Error Detector Placement for Soft Computation

Anna Thomas and Karthik Pattabiraman
Department of Electrical and Computer Engineering,
University of British Columbia (UBC), Vancouver
{annat, karthikp} @ece.ubc.ca

Abstract—The scaling of Silicon devices has exacerbated the
unreliability of modern computer systems, and power constraints
have necessitated the involvement of software in hardware error
detection. At the same time, emerging workloads in the form of
soft computing applications, (e.g., multimedia applications) can
tolerate most hardware errors as long as the erroneous outputs
do not deviate significantly from error-free outcomes. We term
outcomes that deviate significantly from the error-free outcomes
as Egregious Data Corruptions (EDCs).

In this study, we propose a technique to place detectors for
selectively detecting EDC causing errors in an application. We
performed an initial study to formulate heuristics that identify
EDC causing data. Based on these heuristics, we developed
an algorithm that identifies program locations for placing high
coverage detectors for EDCs using static analysis. We evaluate our
technique on six benchmarks to measure the EDC coverage under
given performance overhead bounds. Our technique achieves an
average EDC coverage of 82%, under performance overheads of
10%, while detecting 10% of the Non-EDC and benign faults.

I. INTRODUCTION

With the reduction of chip sizes and the concomitant
increase in the number of transistors on a chip, the frequency of
hardware faults is on the rise. Traditionally, hardware errors
have been tolerated through hardware redundancy or guard
banding. Unfortunately, hardware-only solutions have high en-
ergy overheads, and become untenable as power consumption
becomes a dominant concern in processor design [1].

Recently, there have been several proposals to selectively
expose hardware faults to the software layer and tolerate
them [2], [3], [4], [5], [6]. These proposals leverage the ability
of certain software applications to tolerate faults in their data,
and still produce acceptable outputs. Such applications are
called soft computing applications [7]. Soft computing applica-
tions have gained increasing prominence, and researchers have
predicted that future workloads will belong primarily to this
category [8].

Examples of soft computing applications are multimedia
decoding applications, which can tolerate blurry decoded im-
ages, and machine learning applications, which can tolerate
noise. These applications have an associated fidelity metric,
which is a quantitative measure of the output quality. For
example, in the case of image and video decoders, the fidelity
metric is peak signal-to-noise ratio (PSNR). As long as the
produced output quality does not deviate significantly from
the fidelity metric, it is deemed acceptable. We use the term
Egregious Data Corruptions (EDCs) to denote outcomes that
deviate significantly from the fidelity metric, i.e., unacceptable
outcomes.

The error tolerance of soft computing applications does not
mean that they are resilient to all errors. In particular, an error
in a soft computing application may or may not lead to an
EDC. If it will lead to an EDC, then the application needs to
be stopped, as otherwise, its output will be unacceptable. On
the other hand, if the error will not lead to an EDC, it is better
to let the application continue rather than perform wasteful
detection and recovery, and incur unnecessary overheads. This
overhead will become more prominent as error rates increase,
as they are predicted to do so in future processors.

Our goal is to efficiently place error detectors in soft-
computing applications in order to detect errors early (thus
avoiding egregious outcomes), at the same detecting only those
errors that lead to EDCs (thus avoiding wasteful recovery).
An error detector is an assertion or check on one or more
data variables in the application. We develop heuristics that
determine where to place error detectors for avoiding EDCs,
using fault injection and static analysis of the application’s
code. While we use fault injection to develop the heuristics, we
do not require fault injection to apply the developed heuristics
to new applications. This is because our heuristics are based on
static and dynamic properties of the application’s code, and do
not rely on semantic knowledge of the application. Note that
fault-injection is a time intensive process for large applications,
and hence it is desirable to avoid it (if possible).

Prior work [9], [10], [11] has investigated the problem of
optimal error detector placement. However, these techniques
focus on placing detectors to minimize the error detection
latency or to detect specific failures such as safety violations.
In particular, they do not consider optimizing the detector
placement for minimizing the EDC rate, which is important
for soft computing applications. As we show later in this
paper, minimizing the EDC rate leads us to different placement
decisions than if we had optimized for minimizing the number
of Silent Data Corruptions (SDCs), which constitute any devi-
ation from the correct output (not only egregious ones) [12].

We make the following contributions in this work:

1) We perform fault injection into soft computing applica-
tions, and distinguish EDCs from the set of SDCs. Based
on the injections, we develop heuristics for identifying
EDC-prone regions of code or data, which are appropriate
candidates for detector placement.

2) We develop a systematic algorithm based on these heuris-
tics, that (a) ranks the data according to their EDC
causing nature, based on static analysis (b) uses a greedy
approach that combines the static information, with the
dynamic execution profile, to choose the appropriate set
of EDC data or code for placing detectors. Our algorithm
takes as input the application source code, the acceptable

Fig. 1: The EDC causing fault decoded image (left) versus Non-EDC
causing fault decoded image (right) from the JPEG decoder

performance overhead, and the execution profile data
of the application, and identifies the locations to place
detectors in the program, i.e., data or instructions.

3) We implement the algorithm within the LLVM compiler,
and evaluate its accuracy through fault-injection. We find
that the detectors placed by the algorithm provide EDC
coverage of 82% under 10% performance overhead, while
providing a Non-EDC and benign coverage of only 10%.

II. BACKGROUND

Egregious Data Corruptions (EDCs) are application out-
comes that deviate significantly from the fault free outcome,
i.e., they affect outputs egregiously. This deviation is quantified
by a fidelity metric that is well defined for most soft computing
applications [13]. For example, the fidelity metric used by
speech decoders is Segmental SNR. Silent Data Corruptions
(SDCs), or outcomes that result in any deviation in the output
from the fault free outcome, are a superset of EDCs. An SDC
is classified as EDC or Non-EDC, depending on the fidelity
threshold value of the outcome. Non-EDCs are the SDCs with
small deviation in output,i.e., SDCs that do not belong to the
category of EDCs. For brevity, we use the terms EDCs and
EDC causing errors interchangeably throughout this paper.

EDC is a relative term as it depends on how the user sets
the fidelity threshold. In this paper, we focus on detecting
errors under the assumption that the user tolerates most small
deviations in outputs, i.e., the application is used under re-
laxed conditions. For example, in image and video decoding
applications, we set the fidelity threshold based on whether
the frames are corrupted to the point of being unrecognizable
or are of very poor image quality. In other cases, where we
cannot rely on human perception, we set the fidelity threshold
to be such that around 30% of the most egregious SDCs are
categorized as EDCs (see Section VI).

The example in figure 1 shows the faulty decoded images
of the JPEG decoder (part of Mediabench [14]), when a fault
is injected into the program. The fidelity threshold is Peak
Signal to Noise Ratio (PSNR) between the fault-free decoded
image, and the faulty decoded image. As the PSNR value
becomes lower, the output corruption becomes more egregious.
Assuming a fidelity threshold value of PSNR 30, the faulty
image on the left with a PSNR of 11.37 is classified as an EDC,
while the faulty image on the right with a PSNR value of 44.79
is classified as a Non-EDC. The comparison is performed with
respect to the base image, which we do not show.

Example: We now explain the correlation between an
EDC and the program characteristics, using a function

conv422to444 from the example code shown in Fig-
ure 3 in Section IV. This example is based on the MPEG
benchmark, from the Mediabench Benchmark. The function
conv422tod44 converts from YUV 4:2:2 subsampling (U
and V components are sampled at half the rate of Y compo-
nent) to YUV 4:4:4 (all components sampled at same rate).

Challenge: Prior research has shown that faults in data
constituting higher dynamic execution time are more likely to
cause SDCs [12]. In other words, SDC causing code tends to
be on the hot paths of the application. However, EDCs are
caused by a large deviation in output, and are not necessarily
caused by faults in data on the hot paths. For example, in
Figure 3, the longest running statements are the lines 8 to 11,
the ones within two nested for loops. A fault at the branch
i < 1 at B4, or at the pointer data P1, causes an SDC but
not an EDC. However, a fault occurring at loop termination
conditions B2 and B3 cause an EDC.

Therefore, to maximize the coverage for EDCs, detectors
should be placed at code regions or data that have the highest
impact on the application’s output. The main challenge in
detecting EDCs is coming up with a general algorithm to
identify such code or data. Further, the algorithm should be
based only on the static code of the program and its execution
profile, and not require fault injections, which are expensive.
This is the main challenge we address in this paper.

III. INITIAL STUDY

This section describes our initial study for identifying
potential locations to place detectors for EDC causing faults
through fault injection experiments. We present our fault model
in section III-A and describe the fault injection experiment
in section III-B. Finally, we describe the results of the fault-
injection experiment in section III-C. Based on these results,
we develop heuristics for finding the EDC causing data in the
program, as explained in Section IV.

A. Fault Model

We consider transient hardware faults that occur in the
processor. These are usually caused by cosmic ray or alpha
particle strikes affecting flip flops and logic elements. These
factors get exacerbated as the supply voltage is reduced for
saving power in processors.

We consider faults that occur in the functional units, i.e.,
the ALU and the address computation for loads and stores.
However, faults in the memory components such as caches are
not considered, since these components are usually protected at
the architectural level using ECC or parity. We do not consider
faults in the control logic of the processor as this is a small
portion of the processor area, nor do we consider faults in
the instructions, as these can be handled through control-flow
checking techniques [15]. As in prior work, we do not consider
faults in floating point registers [12] - this is part of future
work.

B. Fault Injection Experiment

For the fault-injection experiments, we use LLFI, a pro-
gram level fault-injection tool we built for performing the
fault injection experiments [16]. LLFI works at the LLVM

compiler’s intermediate code level [17], and allows fault-
injections to be performed at specific program points, and
into specific data types. It also enables tracing the propagation
of the fault in the program by instrumenting the program at
selected points. LLFI is closely integrated with the LLVM
compiler, and can hence support a wide variety of programs.
In our prior work [16], we have quantitatively verified the
accuracy of LLFI compared to binary code level fault injection,
for soft-computing applications.

We performed the fault injection on six applications of
MediaBench I and II [14], [18]. This is a commonly used
suite of soft-computing applications pertaining to multi-media
processing. Three of the benchmarks - JPEG, MPEG2 and
H264 decoders, use PSNR as the fidelity metric. The other
three benchmarks are speech decoders - G721, GSM and
ADPCM and they use Segmental SNR as the fidelity metric.
We use a PSNR value of 30, and Segmental SNR value of 80
as fidelity threshold values to differentiate EDCs from Non-
EDCs.

In each run, a fault, i.e., a single bit flip, was injected
into the destination register of exactly one dynamic instance
of an instruction chosen at random (among all the executed
instructions), and the outcome of the fault was classified by
comparing the final output with the fault free outcome. The
fault-free or baseline outcome is obtained by running the orig-
inal executable with the same input, but without any injected
faults. We perform 1000 fault injections per benchmark and
classify the outcomes into crash, benign, EDCs and Non-EDCs

After injecting the fault, we monitored the program at
selected data items, in order to determine if the values of the
data items exhibit a deviation from their fault-free values. In
other words, we compare the value of the data items between
the fault-free and fault-injected runs (we collect these values
by instrumenting the program with the LLVM compiler). This
information will help us determine whether to place detectors
at the variable.

We split the results according to the type of the monitored
data items, since we wanted to see if there was a correlation
between the fault outcome and the type of data that exhibits
a deviation from its fault-free value. Because we perform the
injection and analysis at the LLVM intermediate-code level, we
can track the detailed provenance of the data and its subsequent
uses in the program. This also helps us formulate heuristics
later in this paper.

We chose the following data type categories for splitting
the results in order to study the correlation with data types.

1) Pointer data: Prior work has found that there is a high
probability of SDCs when the fault affects the lower order
bits of the pointer variable [12].

2) Control data: Prior work has found that a fault in control
data may cause a control deviation, which might egre-
giously affect the computation [19], [20].

We separated the faults injected into those that affected data
items that were present in the backward slice of either of these
two types of data. The backward slice of a particular variable
consists of all instructions that affect the output of the variable
through a control or data dependency [21]. A fault occurring in
the backward slice of a variable would be likely to propagate

TABLE I: Classification of faults according to the backward slices of
data categories (explained using example in Figure 3)

Data Category Explanation Eg
Pointer and Con- | The fault (a) directly affects or propagates to a pointer, before | Bl
trol affecting control data (deviation or backward slice) later in the
execution OR (b) affects backward slice of control data (without
causing a flip), and then propagates to pointer data
Pointer and No | The fault affects pointer data, but is not present in the backward | P1
Control slice of control data
Control and No | The fault either causes a branch flip without/before affecting | B2
Pointer any pointer data, or affects control backward slice without
affecting any pointer data
Neither Control | The fault gets masked before being classified as belonging to | -
nor Pointer the backward slice of control or pointer data
4500
40.00
3500
30.00
= NenPeinter NenControl
w 25.00
E Pointer Non Contral
]
g 2000 T— —® Control Non Pointer
15.00 —| |_m Control Pointer
1000 — —
N t
0.00 J
CRASH EDC Nen-EDC BENIGN

Fig. 2: Fault-Injection outcomes as per different data categories,
across benchmarks under low fidelity threshold

to the variable, and hence placing a detector at that variable
would likely detect the fault. This leads to four classification
categories as shown in table L.

C. Fault Injection Results

Figure 2 shows the average results across benchmarks for
different failure types. From the figure, the average EDC rate
across applications is 6.4%, while the Non-EDC rate is 42.8%.
The crash rate is 22.5% and the benign fault rate is 28.3%.

From the overall results, one can observe that EDCs
constitute a small, but non-trivial fraction of the application
outcomes. In fact, only 8% of the errors that do not crash the
application result in EDCs. This shows that blindly detecting
all errors would result in significant wastage of energy and
time, as many of them do not cause EDCs. This is the main
reason why we develop targeted techniques for detecting EDCs
in soft computing applications.

We observe the following trends about the relationship
between the data items monitored and the fault outcome from
Figure 2. We will use these observations for formulating
heuristics in Section IV.

R1. Control Non Pointer Faults in data items belonging to
the control backward slice (third category in table I)
are highly likely to lead to EDCs. These data items
are usually loop termination conditions, and are further
discussed in Section IV.

R2. Pointer Non Control Data items that are in the backward
slice of pointer data, but not control data (i.e., pointer non-
control) are responsible for most crashes. However, such

faults can also result in SDCs (i.e., both EDCs and non-
EDCs), especially if the fault affects the low-order bits of
the pointer variable.

R3. Non Control Non Pointer Faults in data items that do
not belong to the backward slice of control or pointer
data are mostly benign. Therefore, we do not consider
this data category in formulating heuristics.

R4. Control Pointer Although only a small fraction of faults
cause deviations in the backward slices of both control
and pointer data (around 5.8%), there is a high probability
of such faults resulting in an SDC (e.g., around 62%).
We take this into account when formulating heuristics in
Section IV.

IV. HEURISTICS

We formulated heuristics to identify detector placement
points for EDCs, on the basis of the fault injection experiments
in Section III. Our heuristics are generic, in that they can be
applied to any soft-computing application, and do not require
semantic knowledge of the application. Further, while we
use fault injection to formulate the heuristics, the heuristics
themselves do not need fault injection to be applied to new
applications.

All of these heuristics have the common characteristic of
being dependent on the size of the data being affected, either
within the branches or in downstream computations. We unify
these heuristics using a ranking expression in our algorithm
explained in Section V.

We explain the heuristics with the code in Figure 3 as
a running example. This code is based on the MPEG video
decoding benchmark from the Mediabench benchmark suite.
However, for elucidation purposes, we have added extra code
to these functions (we explain what these are later). The
store_ppm_tga function stores the decoded image in a
ppm file. The Show_Bits (N) function returns the next N
bits of the image, without advancing the pointer.

We divide the problem of formulating heuristics for iden-
tifying detector placement points into two steps. First, we
identify functions in the program that are likely to result in
EDCs when affected by faults. Second, we identify statements
(and variables) within a function at which detectors need to be
placed in order to detect EDCs.

A. Step 1: Function Ildentification

We first identify program functions in which we need to
place detectors, based on whether the functions have side
effects. A side-effect free function has the following two
characteristics, both of which must be satisfied:

1) Statements within these functions do not modify global
variables, files and pointers, though they may read them.

2) The functions have a return value and this is the only
result of the function used by its caller function

We call such functions Optimized EDC Functions (OEF).
For example in Figure 3, Show_Bits () is an OEF, as it
satisfies the conditions outlined above. Once an OEF call is
identified as EDC-causing, it suffices to place a detector at
the return value of the particular call. No other detectors are

1 void conv422to444(char #src, charx dst, int width, int
height, int offset){

w = width>>1;
4 if(dst < src + offset) //BI1

return ;

for(3=0; j < height; j++) { //B2

8 for(1i=0; i < width; i++) { //B3
9 i2 = i<<1;
10 iml =@G<1) ?0: i—1; //B4

12 dst[i2] = Clip[(21l*src[iml])>>8]; //PI

}
14 if(j + 1 < height) { //B5
15 src 4= w; /1P2
16 dst += width;

7 }

18 }

19

20 }

21 void store_ppm_tga(int width, int height){
22 int 1, j, singlecode;

char *u444[NUMFRAMES |;
24 int xcode[NUMFRAMES], codeframes|[NUMFRAMES];

26 //int =bitlocn [NUMFRAMES] is global

27 for(i=0; i < NUMFRAMES; i++){ //B6

28 for(3=0; j < width; j++)

29 singlecode += Show_Bits(bitlocn[i][j]); //CO
30 codeframes[i] = singlecode;

for (i=0; i < NUMFRAMES; i++) //B7

33 for(3=0; j < width; j++) //BS8

34 code[i][j] = Show_Bits(bitlocn[i][j]); //ClI
36 singlecode = Show_Bits(8); //C2

38 // char =source[] is global

39 if (CHROMA_FORMAT == YUV422){ //B9
40 for (i=0; i < NUMFRAMES; i++) //BI0
41 conv422todd4d(sourcel[i], ud4d4[i], width, height,

offset); //C3
oo}
43
4}
4s main(){
16 .
4 store_ppm_tga(width,height);
18
49 }
so unsigned int Show_Bits(int N){
51 //1d is a global struct
52 return 1d—>Bfr >> (32—N);

53}

Fig. 3: Example Code for Function and Data Categorization

required for the OEF, and hence the name Optimized EDC.
We find that EDCs are caused by only certain calls to OEFs,
and we formulate a heuristic for identifying such OEF calls.

HI: The likelihood of an EDC due to a fault in an OEF
increases as the amount of data affected by its return value
increases.

We formulated this heuristic based on the results R1
and R2. By the definition of OEFs, the data modified within
these functions is local to the function. Therefore, the data
modified by an OEF call is dependent on the propagation of the
function’s return value. For example, Show_Bits (), which
is an OEEF, is called at three places in the code, namely CO,
c1 and C2.! When a fault occurs in the OEEF, the return value

I'This function is called only in the manner specified in C2, in MPEG. We
add the remaining calls, to explain examples seen across other applications.

of the function call at C1 affects only one element of the 2D
code array. This fault does not cause an EDC. On the other
hand, the function call in CO is a loop carried dependency,
and the singlecode variable is assigned to the elements of
array codeframes in the outer loop. The return value from
the CO call thus influences a larger amount of data than the
return value from call C1. Therefore, we will place a detector
on the return value in call CO, but not on the return value in
call C1.

Based on the heuristic HI above, we identify the calls to
OEFs on whose return values we place detectors. Note that this
heuristic only applies to OEFs called within loops. When the
OEF is not called within a loop, we do not place any detector
at the return value. This is because such faults usually cause an
EDC when they propagate to branches, and would be caught
by detectors at those branches. For example, neither the call
C2, nor its caller function store_ppm_tga is called within
a loop. Hence, we do not place a detector after call C2.

The remaining functions are side-effect causing
functions. For example, these are conv422to444 and
store_ppm_tga, since they do not satisfy the conditions
required for being classified as an OEF. We elaborate the
heuristics applicable to such functions in the following
section.

B. Step 2: Data Categorization

Within functions that are not OEFs, we found that faults
affecting certain control and pointer data are highly likely to
cause EDCs (based on results R1, R2 and R4).

Control Data: We formulated the heuristics for control
data by analyzing the results R1 and R4. Control data can be
divided into loop or function terminating branch conditions,
and other branches, i.e., those that do not terminate loops or
functions. For example, B1 is a function terminating branch,
while j < height at B2 is a loop terminating branch. The
heuristics are based on faults that either directly affect or
propagate to these branches, and cause the branch to flip.?

H2. The EDC causing nature of the loop terminating
conditions decreases, as we go deeper within nested loops.
We formulated this heuristic based on the result R1. This is
because the amount of data modified by outer loops is much
larger than the data modified by inner loops. For example, a
fault at branch condition 1 < NUMFRAMES at B7 has a higher
likelihood of causing an EDC than one at branch condition
j < width at B8, as it affects more elements of the array
code.

H3. The likelihood of an EDC due to faults at function
terminating conditions decreases as the inter-procedural loop
nesting level increases, and as the amount of data affected in
downstream computations within that function decreases.

We formulated this heuristic based on the result RI.
The EDC causing nature of function terminating branches
decreases, as the inter-procedural loop level increases. For
example, the function terminating branch B1 has a loop level
of 1, since the function conv422to444 is called within

2In our initial study, we found that faults causing branch flips are much
more predominant than those that do not cause a flip for control data.

a loop at C3. Also, a fault at B1, causing a branch flip
to true, abnormally terminates function execution, thereby
missing the loop computations at B2. These two factors, i.e.,
the downstream loop computations and the low loop nesting
level, contribute to a high likelihood of an EDC, when the fault
occurs or propagates to B1. In cases where loops do not follow
the function terminating conditions, we see that the faults do
not cause EDCs.

H4. Branch conditions that do not terminate functions or
loops are likely to cause EDCs if and only if the amount of
data affected within the body of the branch is large.

We formulated this heuristic based on results R1 and R4:

1) When the branch body consists of assignments to point-
ers, or several elements of an array or aggregate structure,
a fault occurring at the branch results in an EDC. In the
above example, we place a detector after branch B5 since
the body of the branch changes the pointers src and dst.

2) When the branch body consists only of a change to a
single element of an array, or some local variable, a fault
in the branch results in an SDC, but not an EDC. For
example, the ternary condition i < 1 at B4 is a Non-
EDC causing branch, since it only changes the index of
one element in the array src, thereby corrupting the
value of one element of array dst.

3) When a branch condition (that does not terminate loops
or functions) has loops within it, a fault at the branch
condition has a high likelihood of causing an EDC. This
is because the amount of data modified is large in the
loop body. For example, a fault causing a branch flip at
B9 has a high likelihood of causing an EDC, since it
causes the loop at B10 to be skipped, thereby affecting
the computation of the entire array u444.

Pointer Data: Examples are pointer dereferences, accesses
to specific elements within aggregate structures, and pointer
assignments or arithmetic. Result R2 shows that the number of
faults leading to crashes, SDCs and EDCs are high for pointer
data that do not cause any control deviation. This pointer data
usually occurs within loop bodies. As prior work finds [12],
crashes are caused when a bit flip occurs in the high order bits
of the memory access, whereas SDCs are caused when the bit
flip is in the low order bits. However, we find that some pointer
address computations are more likely to cause an EDC, and
we formulate a heuristic to identify these computations.

H5. Faults in the low order bits of pointers pointing to
larger sized data have higher likelihood of causing an EDC.
We formulated this heuristic based on result R2. For example,
faults in the low order bits of pointer data for src at P2 causes
an EDC. However, a fault at the lower bits of the Clip, src
or dst array indices at P1 causes an SDC, but not an EDC.

V. APPROACH

In this section, we first present the usage model for our
technique, and then discuss our algorithms to identify program
locations for high coverage detectors for EDC causing errors.
These are based on the heuristics we developed in Section I'V.

Usage Model: The goal of our technique is to preemp-
tively detect EDC causing faults in soft computing applica-
tions, under a given performance overhead that the user is

Application

Performance Overhead
Source Code

Execution Profile

2. EDC 3
. IR . 3. Selection

1. Compiler Ranking Algorith
Algorithm gorithm

Data Variables or Locations to Protect

Fig. 4: Technique Workflow with required inputs

TABLE II: Attribute Values and Static EDC Rank for data items from
example in Figure 3. Static EDC rank is calculated using equation 1
with the values of & =4, 8 =3, u =2, and v = 1. Higher EDC rank
implies higher likelihood of EDC

Data OuterLoop | InnerLoop DomLoop DataWithin | EDC
Item Level Level Level Rank
B1 0 0 2 0 6

B2 1 1 0 0 2

B4 3 0 0 0 0.1667
B5 2 0 0 2 0.5

P2 2 0 0 1 0.25
B6 1 1 2 0 5

Co 3 0 0 12 0.1667
Cl 3 0 0 1/3 0.1667
B9 0 1 0 0 4

willing to tolerate. The technique requires as inputs from
the user: (a) the application source code, (b) the maximum
permissible performance overhead, and (c) the application’s
execution profile, under representative inputs.

The workflow of our technique is outlined in Figure 4, and
consists of three steps. First, we compile the application source
code using a standard compiler into an Intermediate Repre-
sentation (IR). The IR should retain type information from the
source code, and should be in Static Single Assignment (SSA)
form [22]. SSA requires a variable be assigned exactly once
in the program i.e., every variable in the program has a unique
instruction that assigns to it. Second, we rank the application’s
data according to their likelihood of causing an EDC using an
EDC ranking algorithm. Third, we choose the optimal data set
for detector placement under the given performance overhead
bound, using a selection algorithm that combines the obtained
EDC ranks and the runtime profiling information. We describe
the second and third phases of Figure 4 in Sections V-A
and V-B.

A. EDC Ranking Algorithm

In this phase (step 2 in Figure 4), we first identify the
initial dataset, i.e., the list of potential EDC causing data
items based on the heuristics in Section IV. We then extract
certain common attributes of these data items using static
analysis. Finally, we formulate a ranking expression using
these attributes, and rank these data items using our ranking
expression.

Initial DataSet: The initial dataset consists of all the
data categories identified through heuristics H1 to H5. These
are OEF calls, control data and pointer data. Note that this
dataset contains EDC as well as Non-EDC causing data items.
Using the heuristics, we formulated a ranking metric to rank

these data items based on their tendency to cause EDCs (when
faulty).

EDC Rank Characteristics: We discuss the charac-
teristics of the EDC rank, and the rationale behind it. In
Section IV, we found that data items that affect a larger amount
of data have a higher likelihood of causing EDCs. Hence, the
EDC rank should be higher for data items affecting larger-
sized data. In other words, for any given data item d, the
branch b it is control-dependent on, has a higher EDC rank
than d. For example in Figure 3, the EDC rank should be
such that B2egerank > BSederank > P2ederank. We ensure these
characteristics are satisfied through the computation of the
attributes in the EDC rank equation, as explained below.

Attribute Extraction: The EDC rank of a data item
depends on various attributes, which are extracted through
static analysis of the program. The attributes and their values
for the example in Figure 3 are shown in Table II. We explain
the attributes below, using the example.

1) OuterLoop Level - The maximum level of loop nesting
this particular data item is nested at. We extract this
attribute based on heuristic H2. The outermost loop is at
level 1, the next loop at level 2, and so on. For data items
that are not loop or function terminating, the loop level
is one level more than the number of loops it is nested
within. This is to satisfy the EDC rank characteristic, and
unify the attribute extraction across all data items. For
example, branch B4 in Table II has outerloop level of 3.

2) InnerLoop Level - The maximum level of loop nesting
within this data item. We extract this attribute based on
heuristics H2 and H4. For example, branches B2, B6 and
B9 have an innerloop level of 1.

3) DomLoop Level - The maximum level of loop nesting
dominated by this particular data item, but excluding the
innerloop level. The data item d dominates a loop if every
path in the control flow graph from the start node to
the loop should pass d. We extract this attribute based
on heuristic H3. For example, the value for the function
terminating condition B1 is shown in Table II.

4) DataWithin - The amount of data affected by the data
item. This applies to OEF calls, branches that are not
loop or function terminating,® and pointer data. We extract
this attribute based on heuristics H1, H4 and H5. For
pointer assignments and arithmetic, the numerical value
of datasize is equal to the level of pointer indirection. In
case of array accesses, the datasize is computed as 1/(1
+ number of array indices). For example, the datasize for
both pointer data P2, and OEF calls CO and C1 is shown
in Table II. Note that fractional values for the datasize
might be masked in some cases due to the minimum value
being 1 in the numerator. However, we find that few such
cases affect the final value of the EDC rank in practice.

Note that the first three attributes refer to the maximum nested
level of the loops, and not the number of loops. For scalability
reasons, we only consider the intra-procedural loop nesting
level when computing the outerloop level attribute for the EDC
data set. This does not affect our results for most benchmarks.

3The attributes InnerLoop and DomLoop Level, already estimates the data
affected by terminating conditions.

Static EDC Rank Expression: The EDC rank of a data
item is the likelihood of an EDC outcome, given that a fault
occurs at the data item or propagates to it. We formulate the
rank expression using the attributes identified before:

max(a * InnerLoop + 8 * DomLoop + v * DataWithin, 1)

maz(u *x Outer Loop, 1) @
where «, 3, v and p are parameters quantifying the importance
of the respective attributes, i.e., InnerLoop level, DomLoop
level, DataWithin and OuterLoop level. To avoid zero values
in the numerator and denominator, we assign the minimum
value to be 1 in both parts.

We followed an educated trial and error method to assign
the values for o, 3, v and p. The values assigned are o = 4,
B=3,v=1and p =2.

We explain the assignment of these values here. Recall
that the EDC rank is higher for data items affecting larger
sized data. The impact on the amount of data affected, is much
higher for the first three attributes (OuterLoop, InnerLoop and
DomlLoop) than for the DataWithin attribute. This is because
much higher amount of data is affected within loops than
outside loops. Hence, we assign the lowest value for v, which
is set to 1. Further, as we go deeper down nested loops, the
likelihood of an EDC outcome due to a fault in the data
item decreases. Hence, we assign the highest value for a,
the coefficient of the InnerLoop attribute, which is 4. The
DomLoop attribute has the next highest value followed by
outerloop. So, we assign the values § = 3, and p = 2. We
have experimented with other assignments in relation to each
other, and find that the above assignment is the optimal one.

B. Selection Algorithm

In this phase, i.e., step 3 in Figure 4, we identify the optimal
set of locations to place detectors in the program based on the
EDC rank (from the previous phase), the allowed performance
overhead and execution profile of the application. We use the
profile data to maintain the bound on the performance overhead
specified by the user, while accounting for the likelihood of
a fault affecting the data item. We obtain the profile data by
running the application with representative inputs provided by
the user (see Section VI).

We model the problem of selecting the EDC data items as
the 0-1 knapsack problem [23]. Each EDC data item d has an
associated weighted EDC rank dynx (the objective function
we maximize) and a performance overhead dp,, measured as
the number of extra instructions that would need to be executed
if the element is selected. Our goal is to select the items to
put into the knapsack to maximize the rank subject to a given
performance overhead. The weighted EDC rank is calculated
using the following equation:

Ayrank = (norm(dedcrank) + 1)/F‘funcrank 2)

where F is the function containing the data item d. The
normalization function norm, converts the edcrank (obtained
from previous phase) to a value between 0 and 1. The funcrank
is the rank of the function in descending order of their
execution time. We choose the set of detector locations (the
knapsack), using the following criteria

mazimize(Xdymnk) such that X(dy,) < P 3)

where P is the user specified maximum performance overhead.

A naive approach to solving the knapsack problem is a
greedy one of choosing the item with the maximum weighted
rank that satisfies the performance overhead constraint. How-
ever, a naive greedy algorithm may make a sub-optimal deci-
sion in choosing data items as it does not have a lookahead
capability. We use a variant of the greedy algorithm that has
a parameter controlling the function rank, and a lookahead
window to avoid making a short-sighted, sub-optimal decision.

We explain the algorithm using an example. Let us consider
five functions A, B, C, D and E, whose execution times are
10, 8, 6, 4 and 1 milli-seconds, respectively *. If we used a
naive greedy algorithm, then the funcrank would be simply
incremented as function execution times decreased. In this
case, A, B, C, D and E would have respective funcranks of
1, 2, 3, 4 and 5. The selection algorithm would start filling
the knapsack with data items of A in descending order of
edcrank, followed by that of B, and so on, until the maximum
performance overhead P is reached. Hence, the Non-EDC data
in function A will get included, and we may miss the EDC data
in the remaining functions, leading to a sub-optimal solution.

To overcome this problem, we use a funcrange parameter
to increment the function rank. All functions having execution
times within the funcrange have the same function rank. We
also use a lookahead window with functions having the next
higher function rank. Assuming funcrange with value 2, then
functions A, B and C have a function rank of 1, D has a rank
of 2, and E has a rank of 3. We explain how these ranks are
obtained in algorithm in Figure 5. The selection window has
functions A, B and C, while the lookahead window contains
function D. Now, the knapsack is filled in descending order
of d,ax (Where d is data items of A, B, C and D) until
all the data items in the selection window are added. Next,
the selection window slides ahead to D, and the lookahead
window slides to E. The same process of filling the knapsack
and sliding the window is repeated, until P is reached. As the
funcrange parameter increases, more functions would have the
same function rank. Hence, the choice of detector locations
would be based on a larger set of data, and hence be more
optimal than a naive greedy algorithm.

The algorithm to calculate the weighted EDC rank using
funcrange of N is presented in Figure 5. It considers the
functions in the program in decreasing order of their execution
times. All functions within the funcrange have the same func-
tion rank. When a function whose execution time is outside
the parameter is encountered, the function rank is incremented.
If a function is an OEF, it is skipped (see Section V-A). After
calculating the weighted EDC ranks for all the data items,
the final set of EDC detector locations is computed using
equation 3.

VI. EXPERIMENTAL SETUP

In this section, we present the implementation details of our
technique, followed by the benchmarks, the fidelity thresholds
and the evaluation metrics.

“4In actual implementation, we consider the number of dynamic instructions
executed by the function as its execution time.

I float funcrank = 1;
> int funcrange = N;
3 map funcrankmap;
4 map EDCrankmap;
5 int main(){
6 map weightedrankmap;
function topFunc = Function with max exec time;
8 for each function 'F' ranked in decreasing order of
execution times{
9 if (F is an OEF)

10 continue ;

11 if (topFunc.exectime/F.exectime > funcrange){
12 funcrank++;

13 topFunc = F;

14 }

15 funcrankmap[F] = funcrank;

I (j }

18 for each dataitem 'd' in initial DataSet{
19 float weightedrank calculateweightedrank(d);
20 weightedrankmap[d] weightedrank;
21 }
24 float calculateweightedrank(dataitem d){
Function F = d.getFunction();

26 return ((norm(EDCrankmap[d])+1)/funcrankmap[F]);

7 }

Fig. 5: Pseudo-code to show the calculation of weighted rank using
funcrange = N’ where EDCrankmap is map of static EDC ranks for
all data items using equation 1

Implementation: We implemented the EDC ranking
and the selection algorithm (steps 2 and 3 in Figure 4) as
custom passes in the LLVM compiler version 2.9. First, the
application source code is compiled into LLVM Intermediate
Representation (IR) along with the mem2reg optimization
(i.e., promote loads/stores to registers). Second, the IR is
statically (a) analyzed to compute the static EDC rank for the
EDC dataset, and (b) instrumented to place detectors identified
using profile data’ under the given performance overhead
bound. Third, the instrumented IR is compiled into machine
code using the LLVM compiler.

For the profile data, we need the user to provide represen-
tative inputs. However, the inputs are only used for calculating
the performance overhead and the function rank. We have
verified that the variation in EDC coverage is minimal across
the provided inputs for the benchmarks we studied. We used
funcrange of 5 in our experiments based on coverage results
obtained by varying its value (see Section VII-C). The time
required for our custom passes, is on average less than three
seconds across the benchmarks.

The error detectors are derived by replicating the static
inter-procedural backward slice of the EDC data item, and
placing a comparison statement after the copy of the item.
We do not consider reaching stores (for loads), and function
pointers when computing the backward slice. Instead, we
simulate these detectors by instrumenting the IR with trace
calls at the locations chosen for detector placement. Hence,
the coverage may be lower with actual detectors based on the
backward slice. These trace calls record the values of the EDC
data in a file, and a fault is detected if the fault-free and faulty
trace files differ. The fault-free trace file is obtained by running

SWe wrote a custom pass for obtaining profile data and for measuring the
performance overhead, using LLVM basic block profiling pass.

the instrumented program on the same input, with no faults
injected.

We measure the performance overhead of our detectors
as the dynamic execution overhead of the extra code added
(replicated code and comparison statements). We assume that
faults do not affect detectors, and hence we do not inject faults
into them. This is because we assume that only one fault occurs
in each run of the application and a fault in the detector does
not affect EDC coverage, as the worst outcome of such a fault
is that it stops the program, and does not cause an EDC.

TABLE III: Characteristics of Benchmark Programs. Higher distortion
(scaled difference) is more egregious, lower PSNR is more egregious.

Benchmark Description Input Fidelity Metric
(Lines of (threshold value)
C/C++
Code)
BlackScholes | Compute option pricing using | Sim-large Scaled difference of
(1661) Black-Scholes Partial Differ- option prices (0.3)
ential Equation
X264 Media Application perform- | test Mean distortion of
(37454) ing H.264 encoding of video PSNR (as measured
by H.264 reference
decoder) and the
encoded video’s bi-
trate (0.017)
Canneal Simulated cache-aware an- Sim-dev Scaled difference
(4506) nealing to optimize routing of routing cost
cost of a chip design between faulty and
original version
(0.026)
Swaptions Price portfolio of swaptions | Sim-small Scaled difference
(1428) using Monte Carlo Simula- of swaption prices
tions (0.00001)
JPEG Image Decoder testimg.jpg PSNR between
(30579) faulty and fault-free
decoded images(30)
MPEG2 Video Decoder meil6v2.m2v | PSNR between
(9832) faulty and fault-free
decoded image set
(30)

Benchmarks: We use four applications from Parsec [24],
and two from Mediabench [14] for evaluating our technique.
These are a mix of financial, multimedia and VLSI CAD appli-
cations, and have been used as soft computing applications in
prior work [13], [25], [20], [26]. The benchmark characteristics
are explained in Table III.

The majority of the programs are different from what we
chose in our initial study, in which we only use Mediabench.
We use only two programs from Mediabench (MPEG and
JPEG) out of the six from our initial study. We do not use G721
and GSM, because their fidelity metric values show very slight
variation, making it difficult to separate the EDCs from Non-
EDCs, even manually. ADPCM is a small benchmark program
with 740 lines of code, while H264Dec overlaps significantly
with the Parsec benchmark X264, and hence both are skipped.

The other four programs are from the Parsec suite. Canneal
is from Parsec 3.0, while the remaining three are from Parsec
2.1. We made small changes to some of the benchmark
programs as follows: (1) For Blackscholes, we removed a
loop that artifically increased the execution time and served
no other purpose (also found by prior work [26]), (2) For
Canneal, we applied a patch to reduce the load times on the
serial version [27], (3) For Swaptions, we modified the code
to include the first 240 trials of the monte-carlo simulation.

We also removed specific assertion checks on function return
values, as we do not need to ’check these checkers’. We did
not find such code in any of the other benchmarks.

Fidelity Metrics and Threshold Values: We use the QoS
metrics from prior work [26] as the fidelity metrics for the
Parsec benchmarks. We distinguish EDCs from Non-EDCs
using the fidelity threshold value (mentioned in parantheses
in column 4 of Table III). This threshold value does not
change between inputs. The distortion or scaled difference is
the difference in absolute values between faulty and original
fault-free value divided by the original fault-free value. For the
Parsec benchmarks, we chose the fidelity threshold value such
that 30% of the most egregious deviations from the SDC set
are classified as EDCs. For MPEG and JPEG, we performed
manual inspection of all the faulty outputs, and we noticed
that EDCs were caused when the PSNR value was below 30,
i.e., the images were severely distorted. Hence, we choose the
value 30 as the fidelity threshold for these two programs.

Coverage Evaluation: We evaluate our technique by
performing fault injection on the benchmark programs in
Table III. We use our LLVM compiler based fault injector
LLFI (used in the initial study in Section III-B) to perform the
injections, and classify the outcomes as Crash, Benign, EDC
and Non-EDC as explained in Section III-B. The applications
are run using the LLVM Just-In-Time (JIT) compiler with the
default optimization level of 02. We injected 2000 faults per
benchmark. The EDC rates are statistically significant within
an error bar of 1.32% at the 95% confidence interval.

We inject only one fault in each run, as we assume that
transient faults are relatively rare events compared to the
total execution time of an application. All injected faults are
executed i.e., the instruction into which the fault was injected
is executed by the program.

We measure the coverage under varying bounds on perfor-
mance overheads, i.e., 10%, 20% and 25% (provided by the
user) ®. The EDC coverage is the fraction of detected EDCs
out of total EDCs, while the Non-EDC and benign coverage
is the fraction of detected Non-EDCs and Benign faults out
of the total Non-EDC and Benign faults. We do not consider
crashes as they are easily detected by program termination.

VII. RESULTS

In this section, we present the error outcome rates for
the six benchmarks, followed by the coverage for EDC,
and Non-EDC and Benign faults under varying performance
overheads. We then study the effect of varying the funcrange
parameter on the EDC coverage, and present the EDC coverage
under varying fidelity threshold values. Finally, we present a
quantitative comparison between our technique and a technique
proposed in prior work.

A. Error Outcome Rates

Table IV shows the Crash, Benign, EDC, and Non-EDC
rates for the fault injection experiments across the six pro-
grams. The average EDC rate across these applications is

SWe also measured coverage under 15% performance overhead, but do not
present the results as they follow the trend of increasing coverages with higher
performance overheads

4.03%, while the average Non-EDC and Benign fault rate
is 57.57%. Although, this may seem to suggest that EDCs
are not very important, one should keep in mind that these
constitute the worst outcomes of the application. Further, the
average Non-EDC rate is 21%, which is five times as much
as the EDC rate. Hence, existing techniques that detect SDCs
with high coverage will not be efficient for soft computing
applications, because these techniques would also detect Non-
EDCs with high coverage resulting in wasteful detection and
recovery (we compare our technique with one such technique
in Section VII-E).

TABLE 1V: Percentage of Error outcomes in each benchmark

Benchmark Crash (%) Benign(%) EDC (%) Non-EDC(%)
BlackScholes 51.52 13.25 10 25.23

X264 28.4 64.9 2.72 4.53

Canneal 53.25 37.87 29 5.98
Swaptions 42.05 48.46 2.57 6.92

JPEG 29.27 30.38 4.03 36.27

MPEG?2 25.85 22.83 2.01 49.37

Average 38.39 36.19 4.03 21.38

B. Coverage Under Varying Performance Overheads

EDC Coverage: Figure 6 shows the absolute EDC
coverage across programs for different overheads. The average
EDC coverage across the benchmarks is 82% at 10% overhead,
85% at 20% overhead, and 86% at 25% performance overhead.
All applications except for Swaptions, have an EDC coverage
of 80-100% (average being 96%) at 25% overhead. Hence,
our technique detects EDCs with high coverage (above 80%)
in five out of six applications, with low overheads (10%).

EDC Coverage (%)

Performance Overhead (%)

Fig. 6: EDC Coverage using our technique under performance over-
heads of 10%, 20% and 25%. Higher is better.

The lowest EDC coverage of our technique is for the Swap-
tions program (45%). It is interesting to note that Swaptions
has a relatively low EDC rate of 2.5%. On further investigation,
we found that many EDCs are caused by faults in the uniform
random number generator function RanUnif (). The values
returned by RanUnif are used in the rest of Swaptions as
an input for Monte-Carlo simulations. However, this location
is not chosen by our detector placement algorithm under the
given performance overhead bounds. Our technique protects
this function call only at 35% performance overhead bound,
at which point the coverage increases to 80%. We believe this
is an anomalous case as we do not see this behaviour in any
of the other five benchmarks.

Non-EDC and Benign Coverage: Figure 7 shows the
Non-EDC and Benign coverage using our technique. Lower
coverage is better as benign and Non-EDC faults are tolerated
by the user, and we perform wasteful recomputation if these
faults are detected as EDCs and recovered from. The average
coverage is 10%, 16% and 17.6% under respective perfor-
mance overheads of 10%, 20% and 25%. Further, the average
benign fault coverage is lower than the Non-EDC coverage.

30

25

20—

15— —— H
Non-EDC
Coverage

M Benign
Coverage

Benign+ Non EDC Coverage (%)

Performance Overhead (%)

Fig. 7: Non-EDC and Benign Coverage for our technique, under
performance overheads of 10%, 20% and 25%. Lower is better.

Summary: From Figures 6 and 7, one can observe that
under 10% performance overhead, the average EDC coverage
is 82%, while the Non-EDC and Benign coverage is about
10%. When the performance overhead is increased to 25%,
the average EDC coverage is 86%, while the Non-EDC and
Benign coverage is 18%. Using the absolute rates in Table IV,
and considering the overall EDCs in the applications, this
translates to correctly detecting 3.56% from the 4.05% EDCs,
while wastefully detecting 10% from the 58% of Non-EDC
and benign faults. If we consider the coverage to include all
errors except EDCs, this corresponds to an increase in overall
coverage from 95.95% without our detectors to 99.5% with
our detectors, with 25% performance overhead across the six
applications. Therefore, our technique detects EDCs with high
coverage, while detecting Non-EDCs and benign faults with
low coverage, thereby efficiently differentiating EDC causing
faults from the set of all faults in the application.

C. EDC Coverage under varying funcrange values

The funcrange is a tunable parameter in the selection
algorithm explained in Section V-B. Figure 8 shows the effect
of funcrange on EDC coverage for the MPEG2 benchmark, for
different performance overheads. With funcrange as 1 (priority
to functions with higher execution time), the EDC coverage is
60%, 40%, and 50% under respective performance overheads
of 10%, 20% and 25%. This is because of the short-sighted
nature of the selection algorithm under small window sizes.
As the funcrange increases to 5, the EDC coverage increases
to almost 100%. However, there is almost no benefit in going
to values of 7 and 9 7. We have observed a similar effect for
other programs (not presented due to space constraints), and
this is why we use funcrange as 5 in our experiments.

"There is a small dip in coverage from window size 5 to 7. We believe this
is a statistical anomaly.

100

e —-—

s A

% 7o /A

T 60 /// —r—10 %

4

o —.—30%

g 40

2 5 —.—35%
20

1 3 5 7 =]
funcrange

Fig. 8: Effect of varying funcrange on EDC Coverage, in MPEG2
under performance overheads of 10%, 20% and 25%

D. EDC coverage under varying fidelity threshold

As mentioned before, for the four Parsec benchmarks, we
define EDCs to constitute 30% of the most egregious SDCs.
In this section, we consider how the coverage varies if we
consider X% of the most egregious SDCs to be EDCs, where
X varies from 30 to 60. We do not consider JPEG and MPEG?2,
as they use absolute PSNR values for classifying EDCs.

Figure 9 shows the average EDC coverage for the four
Parsec benchmarks as the EDC rate increases. As the % of
SDCs classified as EDCs increases from 30% to 60%, i.e., the
user or application has stricter constraints, the drop in coverage
is at most 5% under the given performance overheads. This
shows that our algorithm is reasonably robust to changes in
fidelity threshold for classifying EDCs. We do not consider
threshold values beyond 60% as at such values, EDCs are
practically indistinguishable from SDCs (for our benchmarks).

80.00

9.49
4 77.88
78.00
78.45 76.46

76.00 77.25 7533

76.69 ‘%
74.09

4.69
72.06 —4—25%

EDC Coverage(%)
~ <
I IS
[=] [=]
(=] (=]

70.08 20%

70.00 10%

69.34
68.00 1

30% 40 % 50 % 60 %
% of EDC out of total SDC

Fig. 9: Average EDC Coverage for the four Parsec benchmarks such
that X% of most egregious SDCs are categorized as EDCs (under
performance overheads of 10%, 20% and 25%)

E. Quantitative comparison with Prior Work

In this section, we quantitatively compare our technique
with that of Sundaram et al. [20] who protect an application
from soft errors by selective replication. Similar to our tech-
nique, they focus on multimedia applications that are a subset
of soft-computing applications. However, unlike our approach,
they do not distinguish between data that cause large output
deviations and those that do not, and hence they protect all
pointer and control data. In other words, they do not distinguish
between SDC-causing errors and EDC-causing errors.

We implement Sundaram et al.’s technique by considering
all control and pointer data as potential EDC data without any
ranking or OEF tagging, and use our selection algorithm (with

100.00
90.00

80,00

7000

B60.00
50.00

40.00
30.00

EDC Coverage (%)

20.00
1000
0.00

Performance Overhead (%)

Fig. 10: EDC coverage by Selective Duplication Technique [20] under
performance overheads of 10%, 20% and 25%

funcrange value of 5) to choose from the EDC data under
the given performance bounds. The main difference with our
earlier experiment is the absence of EDC data ranking that
selectively detects EDCs from Non-EDCs and benign faults.
Figure 10 shows the EDC coverage numbers under the given
performance overhead bounds. The average EDC coverage
is 56.4%, 67.5% and 68.9% under respective performance
overheads of 10%, 20% and 25%, which is much lower
than our technique (see Figure 6), for which the values are
82%, 85% and 86% respectively. The average Non-EDC and
benign fault coverage varies from 11% to 17% under the given
performance overhead bounds, which is comparable to our
technique. Thus, our technique has a higher EDC coverage
than that of Sundaram et al. at nearly the same Non-EDC and
benign fault coverage.

VIII. RELATED WORK

We classify related work into two areas, namely (1) iden-
tifying critical variables, and (2) placing error detectors in a
program. Because we have already compared our technique
with Sundaram et al [20] in Section VII-E, we do not consider
this technique here.

Identifying Critical Variables A critical variable is de-
fined as a variable that would cause a particular outcome (e.g.,
SDCs), when a fault occurs at that variable. There has been
significant work on identifying critical variables for different
kinds of failure outcomes in applications.

Cong and Gururaj [25] focus on identifying all critical
variables in an application that can tolerate deviations in output
(i.e., soft computing applications). Similar to our work, they
also consider outcomes that cause large deviations from the
correct output i.e., EDCs. They develop an algorithm to iden-
tify critical variables using static analysis, runtime profiling,
and a runtime monitoring mechanism. Their approach differs
from our work in two ways. First, they consider protecting
critical variables, rather than placing detectors. As a result,
they can incur much higher overheads than our technique,
because protecting critical variables often involves duplicating
the hot paths of the application. Second, their technique uses
two versions of code - full duplication to ensure numeri-
cally accurate outputs, versus selective replication of only
the critical variables. Based on the decision taken by the
runtime monitoring mechanism, their solution switches to full
duplication. Further, they do not present the EDC rates and the

EDC coverage of the benchmark applications, which makes it
difficult to quantitatively compare their technique with ours.

Identifying critical variables for software dependability has
been explored from a software engineering perspective [28].
A critical variable, in this case, is based on its spatial and
temporal impact, with respect to other software components.
Similar to our work, their work also uses the static and
dynamic properties of a program to quantify the impact of
a variable. However, this technique also uses the failure rate
of the variables in deciding if a variable is critical, which
requires programmer knowledge and manual effort to calculate.
In contrast, our technique is completely automated, and does
not require any semantic information from the programmer.

Khudia et al. [29] use profile-based analysis along with
symptom-detection to identify critical instructions for pro-
tecting against soft errors. They classify library and function
calls as high-value instructions, and they tag as critical all
instructions that produce the operands of the high value
instructions i.e., those instructions in the backward slices of
the high-value instructions. They perform memory and value
profiling optimizations to reduce the overheads. However,
they do not distinguish between EDC-causing and non-EDC
causing errors, and hence their approach may perform wasteful
detection and recovery for soft-computing applications.

Detector Placement Hari et al. [12] address the problem of
detector placement (and detector derivation) for SDC-causing
faults. The authors use a bottom up approach of analyzing
the assembly code of specific programs to see what properties
contribute to an SDC. Although we focus on EDCs, at a high-
level, their work is similar to ours in terms of identifying
program properties that cause a specific failure type. However,
their work differs from ours in three ways. First, though they
investigate detector placement locations, their main focus is
on reducing the performance overhead incurred by instruction
replication. Second, they rely on program specific functions
in four out of six benchmarks to develop customized detectors
(e.g., bit reversal and exponential functions). It is not clear how
representative are these functions of general programs. Third,
because of the use of high coverage customized detectors,
their approach requires fault injection and manual extraction
of specific program characteristics, at the machine code level,
which is expensive.

Pattabiraman et al. [9] develop a set of heuristics for
strategic placement of detectors to detect crash causing errors
with low detection latency. The heuristics are calculated using
the dynamic dependency graph (DDG) of the program, from
one or more input sets. While these metrics help in placing
detectors to preemptively detect crashes, their coverage for
SDC (and EDC) causing errors is low. Further, because their
approach requires constructing the DDG apriori, it has high
performance overheads.

Hiller et al. [10], [11] focus on error detector placement
from a software engineering perspective. They compare vari-
ous techniques for identifying detectors, under different error
models. However, they require fault injections to guide detector
placement, which can be time consuming, and further do not
focus on EDC-causing errors.

Snap [5] automatically identifies critical regions in code by
grouping related input bytes into fields. It relies on application

code, and one or more inputs to see how targeted input fuzzing
changes the behaviour of code. Code that causes large changes
in output is classified as critical code, while code that induces
small changes in output is classified as forgiving code. To
some extent this is similar to our work on using program
characteristics to identify detector placement points. However,
their technique requires fuzzing, which is analogous to fault
injection, and is hence time consuming.

Full duplication of programs using software redundancy
will achieve close to 100% EDC coverage, at the cost of high
performance overhead. However, there have been efforts to
reduce the performance overhead using speculative redundant
multithreading. An example is DAFT [30], in which the
average performance overhead is reduced to 38%. DAFT [30]
overcomes this by speculatively checking the results between
the original and duplicate threads, and reducing the average
performance overhead to 38% by asynchronously checking the
results. However, due to the shared memory model, DAFT does
not replicate loads and stores, and may miss faults in those
instructions. Also, as the focus is on detecting SDCs with high
coverage, and there is no effort to differentiate EDCs from this
set. Therefore, DAFT can incur high Non-EDC coverage.

IX. CONCLUSION AND FUTURE WORK

Soft computing applications tolerate most errors that result
in deviations in output or Silent Data Corruptions (SDCs).
However, they do not tolerate outcomes that deviate signif-
icantly from the fault-free outcome, e.g. major glitches in
decoded video. We classify such outcomes as Egregious Data
Corruptions (EDCs).

In this paper, we first perform a fault injection study to
identify the characteristics of EDC-causing errors in soft com-
puting applications. Our initial study showed that these EDCs
constitute only a small percentage of non-crashing errors, and
hence it is crucial to selectively detect EDCs from the set
of SDCs and benign faults. Based on the initial study, we
develop heuristics for identifying EDC-prone regions of code
and data in the application. We then develop a static analysis
algorithm for identifying detector locations for detecting EDCs
with high coverage, bounded by a given performance overhead.
We find that the detectors placed by the algorithm achieve
an average EDC coverage of 82% under 10% performance
overhead, while detecting only 10% of the total Non-EDC and
benign faults, for commonly used soft-computing applications.

As future work, we plan to implement the actual detectors
and evaluate their coverage. We will also investigate optimiza-
tions to further lower the detectors’ overheads, and to consider
a wider range of applications.

ACKNOWLEDGMENT

We thank the anonymous reviewers of DSN for their
comments that helped improve the paper. We also thank Sasa
Misailovic for help with the Parsec x264 benchmark, and Jiesh-
eng Wei for the helpful discussions. This work was supported
in part by a Discovery grant and an Engage Grant, from the
National Science and Engineering Research Council (NSERC),
Canada. We thank the Institute of Computing, Information and
Cognitive Systems (ICICS) at UBC for travel support.

(1]
[2]
[3]

(4]

[5]
(6]

[71
[8]
[91
[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]

(18]

[19]

(20]

[21]
[22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

(30]

REFERENCES

N. P. Carter, H. Naeimi, and D. S. Gardner, “Design techniques for cross-
layer resilience,” ser. DATE, 2010, pp. 1023-1028.

S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochastic
processors,” ser. DATE, 2010, pp. 335-338.

M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: an architectural
framework for software recovery of hardware faults,” ser. ISCA, 2010, pp.
497-508.

S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: saving
DRAM refresh-power through critical data partitioning,” ser. ASPLOS,
2011, pp. 213-224.

M. Carbin and M. C. Rinard, “Automatically identifying critical input
regions and code in applications,” ser. ISSTA, 2010, pp. 37-48.

L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: error
resilient system architecture for probabilistic applications,” ser. DATE,
2010, pp. 1560-1565.

L. Zadeh, “What is soft computing?” Soft computing, vol. 1, no. 1, pp.
1-1, 1997.

P. Dubey, “Recognition, mining and synthesis moves computers to the era
of tera,” Technology@ Intel Magazine, pp. 1-10, 2005.

K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Application-based metrics
for strategic placement of detectors,” ser. PRDC, dec. 2005.

M. Hiller, A. Jhumka, and N. Suri, “On the placement of software
mechanisms for detection of data errors,” ser. DSN, 2002, pp. 135-144.
M. Leeke, S. Arif, A. Jhumka, and S. Anand, “A methodology for the
generation of efficient error detection mechanisms,” ser. DSN, 2011, pp.
25-36.

S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-level
detectors for reducing silent data corruptions,” ser. DSN, 2012, pp. 181—
188.

X. Liand D. Yeung, “Application-level correctness and its impact on fault
tolerance,” ser. HPCA, 2007, pp. 181 —192.

C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool for
evaluating and synthesizing multimedia and communicatons systems,”
ser. MICRO, 1997, pp. 330-335.

N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated in-
structions in super-scalar processors,” IEEE Transactions on Reliability,,
vol. 51, no. 1, pp. 63-75, mar 2002.

A. Thomas and K. Pattabiraman, “LLFI: An intermediate code level fault
injector for soft computing applications,” ser. SELSE, 2013.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” ser. CGO, 2004, pp. 75-86.

J. Fritts, F. Steiling, and J. Tucek, “Mediabench II video: expediting the
next generation of video systems research,” SPIE - Embedded Processors
for Multimedia and Communications II, vol. 5683, pp. 79-93, 2005.

D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart, T. Metodi, and
F. Chong, “Characterization of error-tolerant applications when protecting
control data,” ser. ISWC, 2006, pp. 142 —149.

A. Sundaram, A. Aakel, D. Lockhart, D. Thaker, and D. Franklin,
“Efficient fault tolerance in multi-media applications through selective
instruction replication,” ser. WREFT, 2008, pp. 339-346.

M. Weiser, “Program slicing,” ser. ICSE, 1981, pp. 439—449.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck, “Efficiently
computing static single assignment form and the control dependence
graph,” TOPLAS, vol. 13, no. 4, pp. 451-490, 1991.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to algo-
rithms, 2001.

C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC benchmark suite:
Characterization and architectural implications,” ser. PACT, 2008, pp. 72—
81.

J. Cong and K. Gururaj, “Assuring application-level correctness against
soft errors,” ser. ICCAD, 2011, pp. 150 —157.

S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of
service profiling,” ser. ICSE, 2010, pp. 25-34.

M. Roth. (2012, Jan.) Canneal speed up loading patch.
[Online]. Available: https://lists.cs.princeton.edu/pipermail/parsec-users/
2012-January/001270.html

M. Leeke and A. Jhumka, “Towards understanding the importance of
variables in dependable software,” ser. EDCC, 2010.

D. S. Khudia, G. Wright, and S. Mahlke, “Efficient soft error protection
for commodity embedded microprocessors using profile information,” ser.
LCTES, 2012.

Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August, “DAFT: decoupled
acyclic fault tolerance,” ser. PACT, 2010, pp. 87-98.

