
Predicting Job Completion Times Using System
Logs in Supercomputing Clusters

Xin Chen⇤, Charng-Da Lu† and Karthik Pattabiraman⇤
⇤Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.

Email: {xinchen, karthikp}@ece.ubc.ca
†Buffalo, NY 14214, USA.

Email: charngdalu@yahoo.com

Abstract—Most large systems such as HPC/cloud computing
clusters and data centers are built from commercial off-the-shelf
components. System logs are usually the main source of choice
to gain insights into the system issues. Therefore, mining logs to
diagnose anomalies has been an active research area. Due to the
lack of organization and semantic consistency in commodity PC
clusters’ logs, what constitutes a fault or an error is subjective
and thus building an automatic failure prediction model from log
messages is hard. In this paper we sidestep the difficulty by asking
a different question: Given the concomitant system log messages
of a running job, can we predict the job’s remaining time? We
adopt Hidden Markov Model (HMM) coupled with frequency
analysis to achieve this. Our HMM approach can predict 75%
of jobs’ remaining times with an error of less than 200 seconds.

Keywords: Log Analysis, Prediction, Hidden Markov
Model

I. INTRODUCTION

Supercomputing systems often consist of large numbers of
commodity nodes to facilitate high-performance applications.
These systems use batch job schedulers to accommodate
a large number of users with different computational and
resource requirements. However, these systems also experience
high rates of failures, due to their large scale and complexity
of hardware and software interactions. One of the main chal-
lenges in supercomputing systems is to ensure that applications
continue to achieve high throughput and complete the task
despite hardware and software failures [1]. Therefore, it is
beneficial for the job scheduler to predict every job’s status
and use this information to make better workload management
decisions, give users feedback about their jobs’ completion
time, and perform proactive fault-management actions such as
system-initiated checkpointing.

A job is characterized by the requested resources: usually
running time and number of nodes needed. The allotted
resources are mostly reserved exclusively for that job. A
basic batch job scheduler maintains job queues and executes
jobs on a first-come-first-serve basis. Ofttimes a technique
called “backfilling” [2], which depends greatly on accurate
job runtime estimation, is adopted. Backfilling lets small jobs
to move ahead in queue to use nodes which otherwise remain
idle. In practice, many users have very poor estimation of their
job duration, causing inefficient backfilling job allocation and
overestimated queueing time prediction.

Moreover, if a job runs on a resource that becomes un-
availale, e.g. due to software hiccups or hardware failures,
before finishing the job, then the job has to be suspended a
priori and resumed later. In the past, this has been achieved
through the use of checkpointing and recovery [3], which
are reactive techniques. However, checkpointing and recovery
alone are insufficient to ensure high throughput [4], and need
to be complemented with pro-active job runtime prediction [5].
To be effective, a prediction technique should (i) predict job
termination with sufficient lead-time for the application or
system to take preventive action, and (ii) have low rates of
false-positives (e.g., system predicts a job finishes in five
minutes but it does not). The prediction should be based on a
number of indicators about a system’s health, such as system
logs, temperature, and workload measures.

In this paper, we propose a prediction technique for su-
percomputing systems that makes use of the system logs to
predict job residual times. System logs are free-form text
messages recorded by the Linux operating system’s “syslog”
facility [6]. The operating system kernel, device drivers, dae-
mon processes, and user applications all can submit message
to “syslog” whenever an event occurs. An example of such
a message is “hello world[32235]: segfault at 3fffffffd ip
000000375ca7a9cc”. System logs are produced during normal
operation, and hence the mere presence of log messages does
not indicate an error. Therefore, the main challenge is to isolate
system log messages that are indicative of job termination, and
use them to predict failures in the future.

We are not the first to use system log messages for
prediction in supercomputing systems. For example, Oliner
et al. [7] analyze failures in five supercomputing systems
based on alerts that are annotated by system administrators.
Liang et al. [8] use tagged logs from the BlueGene machine
to discover correlations between fatal and non-fatal events,
and thus predict failures. Our approach differs from these
approaches in that we start with untagged system logs and
do not require any hints or annotations from the system
administrators. By not requiring such tags or annotations, our
approach can potentially handle a more diverse and larger
volume of system logs than prior approaches.

The dataset in this study comes from the “Edge” cluster at
the State University of New York at Buffalo and comprises
one month of data across about one thousand compute nodes.



There are no annotations or tags on the data, and all that we
have available in addition to the logs themselves are the job
start and finish times, allotted nodes, and user IDs for the job.
We use Hidden Markov Models (HMMs) to learn the charac-
teristics of log messages and use them to predict job residual
times. An HMM is a Markov model in which the system being
modelled is assumed to be a Markov process with hidden
states and transitions that are not directly visible, but have
outputs that are visible. HMMs have been successfully used
in speech, handwriting and gesture recognition. HMMs are
well suited to our domain as we have the observations of the
system in the form of log messages and job completion times,
but no knowledge of the internal state of the system, which is
“hidden”.

Our main contributions are summarized as follows:
• Identify the job residual time as an important and feasible

target for prediction
• Quantify the relative importance of a log message in

residual time prediction
• Build HMMs from the log messages to predict the job

residual time
• Evaluate the accuracy of the HMMs in predicting residual

times of different types of jobs. We find that the HMMs
accurately predict the residual times for about 75% of
the jobs within 200 seconds. We can further improve the
accuracy to 93% if we train the HMMs with only the
short jobs (i.e., jobs that run for one hour or less).

The rest of the paper is organized as follows. In section
II we gives more details on HMMs, log messages, and
related work. Section III elaborates our HMM-based residual
time prediction algorithm. Section IV discusses experimental
results and analysis. The paper concludes in Section V with
suggestions for future work.

II. BACKGROUND

In this section, we present background material on Hidden
Markov Models, the logs used in our study, and related work
on log analysis.

A. Hidden Markov Models (HMMs)
An HMM is a Markov model in which the system is

driven by hidden states and observable variables depend on the
states [9]. The transition probabilities between hidden states
are similar to those in Markov chains, but each state has
an emission probability distribution over all outputs in the
HMM. Figure 1 gives an example of HMM. It is characterized
by the following modules: hidden states X = {x1, x2, x3},
observations Y = {y1, y2, y3}, transition probabilities A =
{a

ij

} = {P [q
t+1 = x

j

|q

t

= x

i

]}, output probabilities
B = {b

ik

} = {P [q
t

= y

k

|q

t

= x

i

]}, and initial state
probabilities ⇡ = {⇡

i

} = {P [q1 = x

i

]}. The q

t

’s are the time
sequence of states/observations. Collectively the parameter set
of an HMM is denoted as �=(A,B,⇡).

In this study, we calculate the transition probabilities A and
emission probabilities B from the training data. We then find
the optimal hidden state sequence for the observed sequence

x1

a11

x2

a21

a12

x3

a23

a22

a32

y1 y2 y3

b11

b12
b13

b21
b22

b23

b31
b32

b33

Fig. 1. An example of HMM

using the Viterbi algorithm [9], and predict the job residual
times using the absorption time to the final state of the HMM.

B. Supercomputing System Logs
The system logs we used are collected from the x86-

based supercomputing cluster “Edge” at SUNY at Buffalo.
The cluster runs the Linux OS and manages workload via
the PBS batch job scheduler. The schedule takes user job
scripts, allocates compute nodes, and executes the specified
commands/tasks unattended until either the job completes or
the requested time expires.

Our logs were collected during the month of April 2012.
In this month, the “Edge” contained 951 compute nodes and
executed 120,639 jobs. In our data set, most of the jobs are
short, and 58.1% of the jobs are shorter than 10 minutes. The
cumulative distribution of job lengths is shown in Figure 2 (up
to 20000 seconds). As can be seen in the figure, more than
80% of the jobs finish within 20,000 seconds.

Fig. 2. Cumulative distribution of job execution times less than 20000
seconds.

The system logs in this study are contained in the
/var/log/messages file on the compute nodes. This plain-text
file is generated by the POSIX-standard “syslog” protocol [6],
which allows any program to submit messages. Each line
in the syslog file has the following format: <timestamp>
<hostname> <program> <text>, where <program>



is a self-identified program name, e.g. kernel, pbs mom, or
dhclient, and <text> is a free-form string. Based on PBS
batch job scheduler information, we slice the log messages to
obtain per-job log message sets. In 94% of the jobs, there is no
sharing of compute nodes among jobs. This is fairly common
in supercomputing systems.

Figure 3 shows the distribution of the number of nodes
occupied by each job through its lifetime. As can be seen in
the figure, the overwhelming majority of jobs occupy a single
node of the cluster.

Fig. 3. The percentage of jobs and their occupying nodes in the category of
1, 2-10, 11-100 and larger than 100 nodes.

LOGS FOR JOB 2181416 BETWEEN 2012-04-26
23:54:48 TO 2012-04-27 06:57:47 USER 270130

NODE #1109/f15n14
Apr 27 06:57:01 f15n14 kernel: imklog 4.6.2,

log source = /proc/kmsg started.
Apr 27 06:57:01 f15n14 rsyslogd: [origin

software="rsyslogd" swVersion="4.6.2"
x-pid="1173" x-info="http://www.rsyslog.
com"] (re)start

Apr 27 06:57:02 f15n14 rpc.statd[1217]:
Version 1.2.3 starting

Apr 27 06:57:04 f15n14 kdump: kexec: loaded
kdump kernel

Fig. 4. Example log messages for a job

Figure 4 shows an example of part of a job’s log message
set. It contains a job ID (2181416 in this case), user ID
(270130), start time (2012-04-26 23:54:48), finish time (2012-
04-27 06:57:47), and a list of allocated nodes (in this case,
single node, # 1109/f15n14).

C. Related Work
Log analysis has been successfully applied to debug sys-

tems, optimize system performance, detect security breaches,
and diagnose computer system failures failures [10]. We focus
on the last category as it is most pertinent to our research.

In systems specifically engineered for high reliability such
as BlueGene, each log message is labeled with a severity level

and source hardware component, so predicting failures and
identifying the involved nodes can be performed by analyzing
the frequencies of target message types or keywords [8], [11].
However, most commodity supercomputing clusters only have
semi-structured logs composing free-form text, and extracting
useful knowledge from free-form textual strings in the logs
poses a major challenge.

Logsurfer [12] is a rule-based tool to sift the logs for
problems. It has a very expressive syntax but requires experts
such as system administrators to define the rules. Sisyphus [13]
is another toolkit designed to classify and tag log messages
based on an information-theoretic entropy method in [14]. The
results can then be easily visualized to eyeball anomalies.
However, it requires users to have a dictionary of rules for
filtering.

Many studies focus on discovering “interesting” or “ex-
ceptional” patterns in the log text without a priori notion
of “bad behavior”. Statistical techniques [15], and program
source code analysis [16] have been used to automate this task.
However, these techniques have a high rate of false positives,
and the final results still must be interpreted by human experts.

Our research avoids the previous difficulties by working on
a well-defined problem with objective criteria for the answer
quality, namely that of predicting job residual times based on
log messages. Further, we use HMMs to avoid the problem of
defining “normal” system behaviors and capture the dynamics
of running a job.

Other work [17] has used HMMs to represent syslog bevav-
iors, but they assume a tagged system. Hidden Markov Models
have also been applied in sensor networks to distinguish errors
and malicious attacks [18]. To our knowledge, we are the first
to use HMMs to residual time prediction in supercomputing
systems without requiring any tags or annotations on the logs.

III. APPROACH

In this section, we describe how we use HMMs to pre-
dict residual times from log messages. Figure 5 shows the
workflow. First, all log messages are templatized (see § III-A)
and a templatized log message set is generated for each job.
For simplicity, depending on the context, when we refer to
log messages, we mean log templates. The second step is to
choose important log messages based on sequence mining and
frequency distribution analysis, and throw away those that are
deemed unimportant or “noisy.” In the third step, we partition
the job-wise log message sets into training and testing sets.
Then for each log message in the training data, we build
a discrete HMM with an absorbing state, so each message
has its own transition matrix and emission matrix. The job
termination corresponds to the absorbing state, so in the final
step, we calculate the expected absorption time to this terminal
state, and this value is our job residual time prediction. This
value is computed whenever an important log message is seen.

A. Generate Log Templates and Sequences
Before using the log messages to build the model, we need

to turn them into structured forms. In the first step, the log



Generate log templates
and sequences

Choose important
logs and features

Build HMM for
each log message

Predict job
residual times

Fig. 5. The Prediction Workflow

messages are pruned into templates by extracting the words
and removing punctuations, numbers and description informa-
tion. For example, “puppet-agent[2210]: Finished catalog run
in 7.83 seconds” becomes a template “puppet-agent Finished
catalog run in seconds” after templatizing. The second step
is to associate the timestamp, compute node ID, job ID, and
user ID to each log template to obtain per-job log message
sequences. An example of a per-job log template sequence is
shown in Figure 6.

Time 0 : Start
...

Time t1: Important log template 1
...

Time t2: Important log template 2
...
...

Time tn: Important log template n
...

Time te: End

Fig. 6. Important logs of a job

B. Important Log Templates and Features

To identify important log templates, we use a two-step
process.

1) Identify messages that are more likely to occur towards
the end of a job.

2) Identify message sequences consisting of messages iden-
tified in the first step.

The first step is to look for log templates that have a
high frequency of occurrence near the end of a job, as such
messages are crucial to job termination. Examples of such
messages are listed in Table I. Note however, that not every
log message that appears near the end of a job is important.
For example, the log message “mpd: mpd ending’ always
appears at the end of jobs which use Intel MPI library.
However, predicting job terminations based on this message
may be futile, as it becomes too late to make any meaningful
predictions. To choose important messages, we set a threshold
of 0.6 for the message frequencies, and include any message
that has higher frequency near the end of a job.

The second step is to identify frequent message sequences
containing one or more of the message sequences identified
in the first step. We consider message sequences as a message
may be important if it is always succeeded by an important
message, even if it itself does not appear near the end of a
job. For example, the log templates “mpd: mpd starting” and
“mpd: mpd ending” almost always appear at the beginning
and the end of jobs respectively. In the dataset we have,
89.5% of “mpd: mpd starting” is followed by “mpd: mpd
ending”, and the “mpd: mpd starting” message allows more
predictions at the early time of a job. More formally, we define
confidence as the conditional probability of a log template
given another log template identified as important the first step.
A high confidence represents a strong correlation in the logs,
implying that the second message is likely to be preceded by
the first one. We tag such messages as important.

Example Log Template Frequency
mpd: mpd ending mpdid inside cleanup 0.90178
puppet-agent: content change 0.908669
sssd: shutting down 0.904806
pbs mom: req cpyfile Unable to copy file 0.939497
puppet-agent: ensure changed stopped to running 1

TABLE I
LOG TEMPLATE EXAMPLES THAT APPEAR FREQUENTLY IN THE LAST 10%

TIME OF JOBS.

C. Hidden Markov Models
The important log templates and sequences do not provide

explicit residual time information, so we need a predictive
model to quantify the residual times. We adopt HMMs for
this purpose. The underlying assumptions are: (1) the actual
system states are not directly visible and can be represent by
the Markov chains, and (2) each log template corresponds to
one or more system states, so each template has its own model.

Our HMM is shown in Figure 7. The hidden/unobservable
state x

i

models the time progress of a job. For the training
dataset, each job’s total run time is known a priori. We slice
the entire run time of a job into 10 equal, non-overlapping
intervals and assign 10 hidden states to the intervals, namely
x1 represents the first 10% of a job’s run time, x2 the second
10% of the run time, and so on. At the end, an extra state x11

is added as the absorbing state to denote the job termination.
The observation y

i

is modeled by the frequency distribution
of a log template. All log templates are classified into the
following patterns: (1) “high frequency near the beginning”,
(2) “sparse and ubiquitous”, (3) “dense and ubiquitous”, (4)
“high frequency near the end”, and (5) “extremely high fre-
quency near the end”. Examples of each category are shown in
Figure 8. The category of a log template acts as the observable
state. Whenever a new log template appears and its category
is different from the previous one, the observation is likely to
be labeled as a feature of the current log template. We also
add observation y6 to correspond the absorption state x11.

For each log template in the training dataset, we train
for the model parameters � = (A,B,⇡) as mentioned in



x1start

a11

x2
a12

· · ·
a23

x10

a22

a9,10

a10,10

x11

a11,11

a10,11

y1 y2 y3 y4 y5 y6

b11

b15b14b13
b12

b21
b22 b23

b24 b25

b10,1 b10,2 b10,3
b10,4

b10,5 b11,6

Fig. 7. HMM diagram. The xi’s correspond to the job progress and the yi’s map to the category of a log template.

(a) (b) (c)

(d) (e)

Fig. 8. Examples of categories of log templates: “high frequency near the beginning” (a), “sparse and ubiquitous” (b), “dense and ubiquitous” (c), “high
frequency near the end” (d), and “extremely high frequency near the end” (e). The x-axis is the normalized appearance time of the log template in jobs and
the y-axis is the frequency for all graphs.

§II-A. The training proceeds as follows. First, from the log
template sequence of a job, we generate an output sequence
composed of 1,2,3,4,5 and 6’s, one number for each time step
by rounding the timestamp of logs of a job to the nearest
integer. If a time step does not have any log template, we use
the prior step’s log template. Thus, the state transition in the
HMM takes place every time step until the absorption state is
reached. The choice of the time step determines the speed of
learning and its accuracy (Section IV).

A log sequence of a job always starts from the state x1

and ends at x11, and the initial probabilities ⇡ are fixed to
be 1 for x1 and 0 for the rest. With the output sequence as
described, we compute the most likely hidden state transition
sequence and the model parameters � = (A,B,⇡) using the
Viterbi algorithm [9].

D. Predict Job Residual Time

After computing the model parameters for each log tem-
plate, we predict job residual times as follows. Assume that
we see the log template sequence of a job.

1) Start from the hidden state x1, and compute its transition
matrix A and emission matrix B.

2) When an important log message s appears, estimate
its transition matrix A

0 and emission matrix B

0 and
calculate the new model.

3) Calculate the posterior probabilities of being at each
state at a specific time to decide the current hidden state
given the observed sequence.

4) Calculate the expected time needed to transition to the
absorbing state x11 of the HMM. This is the residual
time.



IV. EXPERIMENTAL EVALUATION

In this section we evaluate the proposed approach on the
April 2012 log dataset and analyze the experiment results. We
start by explaining our choice of the time step in the HMMs,
followed by an evaluation of the accuracy of the overall
method. We further refine the method using information from
short jobs alone, and examine the resulting accuracy.

A. Choosing the time step

The rate of finding the optimal hidden state sequence for the
observed sequence is proportional to the length of observed
sequences in HMM. For a certain length of job, a smaller
time step leads to a larger number of discrete time points,
thus lengthening the observed sequence. Choosing a larger
value of the time step thus trades off accuracy for learning
time. To determine an optimal value of the time step, we
randomly sample 5% of the log messages and use these
to measure the prediction accuracy and computational time.
These experiments were carried out on an Intel quad-core i7
machine with 8 GB RAM. The results are shown in Figure 9.

0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

1.2

1 10 20 30 40 50 60 70 80 90 100

Re
la

tiv
e 

Er
ro

r 

Re
la

tiv
e 

Ti
m

e 

Time Step (Seconds) 

Relative
Running Time

Relative
Computation
Error

Fig. 9. The relative running time and relative error for different time step
values (x-axis). The computation error and running time are both normalized
(to fractions and percentages).

As can be seen in the Figure, there is a sharp drop in the
running time when the time step is increased from 1 to 10
seconds. Further, increasing the time step beyond this point
does not significantly reduce the running time, but decreases
the overall accuracy considerably. Therefore, we choose a time
step of 10 seconds in our experiments.

B. Overall HMM results

We use cross-validation to verify the effectiveness of our
HMM approach. Each job and its log template set is viewed
as a single sample. A round of cross-validation partitions
the samples into training and testing sets, obtains the HMM
parameters from the training set, and validates the HMM
parameters against the testing set.

In particular, we proceed as follows. We first randomly
partition the entire collection of jobs into ten equally-sized
batches, numbered 1, 2, . . . , 10. For each k = 1, 2, . . . , 10, we
train for the HMM parameters on all but the k-th batch, and
we test the resultant parameters against the k-th batch. Thus,

the cross-validation is repeated ten times and the results are
averaged across all batches.

Table II shows the actual states and the average distance
from the predicted states of the HMM (with 95% confidence).
As can be observed from the table, the error is lowest in the
initial and final states, with the middle states having the highest
error. This is intuitive, as in the initial states, the prediction is
unlikely to forecast the end of a job, which would be correct,
and in the final state, the prediction is likely to forecast the
end of a job, which would also be correct. It is only in the
middle states that making a prediction is problematic, as one
does not have sufficient information to forecast when the job
would end, and the predicted states tend to gravitate toward
either the first or the final state.

State Error State Error
1 0.37349 ± 0.067881 6 3.949961 ± 0.281477
2 1.42278 ± 0.134552 7 3.503469 ± 0.289571
3 2.48941 ± 0.269069 8 3.776115 ± 0.348699
4 3.46872 ± 0.272842 9 2.543330 ± 0.353124
5 3.91575 ± 0.070475 10 0.877631 ± 0.046800

TABLE II
ACTUAL STATES AND THE MEAN DISTANCE FROM THE PREDICTED STATES

WITH 95% CONFIDENCE.

We also calculate the error between predicted and actual
residual times. The histogram of the error is shown in Fig-
ure 10. As can be seen in the figure, 91.28% of the jobs
have prediction error of less than 5000 seconds, and more
encouragingly, 74.43% of the job have prediction errors of
less than 200 seconds. In our data set, 70% of the jobs
finish in 2279 seconds, and 90% of the jobs last less than
60069 seconds. Further, the average running time of a job is
17315 seconds. Therefore, an error of less than 200 seconds
corresponds to a 10% error for 70% of the jobs, and is less
than 2% of the average running time of a job.

Fig. 10. The distribution of prediction errors. The x-axis is the error between
predicted and actual residual times. The y-axis is the normalized frequency
in the histogram.



C. Predicting Job Termination Within a Short Period
For many practical purposes, such as checkpointing a job

just prior to job termination, it is not worthwhile predicting
the precise residual time if a job still has several days to run.
Therefore, we would like to predict whether a given job will
finish in the next 10 minutes (or not).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
tio

n 
Ac

cu
ra

cy
 

State 

Baseline

Short job

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Po
si

tiv
e 

Pr
ed

ic
tiv

e 
Va

lu
e 

State 

Baseline

Short job

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Se
ns

iti
vi

ty
 

State 

Baseline

Short job

(c)

Fig. 11. Predicting job termination within a short period using full dataset and
short-job set. (a) The general predictive accuracy, (b) The positive predictive
value, and (c) the sensitivity. The x-axis is the number of the state.

One challenge of predicting whether a job will end within
the next 10 minutes is that jobs of different lengths contribute
to variations in the accuracy of the model. The majority of
the jobs are less than one hour long. Therefore, we reduce the
variations by using only the short jobs as training dataset.

In this experiment, we used two datasets to build the HMM:
the “baseline model” is the same as the original one and serves
as the baseline, and the “short job model” is trained by jobs
less than one hour long. Based on the prediction outcome,
there are four possibilities:

1) True positive n1: the job is predicted to end in 10
minutes and actually ends in 10 minutes

2) False negative n2: the job is predicted to end in 10
minutes but does not end in 10 minutes

3) False positive n3: the job is predicted not to end in 10
minutes and actually ends in 10 minutes

4) True negative n4: the job is predicted not to end in 10
minutes and does not end in 10 minutes

where n

i

denotes the number of predictions in the i

th category.
We define the general predictive value general accuracy,
the positive predictive value positive accuracy, and the
sensitivity value sensitivity as below:

general accuracy =
n1 + n4

n1 + n2 + n3 + n4

positive accuracy =
n1

n1 + n3

sensitivity =
n1

n1 + n2

The general predictive value is the proportion of correct
predictions in the entire dataset, the positive predictive value
is the proportion of true positives in the positive test results,
and the sensitivity is the proportion of true positives in all
predicted positives.

Figure 11 shows the relative strengths of the two models
for general accuracy, positive accuracy and sensitivity in
different states, respectively. In Figure 11(a), the two models
exhibit similar trends. At the beginning of a job, there is
usually insufficient information to make accurate prediction
of residual time. As the job progresses, more logs appear
and important log templates help improve the accuracy of the
prediction. Therefore, the general accuracy increases with
the increment of state number. Near the final state, the average
accuracies of the baseline model and short job model are
around 83% and 93% respetively. Thus, the short-job model
improves the prediction accuracy by about 10% overall.

With regard to the positive predictive value, the short job
model overwhelmingly outperforms the baseline model, as
shown in Figure 11(b). The positive accuracy of the short
job model approaches 99%, compared to 80% for the baseline
model. In other words, 99% of the jobs that the short job
model predicts will end within the next 10 minutes, actually
do so. This is because our dataset consists of a large amount
of short jobs, e.g., less than 15 minutes. At the beginning of
the jobs, the baseline job estimates that most of the jobs would
not end in the next 10 minutes, but this contradicts the reality.
Therefore, not surprisingly, the baseline HMM which is trained
using the full dataset has poor predictability compared to the
short jobs model.

The sensitivity is depicted in Figure 11(c). The baseline
model has a sensitivity near 1 during most of the states,
which makes it vulnerable to the false negatives in the pre-
diction. In contrast, the short jobs model has much lower
sensitivity for most states, except near the end of the job,
where its sensitivity matches that of the baseline model.



V. CONCLUSION AND FUTURE WORK

In this paper, we address the problem of predicting job
completion times in supercomputing clusters using Hidden
Markov Models coupled with frequency-based important log
message analysis. We model a job’s time progress as hidden
states of the HMM and the important log messages as the
observed sequence. Our HMM approach can predict 75% of
jobs within 200 seconds of error. If we train the HMM using
short jobs, which are dominant in our job collection, predicting
job termination in 10 minutes has a 1% false positive rate, and
an overall accuracy of 93%.

In the future we will explore methods to tune our HMM
approach for higher accuracy. For example, we would like to
develop an on-line prediction system which continuously trains
and updates itself using the latest job data. Further, we want to
automatically mine and identify important log subsequences
and patterns (instead of individual log messages) and build
HMMs based on them. Finally, the HMM proposed in this
paper has a fixed structure, e.g. the number of hidden and
observable states, and we will devise mechanisms to better
determine the structure of the HMM.

Acknowledgements: This work was funded in part by a
Discovery Grant from the National Science and Engineering
Research Council of Canada (NSERC), and a gift from Nokia
Corporation. The log message data is provided by the Center
for Computational Research at the State University of New
York (SUNY) Buffalo. We thank the anonymous reviewers of
the RSDA 2013 workshop for their insightful comments.

REFERENCES

[1] Y. Zhang, M. S. Squillante, A. Sivasubramaniam, and R. K. Sahoo,
“Performance implications of failures in large-scale cluster scheduling,”
in International Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), 2004.

[2] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job
scheduling – a status report,” in International Workshop on Job Schedul-
ing Strategies for Parallel Processing (JSSPP), 2004.

[3] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill,
“Recent advances in checkpoint/recovery systems,” in IEEE Parallel and
Distributed Processing Symposium (IPDPS), 2006.

[4] E. Elnozahy and J. Plank, “Checkpointing for peta-scale systems: A
look into the future of practical rollback-recovery,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 2, pp. 97 – 108, 2004.

[5] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault prediction
under the microscope: A closer look into HPC systems,” in IEEE/ACM
Conference on High Performance Computing Networking, Storage and
Analysis (SC), 2012.

[6] “http://www.infodrom.org/projects/sysklogd/.”
[7] A. Oliner and J. Stearley, “What supercomputers say: A study of five

system logs,” in International Conference on Dependable Systems and
Networks (DSN), 2007, pp. 575 – 584.

[8] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo,
“BlueGene/L failure analysis and prediction models,” in International
Conference on Dependable Systems and Networks (DSN), 2006, pp. 425
– 434.

[9] L. Rabiner, “A tutorial on hidden Markov models and selected applica-
tions in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,
pp. 257 – 286, 1989.

[10] A. Oliner, G. Ganapathi, and W. Xu, “Advances and challenges in log
analysis,” Communications of the ACM, vol. 55, no. 2, pp. 55 – 61,
2012.

[11] Y. Zhang and A. Sivasubramaniam, “Failure prediction in IBM Blue-
Gene/L event logs,” in IEEE Parallel and Distributed Processing Sym-
posium (IPDPS), 2008.

[12] J. Prewett, “Analyzing cluster log files using Logsurfer,” in The 4th
Annual Conference on Linux Clusters, 2003.

[13] J. Stearley and A. Oliner, “Bad words: Finding faults in Spirit’s syslogs,”
in IEEE International Symposium on Cluster Computing and the Grid
(CCGrid), 2008.

[14] A. Oliner, A. Aiken, and J. Stearley, “Alert detection in system logs,” in
IEEE International Conference on Data Mining, 2008, pp. 959 – 964.

[15] S. Sabato, E. Yom-Tov, A. Tsherniak, and S. Rosset, “Analyzing system
logs: A new view of what’s important,” in Workshop on Computer
Systems with Machine Learning (SysML), 2007.

[16] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Experience
mining Google’s production console logs,” in Workshop on Managing
Systems via Log Analysis and Machine Learning Techniques (SLAML),
2010.

[17] K. Yamanishi and Y. Maruyama, “Dynamic syslog mining for network
failure monitoring,” in Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, ser.
KDD ’05. New York, NY, USA: ACM, 2005, pp. 499–508. [Online].
Available: http://doi.acm.org/10.1145/1081870.1081927

[18] C. Basile, M. Gupta, Z. Kalbarczyk, and R. K. Iyer, “An approach for
detecting and distinguishing errors versus attacks in sensor networks,”
in Proceedings of the International Conference on Dependable
Systems and Networks, ser. DSN ’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 473–484. [Online]. Available:
http://dx.doi.org/10.1109/DSN.2006.11

[19] M. J. Zaki, “Sequences mining in categorical domains: Incorporating
constraints,” in 9th ACM International Conference on Information and
Knowledge Management, Nov 2000.


