli rd, rs, imm R[rd]  R[rs] << imm
shri rd, rs, imm R[rd]  R[rs] >> imm
andi rd, rs, imm R[rd]  R[rs] & imm
ori rd, rs, imm R[rd]  R[rs] | imm
xori rd, rs, imm R[rd]  R[rs] ^ imm
noti rd, imm R[rd]  ~imm

Load/Store Instructions
ldo rt, rs, a R[rt]  Mem[R[rs] + a]
ld rd, rt, rs R[rd]  Mem[R[rs] + R[rt]]
sto rt, rs, a Mem[R[rs] + a]  R[rt]
st rd, rt, rs Mem[R[rd] + R[rt]]  R[rd]

Special Instructions
read rs R[rs]  Input stream
print rt R[rt]  Output stream
throw Ex Cause exception Ex to be thrown
halt halt the machine
prints Str Str  Output stream
nop Do nothing
check Expr if (! Expr) throw CheckException

Comparison Instructions
setlt rd, rs, rt R[rd]  (R[rs] < R[rt])
setgt rd, rs, rt R[rd]  (R[rs] > R[rt])
seteq rd, rs, rt R[rd]  (R[rs] == R[rt])

PATTABIRAMAN ET AL.: SYMPLFIED 8

We consider example instructions from each instruction
class and illustrate the equations used to model them.
These equations use primitives defined in other sub-
models (e.g., the fetch primitive).

1. Arithmetic Instruction: Consider the execution
of the addi instruction, which adds the value v to the

register given by rs and stores the results in register rd.
eq { C, < addi rd rs v , PC(pc) regs(R) S > } = { C, < fetch(C, pc),

PC(next(pc)) regs(R[rd] <- R[rs] + v) S > } .

The elements of the machine state in the above equations are
composable, and hence can be matched with a generic symbol S
representing the “rest of the state”. This allows new machine
state elements to be added without modifying existing
equations that do not manipulate the new state.
2. Branch Instructions: Consider the example of
the beq rs, v, l instruction, which branches to the code label
l if and only if the register rs contains the constant value v.
The equation for beq is similar to the equation for the addi
operation except that it uses the in-built if-then-else
operator of Maude.

eq { C , < beq rs v l , pc(PC) regs(R) S > } = if isEqual(R[rs], v) then { C,

< fetch(C, pc), PC(next(pc)) regs(R) S >} else { C, < fetch(C, l), PC(l)
regs(R) S >} fi .

Note the use of the isEqual primitive rather than a direct
== to compare the values of the register rs and the
constant value v. This is because the register rs may
contain the symbolic constant err and hence needs to be
resolved accordingly (by the error model).
3. Load/Store Instructions: Consider the example
of the instruction ldo rt, rs, a which loads the value in the
memory location at the address given by adding the
offset a to the value in the register rs. The equation for
this instruction is as follows.

eq { C , < ldo rt rs a , PC(pc) regs(R) mem(M) S > } = { C, < fetch(C, pc),
C(next(pc)) mem(M) regs(R[rt] <- M[a + R[rs]]) > } .

4. Input/Output Operations: Input and output
operations are supported natively on the machine since
the operating system is not modeled. An example is the
print instruction whose equation is as follows.

eq { C, < print rs, PC(pc) regs(R) output(O) S > } = { C, < fetch(C, pc),
PC(next(pc)) regs(R) output(O << R[rd]) S > } .

5. Special Instructions: These instructions are
responsible for starting and stopping the program, e.g.,
halt and throw instructions to terminate the program.
The halt instruction sets the program counter of the
program to done, to indicate to the fetch sub-model to stop
fetching instructions. Its equation is given by:

eq { C, < halt , PC(pc) S > } = PC(done) S .

The throw instruction is similar except that it sets the
program counter to crash and prints the exception.

eq { C, < throw e, PC(pc) out(O) S >} = (PC(crash) ex(e) out(pc >> (" : "

>> (toString(e2) >> O))) S) .

Both equations transform the super state prior to their
execution into a machine state. This is because the model-
checker (Section 5.4) searches for machine states only and
the above transformations ensure that the terminating
states of the program are returned by the search.

5.2 Error Model
The overall approach to error injection and propagation
was discussed in Section 3.2. In this section, we discuss
the implementation of the approach in Maude. The error
model is divided into five sub-models as follows:
Error Injection sub-model: The error-injection sub-model
is responsible for introducing symbolic errors into the
program during its execution. The injector can be used to
inject the err symbol into registers, memory locations, or
the program counter when the program reaches a specific
location in the code. This is implemented by adding a
breakpoint mechanism to the machine model. The choices
of the breakpoint as well as the register/memory location
to inject into are made non-deterministically using
rewrite rules as follows:

rl allErrors([L | I] C, input, type) => injectStart([L | I] C, In, type, L) .

eq injectStart(C, input, type, pc) = injectError({ C, < fetch(C, st),
initState(input) bkpts(pc) > }, type) .

crl injectError({ C, < I, PC(pc) bkpts(BL) S>, CtrlError) => {C, <I,
PC(err) S>} if pc in BL .

rl injectError({ C, < I, Regs(R (r = v)) PC(pc) bkpts(BL) S>, RegError)
=> {C, <I, Regs(R (r = err) S>} if pc in BL .

rl injectError({ C, < I,Mem(M (a =v)) PC(pc) bkpts(BL) S>, MemError)
=> {C, <I, Mem(M (a = err)) PC(pc) bkpts(BL) S>}} if pc in BL .

In the above equations, the allErrors function injects all
possible faults of a certain type (control, register, or
memory) into the program by systematically enumerating
each location in the program and calling the injectStart
function on the location. The injectStart function starts the
program after setting a breakpoint at the location. When
the program’s execution reaches the breakpoint, the
injectError function is invoked, which injects the fault by
setting the corresponding location to err. In the case of
control errors, the err location is the program counter. In
the case of register errors, the err location can be any
register in the register file. In the case of memory errors,
the err location can be any initialized memory location.
Error Propagation sub-model: Once an error has been
injected, it is allowed to propagate through the equations
for executing the program in the machine model. The
semantics of error propagation are also described by
equations as shown below (I represents an integer below).

eq err + err = err . eq err + I = err . eq I + err = err .
eq err – err = err . eq err – I = err . eq I – err = err .

eq err * I = if (I==0) then 0 else err fi .
 eq I * err = if (I==0) then 0 else err fi .

eq err / I = if (I==0) then throw divException else err fi .
eq I / err = if isEqual(err, 0) then throw divException else err fi .

eq err * err = if isEqual(err, 0) then 0 else err fi .
eq err / err = if isEqual(err, 0) then throw divException else err fi .

In other words, any arithmetic operation involving the err
value also evaluates to err (unless it is multiplied by 0, in
which case it evaluates to 0). Note also how the divide-
by-zero case is handled by throwing a divException.
Comparison Handling Sub-model: The rules for
comparisons involving one or more err values are
expressed as rewrite rules as they are non-deterministic in
nature. For example, the rewrite rules for the isEqual
operator used in section 5.1 are as follows:

 rl isEqual(I, err) => true . rl isEqual(I, err) => false .
rl isEqual(err, err) => true . rl isEqual(err, err) => false .

The comparison operators involving err operands
evaluate to either true or false non-deterministically. This

PATTABIRAMAN ET AL.: SYMPLFIED 9

is equivalent to forking the program’s execution into the
true and false cases. However, once the execution has
been forked, the outcome of the comparison is
deterministic and subsequent comparisons involving the
same unmodified locations must return the same
outcome (otherwise false-positives will result). This can
be accomplished by updating the state (after forking the
execution) with the results of the comparison. In the true
case of the isEqual primitive, the location being compared
can be updated with the value it is being compared to.
However, the false case is not as simple, as it needs to
“remember” that the location involved in the comparison
is not equal to the value it is compared with. The same
issue arises in the case of non-equality comparisons, such
as isGreaterThan, isLesserThan, isNotGreaterThan and
isNotLesserThan. This is handled by the Constraint
tracking sub-model.
Constraint Tracking and Solving Sub-model: A new
structure called the ConstraintMap is added to the
machine state in Section 5.1. The ConstraintMap structure
maps each register or memory location containing err to a
set of constraints that are satisfied by the value in the
location. An example of a set of constraints for a location
is the following: notGreaterThan(5) notEqualTo(2)
greaterThan(0). This indicates that the location can take
any integer value between 0 and 5 excluding 0 and 2 but
including 5. The constraints for a location are updated
whenever a comparison is made based on the location if
and only if it contains the value err. Constraints are also
updated by arithmetic operations involving
addition/subtraction. Multiplication/division operations
are not considered. For a given location, it may not be
possible to find an integer value that satisfies all its
constraints (un-satisfiable constraints). The model-checker
terminates the search when it comes to a state with un-
satisfiable constraints.
The constraint solver determines whether a set of
constraints is satisfiable. For example, the constraints
notGreaterThan(5) GreaterThan(10) are unsatisfiable. The
constraint solver also simplifies the constraints for a
location. For example, the constraints notGreaterThan(5)
notGreaterThan(3) can be simplified to the constraint
notGreaterThan(3). The equations for the constraint
tracking and solving sub-model are omitted due to space
constraints.
Memory- and Control Handling Sub-model: Memory
and control errors are non-deterministic and hence their
semantics are expressed using rewrite rules as follows:
Errors in jump or branch targets: The program either jumps
to an arbitrary (but valid) code location or throws an
“illegal instruction” exception. The rewrite rules follow:

rl fetch([L | I] C, E) => beq $(0) #(0) L .
rl fetch(C, E) => instException .

Errors in pointer values of loads: The program either
retrieves the contents of an arbitrary location in memory
or throws a memory or alignment exception as follows:

rl ((a = v1) M) [err] => v1 .
rl (M) [err] => memException(0) .
rl (M) [err] => alignException(0) .

Errors in pointer values of stores: The program either
overwrites the contents of an arbitrary memory location,
or throws an alignment exception. We do not consider
writes to locations outside the set of locations defined in

the program as such locations are not read by the
program.

rl (a = v1) M) [err <- v2] => ((a = v2) M) .
rl ((a = v1) M) [err <- v2] => M [a <- alignException(0)] .

5.3 Detector Model
Error detectors are defined as executable checks in the
program that test whether a given memory location or
register satisfies an arithmetic or logical expression. For
example, a detector can check if the value of register $(5)
equals the sum of the values in the register $(3) and
memory location (1000) at a given program counter
location. If the values do not match, an exception is
thrown and the program is halted.
In our implementation, each detector is assigned a unique
identifier and the CHECK instructions encode the
identifier of the detector they want to invoke in their
operand fields. The detectors themselves are written
outside the program, and the same detector can be
invoked at multiple places within the program’s code
with its identifier.
We assume that the execution of a detector does not fail. This
assumption is further considered in Section 5.5.
A detector is written in the following format:
det (ID, Register Name or Memory Location to Check,
Comparison Operation, Arithmetic Expression)
The arguments of the detector are as follows:
(1) The first argument of the detector is its identifier.
(2) The second argument is the register or memory

location checked by the detector.
(3) The third argument is the comparison operation,

which can be any of ==, =/=, >, <, <= or >=.
(4) The final argument is the arithmetic expression that is

used to check the detector’s register or memory
location and is expressed in the following format:

Expr :: = Expr + Expr | Expr – Expr | Expr * Expr | Expr / Expr |@ (c)
| ! (Reg Name) | *(memory address)

Using the above notation, the detector introduced earlier
would be written as: det(4, $(5), == , ! ($3) + *(1000)).
Detectors are implemented using equations, as their
behavior is deterministic in the absence of errors. The
equations for the detector’s execution are independent of
the equations in the machine model, and hence are not
affected by errors introduced in the machine other than
those that are present in the registers or memory locations
used in the detector’s expression. Execution of a detector
also updates the constraints for the checked location in
the ConstraintMap structure described in section 5.2.
The following equations evaluate an expression e used
within a detector on the machine state S. In the equations
below, e1 and e2 are expressions, a is an address, and r is
a register name. i is an integer constant.

eq eval(e1 + e2, S) = eval(e1, S) + eval(e2, S) .
eq eval(e1 * e2, S) = eval(e1, S) * eval(e2, S) .

eq eval(e1 / e2, S) = eval(e1, S) quo eval(e2, S) .
eq eval(e1 - e2, S) = eval(e1, S) - eval(e2, S) .

eq eval(!(r), regs(R) S) = R[r] .
eq eval(*(a), mem(M) S) = M[a] .

eq eval(@(i), S) = i .

We define the applyCheck operation to evaluate a detector
on a machine state. If the detector returns true (i.e.,
passes), the machine state is returned. Otherwise, a
checkException is thrown. We consider the applyCheck

PATTABIRAMAN ET AL.: SYMPLFIED 10

equation for a detector with the == operator below. The
equations for other operations are similar.

eq < I, applyCheck(det(i, rd, ==, e) , regs(R) S) > =
 if (isEqual(R[rd], eval(e, regs(R) S))) then < I, regs(R) S > else < (throw

(checkException i)), regs(R) S > fi .

Note that we can represent any detector in the
framework, as long as the detector can be written as an
algebraic or logical expression. The detectors considered
in many prior studies fall into this category [1], [2].
However, we cannot represent detectors that use timing
information. This is an avenue for future investigation.

5.4 Model Checking
The exhaustive search feature of Maude is used to model-
check programs [17]. The aim of the search command is to
expose interesting “outcomes” of the program caused by
a particular class of faults. The “outcome” is a user-
defined function on the machine state described in
Section 5.1 and must be specified as part of the search
command. Note that while it is relatively straightforward
to specify outcomes in terms of the program’s final
outcome or states, doing so at intermediate points of its
execution requires knowledge of the assembly language
code. For the programs we have considered however (i.e.,
tcas, replace), this has not been an issue.
As an example, the following search command obtains
the set of executions of the program that will print a value
of 1 without crashing, under all single errors in registers
(one per execution). As mentioned in Section 5.1, only
terminating program states are found by the search.

search allErrors(program, input, regErrors) =>! (S:MachineState) such

that not (output(S) contains 1) and (getException(S)==0) .

The search command systematically explores the search
space in a breadth-first manner starting from the initial
state and obtaining all final states that satisfy the user-
defined predicate, which can be any formula in first-order
logic. The programmer can query how specific final states
were obtained or print out the search graph, which will
contain the entire set of states that have been explored by
the model checker (these features are part of Maude). This
will help the programmer understand how the injected
error(s) lead to the outcome(s) of the search.
Termination: In the absence of errors, most programs can
be modeled as finite-space systems provided (1) they
terminate after a finite amount of time or (2) they perform
repetitive actions without terminating but revisit states.
However, errors can cause the state space to become
infinitely large, as the program may loop infinitely due to
the error. This is not possible in practice, as the program
data is physically represented as bits and there are only a
finite number of bits available in a machine. However, the
state space may become so large that it is impossible to
explore fully in a reasonable amount of time.
In order to ensure that the model checking terminates in a
reasonable time, the number of instructions that is
allowed to be executed by the program must be bounded.
This bound is referred to as the timeout. After the
specified number of instructions is exceeded, a “timed
out” exception is thrown and the program is halted. This
functionality may be provided by a watchdog timer.
The timeout must be conservatively chosen to encompass
the number of instructions executed by the program
during all correct executions in the absence of errors.

The question of how to choose an appropriate timeout is
outside the scope of this paper. However, we find that the
time taken by the search is not sensitive to the actual
value of the timeout (provided it is finite). This is because
the execution time of the search is dominated by rewrite
rules. A conservative timeout potentially increases the
number of equations executed by Maude, but does not
affect the execution of rewrite rules.

5.5 Discussion
In this section, we consider some of the trade-offs made in
the implementation of SymPLFIED and its impact on the
scalability of the tool and the accuracy of the results.
Machine Model: The machine model makes a number of
assumptions regarding memory accesses and control-
flow instructions (see Section 5.1 for a detailed list). These
assumptions limit the number of states that must be
considered by SymPLFIED under an error. For example,
by assuming that any access to uninitialized memory
location results in an exception, we need to consider only
initialized memory locations when performing a memory
access with an erroneous address, thus ensuring that the
analysis is independent of the environment. However, we
may miss error outcomes in which the program continues
executing after reading from uninitialized locations.
Nonetheless, this is a reasonable assumption as the values
in uninitialized locations are non-deterministic and the
program may behave unpredictably after reading them.
Fault Model: We assume that errors can occur only in the
architectural state of the processor. This assumption is
reasonable as only faults that propagate to the
architectural state can impact the application. However,
the error may occur during the execution of the
instruction (i.e., in the processor’s pipeline), and may or
may not manifest in its output (for example, errors in the
memory stage of non-memory instructions may not have
an impact on the instruction). Modeling such effects
would require a detailed model of the processor’s
internals, which would blow up the state space explored
by SymPLFIED. Therefore, we assume that any error
during the execution of an instruction affects its target
register (or memory address).
Detection Model: We assume that errors cannot occur
during the execution of detectors. This is because we
assume that at most one error occurs in the program, and
an error in the detector means that the program is error-
free (note that this does not preclude an error originating
in the program and propagating to the detector).
Therefore, an error in the detectors can at worst lead to
the program being stopped and not executed to
completion. Such errors can never lead to incorrect
outputs or safety violations, which are the focus of
SymPLFIED. Further, it is possible to realize this
assumption in practice by implementing the detector on a
separate piece of hardware called the Reliability and
Security Engine (RSE) [24].
Other Limitations: We currently do not support
interrupts and Direct Memory Access (DMA) operations
in SymPLFIED. Further, memory mapped input-output
or file-seeking operations are not supported. These
constructs are typically used only by systems code and
are platform dependent. We do not consider systems code
in order to ensure that SymPLFIED is platform neutral.
Finally, while SymPLFIED symbolically considers all
possible errors in the program, it needs a concrete input
to perform the analysis. This is because SymPLFIED

PATTABIRAMAN ET AL.: SYMPLFIED 11

explicitly enumerates every state of the program under a
set of faults, and hence needs a concrete starting point to
begin the exploration, which is provided by the input.

6 RESULTS
This section reports our experience in using SymPLFIED
on the tcas application [22], which is widely used as an
advisory tool in air traffic control for ensuring minimum
vertical separation between two aircrafts and hence avoid
collisions. In the final part of this section, we report the
results of applying SymPLFIED on the replace program of
the Siemens suite to understand the effects of scaling to
larger programs. Our goal is to demonstrate the
capabilities of the SymPLFIED framework for exposing
gaps in error detectors rather than to identify specific
vulnerabilities in the applications studied.
We have implemented SymPLFIED using Maude version
2.4. Our implementation consists of about 2000 lines of
uncommented Maude code split into 35 modules. The
core of SymPLFIED consists of about 54 rewrite rules and
384 equations.
We also built a custom translator to convert MIPS
assembly language as represented by the SimpleScalar
simulator’s Portable Instruction Set Architecture (PISA)
[21]. To use our framework, the developer needs to
compile their code with SimpleScalar’s compiler (gcc),
and then run our translator on the assembly file . We also
wrote scripts to translate the counter examples found by
SymPLFIED to the MIPS assembly language.
Tcas: The application consists of about 140 lines of C
code, which is compiled to 913 lines of MIPS assembly
code. This in turn is translated to 800 lines of
SymPLFIED’s assembly code (by our custom translator).
Table 5 shows the functions in tcas, and the number of
lines of code in them (both C and SymPLFIED assembly).
tcas takes as input a set of 12 parameters indicating the
positions of the two aircrafts and prints a single number
as its output. The output can be one of the following
values: 0, 1, or 2, where 0 indicates that the condition is
unresolved, 1 indicates an upward advisory (ascend), and
2 indicates a downward advisory (descend). Based on
these advisories, the aircraft operator can choose to ignore
the warning or increase or decrease the aircraft’s altitude.

Table 5: Functions in tcas and their sizes
Function LOC

(source)
Lines of
SymPLFIED’s
assembly

ALIM 3 14
Alt_sep_test 27 77
Initialize 6 15
Non_Crossing_Biased_Climb 16 44
Non_Crossing_Biased_Descend 16 44
Own_Above_Threat 3 12
Own_Below_Threat 3 12
Inhibit_Biased_Climb 3 12
Main 16 20

6.1 Experimental Setup
Our goal is to find whether a transient error occurring in
the register file during the execution of tcas can lead to the
program producing an incorrect output (i.e., a wrong
advisory). We chose an input for tcas in which the upward
advisory ‘1‘ will be produced under error-free execution.
We directed SymPLFIED to search for runs in which the

program did not throw an exception5 and produced a
value other than 1 under the assumption of a single
register error during its execution. We chose a timeout
value of 10000 instructions, which is more than 10 times
the number of instructions executed in a fault-free run.
Optimization: The total number of injections performed
by SymPLFIED is (800 * 32), since there are 32 registers in
the machine, and each instruction in the program is
chosen as a breakpoint for the injection. In order to
reduce the state space of the model checker, we inject
errors only into the registers used in each instruction of
the program. Further, we inject the error just before the
instruction that uses the register, and check whether the
instruction is executed to measure the fault’s activation.
The effect of the injection is equivalent to injecting the
register at an arbitrary code location such that the error is
activated at the instruction.
Parallelism: The injections with SymPLFIED were started
on a cluster of 150 AMD Opteron processors running at 2
GHz with 2 GB of RAM. The search command is split into
multiple smaller searches, each of which sweeps a
particular section of the program code looking for errors
that satisfy the search conditions. Each node in the cluster
can perform the smaller searches independently, and the
results are pooled together to find the overall set of errors.
The maximum number of errors found by each search
task was capped at 1,000 and a maximum of 30 minutes
was allotted for the task to complete.
Validation: We augmented the SimpleScalar simulator
[21] with the capability to inject errors into the source and
destination registers of all instructions in the program.
For each register we injected three extreme values in the
integer range as well as three random values.

6.2 SymPLFIED Injections into tcas
For the injections on the tcas application, SymPLFIED
found only two cases where an output of 1 (upward
advisory) is converted to an output of 2 (downward
advisory). This advisory can potentially be catastrophic as
it is difficult to distinguish from the correct outcome of
tcas, and can result in a mid-air collision if followed.
Later in this section, we discuss the catastrophic outcomes
in more detail. We first discuss the overall results of the
injections excluding the catastrophic cases. These
consisted of cases where (1) tcas printed an output of 0
(unresolved) in place of 1, (2) the output was outside the
range of the allowed values printed by tcas, and (3)
numerous cases where the program exited or aborted
prematurely. We do not consider these cases as
catastrophic because tcas is only an advisory tool and the
operator can ignore the advisory if he or she determines
that the output produced by tcas is incorrect. We also
found violations in which the value is computed correctly
but printed incorrectly. We do not consider these cases as
catastrophic because the real implementation of tcas may
have a different output method. Section 6.4 presents a
detailed analysis of the cases uncovered by tcas.
Running Time: Of the 150 search tasks started on the
cluster, only 85 tasks completed within the allotted time
of 30 minutes. We report results only from the tasks that
completed. Of the 85 tasks that completed, 70 tasks did
not find any errors that satisfy the conditions in the
search command. These 70 tasks completed within 1
minute (overall). The remaining 15 tasks completed and

5 As such exceptions will result in crashes, and not incorrect outputs.

PATTABIRAMAN ET AL.: SYMPLFIED 12

found errors. The time taken by all the completed tasks
(including the one that found the catastrophic outcome) is less
than 4 minutes (240 seconds), and the average time for task
completion is 64 seconds (ranges from 1 second to 240 seconds).
Since we performed this study, we have made a number
of improvements to the SymPLFIED framework and are
able to run the framework on a single machine (core i-7
processor at 2.5 GHz) with 8 Gigabytes of RAM. On this
machine, we decomposed the above search task into
eighteen parallel tasks, which were started in parallel. All
but two of the tasks completed within two hours (these
tasks were terminated by us). Since the processor has four
cores, this time corresponds to a total running time of 8
hours. Thus, the total execution time on a single machine
was less than the total time on the cluster. We use the
more conservative cluster times for comparison with
SimpleScalar injections in Section 6.3.
Note that the running time of SymPLFIED is dependent
on the efficiency of the Maude model checker. Because
Maude uses explicit state exploration, it can incur very
high memory overheads. More efficient model checking
approaches can alleviate the overhead and allow us to
scale to larger programs. We do not consider such
approaches however, as the goal of SymPLFIED is to
demonstrate the feasibility of reasoning about hardware
errors at the software level. It is worth noting that even
though we do not use the fastest model-checking
approach, we were able to uncover catastrophic failures
in the tcas application in less time than an equivalent fault
injection campaign (Section 6.3).
Catastrophic outcome: In order to understand the
catastrophic error that lead to the incorrect value of 2, we
show an excerpt from the tcas code in Figure 33. The code
corresponds to the function alt_sep_test, which tests the
minimum vertical separation between two aircrafts and
returns an advisory. This function in turn calls the
function Non_Crossing_Biased_Climb() and the
Own_Above_Threat() function to decide if an upward
advisory is needed for the aircraft. It then checks if a
downward advisory is needed by calling the function
Non_Crossing_Biased_Descend() and the function
Own_Below_Threat(). If neither advisory nor both
advisories are needed, it returns the value 0 (unresolved).
Otherwise, it returns the computed advisory.
We note that the tcas application (and system) has been
extensively verified and checked for safety violations [22].
Nevertheless, the application has no detectors in its code.
As mentioned in Section 3.1, SymPLFIED does not need
error detectors in order to analyze the application.
The error under consideration occurs in the body of the
called function Non_Crossing_Biased_Climb() and corrupts
the value of register $31 which holds the function return
address (this is the calling convention in the MIPS
processor that SymPLFIED emulates [21]). Therefore,
instead of control being transferred to the instruction
following the call to the function
Non_Crossing_Biased_Climb() in alt_sep_test(), the control
gets transferred to the statement alt_sep =
DOWNWARD_RA in the function. This causes the
function to return the value 2 instead of the value 1,
which is printed by the program. An analogous case
exists for the function Non_Crossing_Biased_Descend,
which is also called by the alt_sep_test function. We do not
discuss this case in the interest of space. We have verified
that the errors exposed above are not false-positives by
performing targeted injections into the registers at the

locations identified by SymPLFIED using the augmented
SimpleScalar simulator (Section 6.3).
Note that the above error occurs in the stack, which is part of
the runtime support added by the compiler. Hence, in order to
discover this error, we need a technique like SymPLFIED that
can reason at the assembly language (or lower) level. This
shows the value of modeling low-level details in reasoning
about transient-error propagation in programs.

6.3 SimpleScalar Injection Results
We performed over 6000 fault injection runs on the tcas
application using the modified SimpleScalar simulator to
see if we can find the catastrophic outcome outlined
above. Both SymPLFIED and SimpleScalar were run for
the same amount of time. Recall that the SymPLFIED
injections were run with 150 tasks on the cluster, and each
completed task took a maximum time of 4 minutes. This
constitutes 10 hours in total. In this time, SimpleScalar
was able to inject 6000 faults into the tcas program. The
results of the injections are summarized in column 2 of
Table 6 (numbers within parentheses represent the
absolute number of injections). The results show that the
SimpleScalar injections were unable to uncover even a
single scenario with the catastrophic outcome of ‘2’.
In order to uncover the catastrophic error scenario using
random fault injections, not only must the error be
injected into register $31 in the
Non_Crossing_Biased_Climb function, the address of the
assignment statement must be chosen to be injected in
register $31 in Figure 33. Otherwise, the catastrophic
scenario will not be exposed by the random injections.
We also extended the SimpleScalar based fault injection
campaign to inject 41000 register faults to check if any of
the injected errors lead to the catastrophic outcome. The
fault injection campaign took about 35 hours to complete.
Note that this corresponds to over three times the time
taken by SymPLFIED. However, the campaign was still
unable to find an error leading to the catastrophic
outcome. The results are shown in column 3 of Table 6.

Table 6: SimpleScalar fault injection results
Program Outcome Percentage

 # faults = 6253 # faults = 41082
0 1.86% (117) 2.33% (960)
1 53.7% (3364) 56.33% (23143)
2 0% (0) 0% (0)

Other 0.5% (29) 1.0% (404)
Crash 43.4% (2718) 40.43% (16208)
Hang 0.4% (25) 0.8% (327)

6.4 SymPLFIED Results: Analysis
In this section, we analyze the results obtained by
SymPLFIED with the goal of understanding the dominant
failure modes of the tcas application. Table 7 shows the
results of the analysis. The first column of the table is the
output produced by SymPLFIED, the second and third
columns are the functions and the registers into which the
errors were injected, and the fourth column is the total
number of injections that resulted in the output.
The outputs in Table 7 fall into the following categories.
First, there are invalid values such as 740 and 122, which
are produced by the program due to the injected errors
(i.e., values other than 0, 1 and 2). The second category
corresponds to valid but incorrect outputs such as 0 and
2. These outputs are difficult to distinguish from the
correct output of tcas, which is 1 for this input.

PATTABIRAMAN ET AL.: SYMPLFIED 13

int alt_sep_test() {
 enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);
 tcas_equipped = Other_Capability == TCAS_TA;
 intent_not_known = Two_of_Three_Reports_Valid && (Other_RAC == NO_INTENT);
 alt_sep = UNRESOLVED;
 if (enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped)) {
 need_upward_RA = Non_Crossing_Biased_Climb() && Own_Below_Threat();
 need_downward_RA = Non_Crossing_Biased_Descend() && Own_Above_Threat();
 if (need_upward_RA && need_downward_RA)
 alt_sep = UNRESOLVED;
 else if (need_upward_RA)
 alt_sep = UPWARD_RA;
 else if (need_downward_RA)
 alt_sep = DOWNWARD_RA;
 else
 alt_sep = UNRESOLVED;
 }
 return alt_sep; }

Figure 33: Portion of tcas code corresponding to the catastrophic outcome

Table 7: Results obtained by SymPLFIED on tcas
Outp
ut

Function(s) Regist
er(s)

No. of
injectio
ns

740 initialize,
Non_crossing_biased_climb,
Alt_sep_test

$31 20

Err Alt_sep_test $2 9
Exit All functions $31 96
[1] A

b
o
r
t

[2] All functions [3] $
3
1

96

122 Alt_sep_test $31 2
2 Non_Crossing_Biased_Climb,

Non_Crossing_Biased_Descend
$31 20

0 All functions $31
$29
$2, $3
$4, $5

254

9936 Non_Crossing_Biased_Climb,
Non_Crossing_Biased_Descend,
Alt_sep_test

$31 30

empty All functions 96

,Third, the application may exit early, abort due to an
assertion violation or produce no output. These categories
have been represented by “Exit”, “Abort”, and “Empty”.
These are different from crashes as the application does
not raise an exception, but instead exits gracefully.
Finally, the application may print the value Err if an
injection is performed into register $2 in the alt-sep-test
function (register $2 holds the return value).
We can see from Table 7 that most of the wrong outputs
are caused by errors in the return address register $31.
Therefore, incorrect return addresses are the dominant
cause of non-crash causing errors in the tcas application.
Further, the catastrophic outcome discussed in 6.2 was
also due to corruption of the return address register.
Therefore, in Appendix A, we design error detectors to
check the return address register to detect these errors. In
Appendix B, we investigate the resilience of the tcas
program to memory errors, with and without detectors.

6.5 Application to Larger Programs
In order to evaluate the scalability of SymPLFIED, we
analyzed the replace program using SymPLFIED. replace is
the largest of the Siemens benchmarks suite [20]. Our
custom translator translates the program to 1550 lines of
Maude code spanning 22 functions.

Using the same experimental setup as described in
Section 6.1, we ran SymPLFIED on the replace program to
find all single register errors (that lead to an incorrect
outcome of the program). The overall search was
decomposed into 312 parallel tasks. Of these, 202
completed execution within the allotted time of 30
minutes. In 148 of the completed search tasks, either the
error was benign or the program crashed due to the error,
while 54 of the search tasks found error(s) leading to
incorrect outcome. These tasks took 10 minutes on
average to find the error. More details about the results
for injections into replace may be found in the technical
report version of this paper [27].

7 CONCLUSION
This paper presented SymPLFIED a modular, flexible
framework for performing symbolic fault injection and
evaluating error detectors in programs. We have
implemented the SymPLFIED framework for a MIPS-like
processor using the Maude rewriting logic engine. We
demonstrate the SymPLFIED framework on a widely
deployed application tcas, and use it to find a transient
error that can lead to catastrophic consequences.
Acknowledgements: This research was funded in part by
NSF grant CNS-05-51665 and CNS-04-6351. We thank the
Gigascale System Research Consortium (GSRC) and the
Motorola Center for Communications at the University of
Illinois at Urbana-Champaign for their support. We thank
Carol A. Bosley for editing assistance.

REFERENCES
[1] M. Hiller, A. Jhumka, and N. Suri. On the placement of software
mechanisms for detection of data errors. In Proc. Int'l Conf. on Dependable
Systems and Networks (DSN), pages 135-144, 2002.
[2] Pattabiraman, K., Kalbarczyk, Z., and Iyer, R. K. Automated Derivation of
Application-aware Error Detectors using Static Analysis. In Proc. of the 13th
Intl. on-Line Testing Symposium, 2007.
[3] W. Gu, Z. Kalbarczyk, R.K. Iyer, Z. Yang. Characterization of Linux
Kernel Behavior under Errors. Proc. International Conference on Dependable
Systems and Networks (DSN), pp. 459-468, 2003.
[4] Arlat, J., et al. Fault Injection for Dependability Validation: A
Methodology and Some Applications. IEEE Trans. Softw. Eng, , 1990.
[5] H. Madeira, J. Carreira, J.G. Silva. Injection of Faults in Complex
Computers. IEEE Workshop on Evaluation Techniques for Dependable Systems.
San Antonio. Texas. October 1995
[6] D. Cyrluk. Microprocessor verification in PVS: A methodology and simple
example. Tech Report SRI-CSL-93-12, 1993.
[7] R. S. Boyer and J S. Moore. "Program Verification". Journal of Automated
Reasoning 1, 1 (1985), 17-23.
[8] Krautz et al., Evaluating coverage of error detection logic for soft errors
using formal methods. In Proc. of the Conf. on Design, Automation and Test in
Europe (DATE), 2006.

PATTABIRAMAN ET AL.: SYMPLFIED 14

[9] Seshia, S. A., Li, W., and Mitra, S. Verification-guided soft error
resilience. In Proc. of the Conference on Design, Automation and Test in Europe
(DATE), 2007.
[10] A. Arora and S. S. Kulkarni. Detectors and correctors: A theory of fault-
tolerance components. Intl. Conference on Distributed Computing Systems,
pages 436--443, 1998.
[11] Nicolescu, B. Gorse, N. Savaria, Y. Aboulhamid, E.M. Velazco, R. On the
use of model checking for the verification of a dynamic signature monitoring
approach. IEEE Trans. on Nuclear Science, Vol. 52, 5(2), pp. 1555-1561, 2005.
[12] Perry F., et al., Fault-tolerant Typed Assembly Language. Proc. of Conf.
on Prog. Lang. Design and Implementation (PLDI), 2007.
[13] Matthew L. Meola and David Walker. Faulty Logic: Reasoning about
Fault Tolerant Programs. Proceedings of the European Symposium on
Programming (ESOP), 2010.
[14] King, J. C. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (Jul. 1976), pp. 385-394.
[15] W. Bush et al. A static analyzer for finding dynamic programming errors.
Software: Practice and Experience, 30(7), 2000.
[16] D. Larson and R. Hahnle. Symbolic Fault Injection, International
Verification Workshop (VERIFY), vol. 259, pp. 85-103, 2007.
[17] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
First Intl. Workshop on Rewriting Logic and its Applications, 1996.
[18] E. Clarke, A. Biere, R. Raimi, Y. Zhu. Bounded Model checking using
satisfiability solving. In Formal Methods in System Design, 2001.
[19] M. Clavel et al. The Maude Formal Tool Environment. Springer Verlag
LNCS, Vol 4624, pp. 173-178, Aug 2007.
[20] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the
effectiveness of dataflow- and control flow-based test adequacy criteria. In Proc.
Intl. Conf. on Software Engineering (ICSE), pp 191–200, 1994.
[21] Burger, D. and Austin, T. M. 1997. The SimpleScalar tool set, version 2.0.
Comput. Archit. News 25, 3, 1997.
[22] J. Lygeros and N.A. Lynch. On the formal verification of the TCAS
conflict resolution algorithms. In Proc. 36th IEEE Conf. on Decision and
Control, pp. 1829--1834, 1997.
[23] Federal Aviation Administration, TCAS II Collision Avoidance System
(CAS) System Requirements Specification,1993.
[24] N. Nakka, Z. Kalbarczyk, R.K. Iyer, J. Xu. An architectural framework for
providing reliability and security support, International Conference on
Dependable Systems and Networks (DSN), pages 585-594, 2004.
[25] Kuperman, B. A., Brodley, C. E., Ozdoganoglu, H., Vijaykumar, T. N.,
and Jalote, A. Detection and prevention of stack buffer overflow attacks.
Commun. ACM 48, 11 (Nov. 2005), 50-56.
[26] Hennessey and Patterson. Computer Organization and Design: The
hardware-software interface, Morgan Kauffman, 2011.
[27] K. Pattabiraman, N. Nakka, Z. Kalbarczyk and R. K. Iyer, “SymPLFIED:
Symbolic Program Level Fault injection and Error Detection”, Technical
Report (UILU-ENG-08-2205), University of Illinois (UIUC), January 2008.

Authors’ Biographies

Karthik Pattabiraman received the
M.S. and Ph.D. degree in computer
science from the University of Illinois
at Urbana-Champaign (UIUC) in
2004 and 2009. He is currently an
assistant professor at the University
of British Columbia in electrical and
computer engineering. His research

interests include design of reliable and secure
applications using static and dynamic analysis. Based on
his dissertation work, Pattabiraman was awarded the
William C. Carter award in 2008 by the IFIP Working
Group on Dependability and the IEEE Technical
Committee on Fault-tolerant Computing (TC-FTC). He is
a member of the IEEE and the IEEE Computer Society.

Nithin Nakka received his B.Tech
degree from Indian Institute of
Technology, Kharagpur and his M.S.
and Ph.D. degrees from the University
of Illinois at Urbana-Champaign
(UIUC), under the guidance of
Professor Ravishankar Iyer. His areas
of research interest include reliability

and hardware implemented fault-tolerance. Nakka held

positions as a research faculty in UIUC, with Professor
Iyer, and at Northwestern University with Professor Alok
Choudhary. He also worked for Motorola’s mobile
devices group. He is working for Nextest Systems.

Zbigniew T. Kalbarczyk is currently
Research Professor at the Center for
Reliable and High-Performance
Computing in the Coordinated Science
Laboratory of the University of Illinois
at Urbana-Champaign. Kalbarczyk’s
research interests are in the area of

design and validation of reliable and secure computing
systems. Currently, he is a lead researcher on the project
to explore and develop high availability and security
infrastructure (including use of dedicated software and
reprogrammable hardware) capable of managing
redundant resources to foil security threats, detect errors
in both the user applications and the infrastructure
components, and recover quickly from failures. His
research involves designing of techniques for automated
validation and benchmarking of dependable computing
systems using formal (e.g., model checking) and
experimental (e.g., fault/attack injection) methods.
Kalbarczyk served as a Program Chair of Dependable
Computing and Communication Symposium (DCCS), a
track of the International Conference on Dependable
Systems and Networks (DSN) 2007, and Program Co-
Chair of Performance and Dependability Symposium, a
track of the DSN 2002. Kalbarczyk has published over 90
technical papers and is regularly invited to give tutorials
and lectures on issues related to design and assessment of
complex computing systems. He holds a PhD degree in
computer science from the Technical University of Sofia,
Bulgaria. He is a member of the IEEE, the IEEE Computer
Society, and IFIP Working Group 10.4 on Dependable
Computing and Fault Tolerance.

Ravishankar K. Iyer is a George and
Ann Fisher Distinguished Professor of
Engineering at the University of
Illinois at Urbana-Champaign. From
2008-2011, Iyer served as the Vice
Chancellor for Research (Interim) on
the campus. He holds appointments in
the Department of Electrical and
Computer Engineering and the

Department of Computer Science. He is Director of the
Center for Reliable and High-Performance Computing
and the Chief Scientist at the Information Trust Institute.
Iyer’s research interests are in the area of dependable and
secure systems. He has been responsible for major
advances in the design and validation of dependable
computing systems. He currently leads the TRUSTED
ILLIAC project at Illinois, which is developing
application-aware adaptive architectures for supporting a
wide range of dependability and security requirements in
heterogeneous environments. Professor Iyer is a Fellow
in the AAAS, the IEEE and the ACM. He has received
several awards including the Humboldt Foundation
Senior Distinguished Scientist Award for excellence in
research and teaching, the AIAA Information Systems
Award and Medal for “fundamental and pioneering
contributions towards the design, evaluation, and
validation of dependable aerospace computing systems,”
and the IEEE Emanuel R. Piore Award “for fundamental
contributions to measurement, evaluation, and design of
reliable computing systems.”

