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Abstract—Smart meters have gained wide adoption as an
integral part of the smart grid. However, their security remains
problematic as many attacks are discovered against them.
Smart meters are embedded devices that are constrained in
terms of computing power and memory. They are also deployed
on a large scale which imposes specific requirements (e.g., no
false positives) on any IDS developed for them.

In this paper, we propose a model-based technique for
building intrusion detection systems (IDS) for smart meters,
that takes these constraints into account. We implement our
IDS on an open source smart meter platform. We show that our
IDS imposes little performance overhead, even under severe
memory constraints, and effectively detects a wide range of
both known and unknown attacks. In comparison, existing
IDSs incur unacceptable performance overheads on the meter.
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I. INTRODUCTION

Smart grids are replacing traditional power grids around
the world. Studies estimate that over 75% of the US electric
grids will be converted to smart grids by 2016 and the
worldwide revenue of smart grids will surpass US$12 billion
[14]. Unlike traditional grids, smart grids use Advanced
Metering Infrastructure (AMI) also known as smart meters,
that provide two-way communication capabilities between
the end user and the utility provider.

Unfortunately, the rapid deployment of smart grids has
resulted in the deployment of smart meters without adequate
security and reliability planning [15, 23]. Current estimates
indicate that in the US alone, $6 billion is lost by providers
due to fraud [20] and the damage resulting from cyber
attacks is estimated to be $100 million in 2009 [9]. The
financial and strategic benefits that would be accrued from
attacking smart metering devices makes security of smart
meters an important issue as many vulnerabilities and attacks
have been discovered for these systems [7, 17, 21, 29].

Existing work on building security mechanisms for smart
meters is limited to network IDS, and remote attestation
techniques. For example, Berthier et al. [4] model the normal
behavior of the communication of the meters and propose
a specification-based IDS based on their model. However,
they only detect abnormal network traffic, which may not
be indicative of security attacks. Further, network IDSs also
may have false negatives that allow attackers to bypass the
IDS and attack the smart meter. LeMay et al. [16] propose
a virtualization-based architecture for remote attestation of
smart meters to ensure the integrity of the meter software
and hardware. However, remote attestation techniques do

not ensure that the software running on the meter does not
have vulnerabilities that can be exploited by the attacker.
In this paper, we propose a host-based intrusion detection
system (IDS) for smart meters. Smart meters have specific
requirements that make existing host-based intrusion detec-
tion systems (IDSs) unsuitable for them. These requirements
include low performance and memory overheads, scalability
to large number of meters, and ability to handle both
known and unknown attacks (see Sec. II-B). Our goal is to
build a host-based IDS for smart meters that satisfies these
requirements. To do so, we use a generic model of a smart
meter’s software (proposed in our prior work [22]) to extract
the security critical parts of the code, and to selectively
protect these parts from attacks. Using the model enables
us to capture the high level specifications of the software,
and tailor the IDS to its characteristics, thus achieving high
efficiency without compromising on coverage for the most
important attacks.

After capturing the behavior of the software using the
model, our IDS monitors the software and detects any
deviation from its specified behavior. Such deviations can
be caused by an attacker exploiting a vulnerability in the
meter software and modifying the normal execution path of
the software running on the smart meter. 7o our knowledge,
ours is the first host-based IDS that is tailored for the
requirements and characteristics of smart meters.

In this paper, we make the following contributions:

o Identify the unique requirements of IDSs for smart
meters, and show that existing IDSs do not satisfy them.

o Design an IDS based on a generic model of a smart
meter’s operations to identify security critical parts of
the code, and selectively monitor the operations in the
security critical parts. Our IDS is derived in a semi-
automated fashion, based on annotations added by the
developer to the smart meter software.

o Implement our IDS for SEGMeter, an open source
smart meter from Smart Energy Group [24].

« Evaluate our IDS in terms of its performance, memory
overhead, detection latency, and detection capabilities.
Our results show that our IDS has a performance
overhead of 4% with a detection latency of about 10
seconds, incurs no false positives, and is able to detect a
wide range of known and unknown attacks (Section V).
In comparison, other host-based IDSes have overhead
of higher than 160% for the smart meter.

While our host-based IDS has been implemented for a



specific smart meter (SEGMeter), we base it on a generic
specification of smart meter behaviour [22]. Unfortunately,
most manufacturers of smart meters do not make their code
and specifications publicly available, so we are unable to
demonstrate our system on other smart meters.

II. BACKGROUND AND RELATED WORK
A. Smart meter architecture

A smart meter is a networked embedded system. It re-
ceives data regarding power usage through analog front end
sensors. This component receives analog data (for example,
electric currents), converts it to digital data and passes it
to the microcontroller. The microcontroller unit calculates
consumption based on the input data. Smart meters are
equipped with flash memory to store both data and event logs
on the meter. They also have a real-time clock for the meters
to provide time-of-use billing services. Finally, meters are
equipped with network interfaces to communicate with the
server and other devices.

B. Constraints

Unlike general purpose computers, smart meters are low
end embedded computing devices. Therefore, they are con-
strained in terms of computing power, memory, cost, etc.
We list the key constraints that IDSs must satisfy to address
the requirements and constraints of smart meters:

1) Performance: Smart meters are low end embedded de-
vices. Memory and computation overhead are therefore
significant limiting factors. For example, the smart
meter that we use has only 16 MB of RAM available,
and runs a 240 Mhz processor.

2) No false positives: False positive happens when an
IDS reports an intrusion when no actual intrusion has
occurred. Smart meters are deployed in large scale and
communicate with the utility server. Even a very small
false positive rate will result in rapid aggregation of
false alarms which imposes large overhead on the utility
provider’s server. IDSs typically target the false positive
rate of 1% [13]. However, even a false positive rate
of 0.5% over a full-day audit trace in an area where
500,000 smart meters are deployed, means handling
2500 daily false positives for the service provider.
Therefore, it is important to have no false positives.

3) Software modification: Software running on smart me-
ters must meet specific requirements regarding the
platform it is running on. For example, the software
must read consumption data from sensors in real-
time and maintain a two-way communication with the
server. Any IDS solution that modifies the software and
changes the real-time behavior of the software is not
acceptable for smart meters.

4) Low cost: Since smart meters are deployed on a large
scale (on the order of millions), any extra cost for
individual meters incurs large financial overhead to the
whole system. For instance, adding a 10 dollar memory
chip to the meters adds up to 10$ million extra cost
when the meters are deployed for one million entities.

Hence, cost is an important constraint for smart meters,
and indirectly affects their performance.

5) Coverage of known attacks: Smart meters are essen-
tially small computers and many of the attacks devel-
oped for desktop and server systems may be mounted
on them e.g., buffer overflow attacks. An IDS for smart
meters must be able to detect these known attacks.

6) Coverage of unknown attacks: Smart meters are fairly
new systems and are currently being deployed around
the world. Therefore, the attack vectors are not well-
studied. Considering this, any IDS developed for smart
meters must have the ability to detect unknown attacks.

C. Related work

In this section, we survey prior work on IDSs and dis-
cuss their applicability with regard to the constraints. One
approach to design IDS decision engine is based on Al
techniques. For instance prior work [12, 27] uses Hidden
Markov Models to design the decision engine of IDSs.
Support Vector Machines [13] and Neural Networks [19, 25]
have also been used to detect anomalous behavior of the
system. Statistical techniques have been used to handle large
amount of audit data [28]. These techniques are suitable for
modeling complex software and detecting unknown attacks.
However, the major problem with these techniques is that
they incur significant false positives (ranging from 0.5% to
11% for the above techniques) which makes them unsuitable
for smart meters.

Another class of techniques uses static analysis to build
IDSs [8, 26]. These techniques statically build a model
of the software based on the program’s source code. The
audit data is compared against this model to identify any
deviation from the normal behavior of the system. Since
the model is built based on static analysis of the program’s
code, these techniques do not have false positives. This is
so because static analysis techniques are conservative, and
over approximate the set of program behaviors. However,
these techniques incur high overheads, often exceeding the
capabilities of the smart meter, as we show below.

Wagner et al. [26] propose a system call-based IDS that
uses static analysis to derive the system call sequences. They
propose three approaches, namely non-deterministic push
down automaton (NDPDA), call-graph and digraph. In the
call-graph technique they build a non-deterministic finite au-
tomaton (NDFA) of the system call sequences. One problem
with this representation is that of impossible paths, which
results in high false negative rates i.e., missed detections.
In the NDPDA approach, they use full system call traces
of the program and they remove impossible paths from the
call graph model. However, as we show in Sec. V, using
full system calls to build the model imposes unacceptable
overhead on smart meters due to memory constraints. The
third approach is the digraph technique which models the
possible k-consecutive system calls. The running time for
precomputing the possible sequences is exponential with
respect to k and hence incurs high performance overhead.

Giffin et al. [8] propose the Dyck model to build a context
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Dyck X X | X

NDPDA X X | X | X

HMM/NN/SVN X X | X | X | X

Statistical techniques | X X | X | X | X
Table 1

HOW EXISTING APPROACHES FOR INTRUSION DETECTION MEET OR DO
NOT MEET THE SIX CONSTRAINTS FOR SMART METERS

sensitive IDS. They offer higher detection precision through
adding context sensitivity to the model and thereby, ex-
cluding impossible paths from the model. Impossible paths
are non-legitimate sequences of the system calls that are
accepted by the context insensitive model of the software. In
their technique, they add extra null system calls to the code,
before and after system calls to make the model context
sensitive. The addition of null calls has two consequences:
1) increasing the run-time overhead due to increased number
of executed null calls, and 2) increasing the size of the
model as the extra null calls must be included in the model.
Increasing the size of the model results in increased memory
overhead. This is specially a problem for smart meters for
which memory is a constraint. For example, we inserted
null calls for the SEGMeter software, our open source smart
meter to mimic the operations of the Dyck technique. The
process resulted in about 46% increase in the number of
generated system calls during the run-time of the software.
Later in Sec. V we show that modeling the existing system
call traces already imposes an unacceptable overhead on the
SEGMeter due to memory constraints. Therefore, the 46%
increase in the size of system calls makes this solution (and
similar solutions) impractical for smart meters.

Table I shows how existing IDS techniques meet the
constraints of smart meters. We see that no system is able
to meet all the six constraints, thereby necessitating a new
IDS for smart meters.

III. THREAT MODEL

For a general purpose computer, the attacker is typically
interested in taking control of the machine for malware
distribution purposes without necessarily controlling the
software running on the system. However, for smart meters,
malicious users directly target the software running on the
meter, as this is what brings them economic value.

In this paper, we assume that the goal of the adversary is
to change the normal execution path of the software running
on the meter to achieve economic benefits, for example
paying less money for consumed power. To achieve this
goal, the adversary may exploit the potential vulnerabilities
in the smart meter and mount code injection attacks that add
malicious code to the software and change its behavior to
suit their ends. This may be done through buffer overflow
attacks, man-in-the-middle attacks, etc. mounted on, for
instance, the network interfaces of the meter where com-
mand/data is sent/received. The attacker changes the input
so that some extra commands are executed, or some some
of the commands (calculating/storing consumption data for

example) are skipped. We are not considering the cases
where the attacker mounts an attack without injecting any
code (for instance through only changing the arguments of
software system calls). Utility service providers typically
have mechanisms in place to detect abnormality in data sub-
mitted through the meters [18]. Therefore, to elude detection,
the attacker’s changes must be small and subtle. This rules
out large scale changes such as completely replacing the
meter software with the attacker’s own software, unless they
are able to mimic the operation of the meter’s software. We
do not consider attacks on the privacy of smart meters and on
the meter’s availability, i.e., denial of service attacks (DoS).

IV. APPROACH

In this section, we introduce our IDS for smart meters
and explain how we address the constraints discussed in
Sec. II-B in our design. As in other IDSs [6, 8, 11, 26, 27],
we use system calls as the input to the IDS. This allows the
IDS to access raw data of the interaction between programs
and the operating system.

The IDS is based on a high-level model of the software
running on the meter. Based on the model, we identify the
events that represent the core behavior of the software, and
therefore are important from the security point of view.
Our IDS selectively monitors the system calls based on
the model, thereby detecting the important attacks, while
satisfying the constraints of smart meters in terms of the
computation and memory overhead.

Building a model for general purpose computers’ opera-
tions may be infeasible given their vast state space of op-
erations. However, unlike general purpose computers, smart
meters are designed to carry out a specific set of operations.
As a result, it is possible to model the activities of the smart
metering software based on its architecture and use cases.
Further, there are standard specifications available for smart
meters, for example [5]. We use an abstract model derived
from such specifications, introduced in our prior work [22].
However, in that work, we used the model to drive security
attacks on smart meters, rather than to implement defensive
measures for the meters. In this paper, we use the model for
deriving the signatures of our IDS.

Based on the abstract model, we build a concrete model
of our specific smart meter. The concrete model of the meter
captures all the procedures implemented for that specific
meter and the control flow between them. To build the
concrete model of a specific instance of a meter, we map
the abstract model to the implementation of the meter, using
programmer defined tags/annotations. Different procedures
in the code are mapped to the corresponding blocks in the
abstract model and the result represents the detailed activities
performed by the specific smart meter.

We traverse the abstract model and for each activity block,
identify the class of attacks that could target the activities
(such as physical storage access, network communications,
etc.). From the set S, which contains all system calls in
the software, we create a subset P of system calls that
represent the identified activities. Through a procedure that



we explain later, we assign a subset of system calls in P to
blocks of the concrete model and generate a state machine
of system calls that constitute the signature for the IDS. The
IDS monitors the executed system calls, verifies them with
the state machine and detects any deviation from the state
machine model as an attack.

This model-based approach of selecting system calls and
building the state machine enables us to monitor the entire
state of the software (represented by the concrete model),
while considering only the important system calls that are
involved in the potential attacks against the meter. This is
crucial to the feasibility of IDS designed for smart meters
without compromising on the constraints (see Sec. IV-D).

We discuss each of the above steps in more detail below.

A. Abstract Model

As mentioned before, we use the abstract model proposed
by in our prior work [22] to derive the signatures for our
IDS. For completeness, we summarize the abstract model
here. The abstract model of the smart meter is presented
in Figure 1. Below, we briefly discuss the blocks of the
abstract model presented in Figure 1. Operations 1 through
6 represent control procedures and operations 7 through 13
represent communication procedures. The arrows between
the blocks represents the control-flow of the program.

Operation 1 through 6 are in charge of consumption
calculation. This includes initialization of the sensors, pro-
cessing the commands that are sent from the server (for
example remote disconnect to cut off the power), reading
consumption data from the sensors, calculating consumption
information, and passing this information to the processes
in charge of communicating with the server.

Operations 7 through 13 are in charge of handling
communication activities. These activities include: checking
network connectivity, receiving commands from the server,
storing consumption information on physical storage, re-
trieving data from physical storage and sending them to the
server, via the network interface.

B. Concrete model

We specialize the abstract model for specific instances of
the meter software. This is called the concrete model [22].
To build the concrete model of the meter, we map each
block in the abstract model to the corresponding functions
in the meter software that implement the functionality of that
block, in an automated fashion as we show below. Figure 2
shows a portion of the concrete model for blocks 6 and
7 of the abstract model (Figure 1). This concrete model
is for the SEGMeter, our open source smart meter from
Smart Energy Groups [24]. In block 6, powerOutputHandler
saves consumption information such as power, energy, and
energy channel, into a buffer. sendMessage passes these
information through serial communication to ser2net, which
is a specialized process to pass data between procedures of
SEGMeter. In block 7, getData receives information from
ser2net, validateMessage verifies formatting of the message,
and readMessage processes the content of the message.

1-Initialization

V.

2-Check for input BN

3-Process commands
commands

5-Calculate
consumption

6-Pass data to be sent
to server

7-Receive
consumption data
from controller

2 4-Reading data from
sensors

L

8-Check for
Availability of the
server

Available
?

10-Read data from
physical storage

]

11-Submit all data to
the server

Submit
datato
the
server?

9-Save data to the
physical storage

12-Check for incoming
j<— commands from the <
server

13-Send commands to
the controller

Figure 1. Abstract model for the smart meter

Thus, the concrete model may have multiple procedures for
each block of the abstract model.

To automate the process of creating a concrete model of a
specific smart meter, we need semantic information provided
by the developer. The developer of the smart meter software
needs to add tags to the procedures in the code as per their
functionality. We use these tags to automatically generate
the concrete model. We design our tagging system so that
it satisfies two main goals:

1) Ease of use: The process must be straightforward for
the developer so that it is conveniently integrated with
the design process.

2) Flexibility: The process of concrete model generation
must be flexible to be applied to different implementa-
tions of the smart meter.

To achieve the above goals, we design a hierarchical
tagging system, that lets the developer express the intended
functionality of a procedure in terms of a n-tuple of common
operations performed by the meter. Because smart meters
typically perform a small set of operations, it is possible
to assign unique labels for each of these activities, and map
the procedures to the activities.The activities are represented
by the tags. By using the tags, the developer does not need
to directly map the procedures to the blocks of the abstract
model. The hierarchical structure helps the developer do the
process step by step and to refine the state space iteratively.
This system also provides the flexibility to generate the con-
crete model for a wide range of different implementations,
as one procedure may have multiple tags associated with it.

The code developer adds the tags as comments at the
beginning of each procedure. Our custom model generator
parses the code and based on the assigned tags, places
the procedures in appropriate blocks. Further, the model
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Figure 2. Concrete model for portion of the abstract model

generator creates the call graph of the procedures based on
which the control flow between the blocks of the concrete
model is determined. Due to space constraints, we do not
present the format of the tags or the grammar we defined
for the annotations.

C. System call selection and State Machine Generation

The abstract model and concrete model of smart meter
together identify the system calls that are likely to be in-
volved in attacks, and hence must be monitored. To identify
the key system calls that are likely to be involved in security
attacks, we first traverse the abstract model step by step and
according to the functionality of each block, find if there are
attacks that target those functionalities. This process is done
manually, but using a well defined algorithm as we explain
below (this process can be automated in future work).

Our goal is to find P, the set of system calls to be
monitored. We use the classification proposed by Hansman
et al. [10] to find the attacks that correspond to each block.
Examples of attacks classes include spoofing, sniffing, etc.
We assume S to be the set of all system calls generated
by the smart meter software. For each functionality targeted
by an attack in the classificiation, we add the system calls
in S that represent those functionalities to the set P. For
instance, there is a message passing step (for passing con-
sumption data) between blocks 6 and 7 in the abstract model
(Figure 1). The message passing procedure is vulnerable to
a man-in-the-middle attack and data spoofing. The system
calls representing message passing include connect, send,
and recv. Therefore, we add these system calls to the set P.

Once we find the priority set P, we need to construct
the state machine for the system calls in P. We follow the
procedure below.

1) For each block of the concrete model, identify all the
system calls in P that are associated with that block.
2) From the system calls associated with each block, select
the ones relating to the specific functionalities of that
block (for instance, connect and socket system calls for
server communication blocks, read and write system
calls for storage blocks, etc.)
3) Until all the blocks of concrete model are covered do
a) Pick an unmarked system call s that appears in
the maximum number of the blocks of the concrete
model. This results in reducing the size of P while
providing high coverage across all blocks of the
concrete model.
b) Mark system call s

4) Output all the marked system calls
After assigning the system calls to the blocks of the
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Figure 3. The state machine based on the concrete model: here the

sequence time socket* write represents the flow of this small section of
the concrete model.

concrete model, we build a state machine that represents
the concrete model of the smart meter.

Figure 3 shows a small section of the concrete model
where the consumption data is received from the sensors
through serial communication and stored in the physical
storage. Three procedures of the code, namely checkTime(),
serialHandler(), and updateNodeList() are represented by
three system calls: time, socket, and write. The procedures
are executed one after another and serialHandler() executes
in a loop. Therefore, the regular expression corresponding
to these blocks will be time socket* write. After identifying
the system calls corresponding to the blocks of the concrete
model using the procedure above, we build the expression
through backward traversal of the concrete model and ex-
traction of the patterns that correspond to the paths.

D. Discussion

In this section, we discuss how our IDS addresses the
constraints outlined in Sec. II-B.

1) Performance: To build an efficient IDS, we have to
be able to select a subset of system calls that are
representative of the behavior of the software. Our
technique enables us to select limited system calls
that efficiently cover the important components of the
concrete model regarding the potential attacks against
the smart meter. In section V, we show the overhead
benefits of having a compact model for smart meters
that are memory-constrained devices.

2) No false positives: The concrete model of the smart
meter is built based on the static analysis of the code
for a specific model of the meter. Therefore, similar to
other static analysis approaches [8, 26], our technique
has no false positives.

3) Software modification: The only modification we make
to the code is the addition of tags to the procedures
to automatically generate the concrete model of the
software. It is important to note that the tags are
treated as comments in the code, and are read only
by our model generator. Hence, they do not affect the
execution of the code or its performance.

4) Low cost: Our technique is designed to build a model
of software running on the smart meter that covers all
the key components of the software but at the same
time has a small size, and therefore, fits in the meter’s
memory. This means that it can be deployed on existing
smart meters, without any new components.

5) Coverage of known attacks: Discussed in section V.

6) Coverage of unknown attacks: Discussed in section V.



Generalizability: The abstract model represents the main
functionalities of the meters that are common among differ-
ent instances of meters. These functionalities are defined in
standard documents released by government departments in
charge of deploying smart meters [1, 2]. As smart meters in
each region must comply with these standards, we believe
that the procedure of applying the abstract model to smart
meters and designing the IDS, can be generalized to meters
from different vendors. However, we have not been able to
veriffy this generalizability of our technique as we do not
have access to the code of other smart meters.

V. EVALUATION

A. Experimental setup

We implement our solution for the SEGMeter, an open
source smart meter from smart energy groups [24] (Fig. 4).
SEGMeter consists of two main boards: 1) an Arduino
board [3] with ATMEGA32x series microcontroller which
is connected to a set of sensors, receives sensor data, and
calculates consumption information and, 2) a gateway board
with Broadcom BCM3302 V2.9 240MHz CPU and 16 MB
RAM. The gateway board has LAN and Wifi network
interfaces, and communicates with the utility server. It
runs OpenWrt, which is a Linux distribution for embedded
devices. OpenWrt allows the system developer to customize
the device according to the limited resources.

The meter software consists of about four thousand lines
of code and it is written in C++ and the Lua language. The
C++ code resides on the Arduino board and the Lua code
resides on the gateway board. The boards communicate with
each other through a serial interface.

Our IDS runs on the gateway board and has two major
components. The first components starts when the smart
meter boots up and attaches strace to the process we are
monitoring. strace intercepts every system call made by the
process and logs it to a file. The second component of the
IDS runs every T seconds, reads the log file, compares
it with the model, clears the log, and raises an alarm if
a mismatch occurs. We have set 7 = 10seconds in our
experiments. For SEGMeter, our IDS is built based on 29%
of total system calls. Examples of the system calls selected
in our IDS include: open, write, recv, send, connect, read,
close, ioctl. Other system calls such as utime, fstat, chdir,
_newselect, pause, time, gettimeofday, etc. were not selected
through our process explained in Sec. IV. We manually
added the tags required to generate the concrete model of
the meter (Sec. IV). The entire process took about 6 hours.

In our experiments, we first measure the performance
overhead of our IDS under memory constraints that are
typical for smart meters. We compare the performance of
our IDS to existing techniques that use the full system
call trace of the software to monitor its operation. We call
this IDS the full trace IDS. Then we evaluate the detection
performance of our technique for both unknown and known
attacks. Finally, we discuss the effect of detection latency,
T, on the performance of our IDS.

Figure 4. SEGMeter: our open source meter testbed. The board on the
left is the gateway board in charge of communicating with the server, and
the board on the right is the Arduino board that receives consumption data
from the sensors.

B. Results

Performance overhead: As stated earlier, an IDS devel-
oped for smart meters should be able to operate under severe
memory constraints, and still achieve reasonable overheads.
The SEGMeter has a total of 12MB RAM available. To
study the effect of memory constraints, we added dummy
processes to take up memory with no processing overhead.
We run our model-based IDS and the full-trace IDS under
these constraints.

We measure the performance overhead as the ratio of
the time taken to read the system call log, analyze it, and
compare it against the model, to the time taken by the smart
meter software to produce the trace. Note that we do not
perturb the software in anyway except to run strace on it,
which has minimal overhead (less than 1%). Table II shows
the results.

As can be observed from the table, the performance
overhead for the full-trace IDS is considerably higher than
that incurred by our IDS. Even when the entire memory
of the SEGMeter is available to the IDS, the overhead for
the full-trace IDS is over 100%, while our IDS has only
4% overhead. This means that for 10 second logs, the full-
trace IDS takes more than 10 seconds to perform detection
and hence, falls behind the software. Further, increasing the
the time between analyzing the logs does not help with the
overhead of full-trace IDS as the size of the log will also
increase (we have verified this for 10, 20, 30 second logs).

The main reason for poor performance of the full-trace
IDS is that it significantly increases the size of the model
compared to our IDS, and hence causes thrashing i.e., page
faults due to the working set size not fitting in memory.
This can be confirmed by the fact that the overhead of the
full-trace IDS increases as the memory available decreases
from 12 MB to 6 MB. Considering the long lifetime of
smart meters (over 15 years), this overhead can be a major
problem, as memory requirements may change substantially
in this time frame. On the other hand, the performance
overhead of our IDS remains constant as the memory
capacity is decreased, even down to 6 MB.

Unknown attacks: As stated in the threat model
(Sec. III), the goal of the attacker is to change the behavior
of the software in a way that is stealthy and not easily
detectable. To do this, the attacker needs to intercept the
program when it is running and inject code to change the
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Full-trace IDS (10s)

[ 165.2% | 214.6% | 315.1% |

Model-based IDS (10s) | 4.0% | 40% | 4.0% |

Component

Random (%)

Popular system calls

Full trace (%)

Minimum

Modcl-based (%)
Average

Maximum

Server communication

32

36

92

59

62

63

Storage & retrieval

14

2

84

73

74

78

Serial

)

28

88

67

72

74

Total

29.3

36.0

88.0

674

69.6

71.7

Table II
RUNNING TIME OVERHEAD OF OUR MODEL-BASED TECHNIQUE AND
COMPLETE-SYSTEM-CALLS TECHNIQUE.

flow of execution (e.g., through a buffer overflow attack).
Therefore, to mimic unknown attacks, we developed a code
injection procedure that works as follows.

For each injection, a random procedure of the software
containing system calls is selected and a few (1 to 8) lines of
code are copied and pasted in the same procedure. Only one
injection is performed per run to increase the stealthiness of
the attack. While the attacks generated may not achieve the
attacker’s desired goals, they serve as a means to evaluate
the detection capability of our model against stealthy attacks
that change the execution of the code. The attacks generated
using the above technique are difficult to detect because (1)
we do not introduce new system calls that would trigger
IDSs that look for system calls outside the allowed set, and
(2) the copy-pasted code belongs to the original software
and would hence be missed by IDSs that do not consider
the system call ordering in their signatures.

To perform the injections, we divided the components of
the software into three categories: 1) server communication:
the functions that communicate with the utility server, 2)
storage and retrieval: the functions that process consumption
data, back it up, read it from flash memory, etc., and 3) serial
communication: the functions that receive and process con-
sumption data through serial communication interface from
procedures in charge of consumption calculation. Using the
above procedure, we created 50 injections in each category,
adding up to a total of 150 injections.

In addition to the full-trace IDS introduced earlier, we
compare our IDS with two other IDSs, namely (1) random,
and (2) most-popular. In the random IDS, we picked the
system calls to monitor randomly from the set of all the
system calls in the software. In the most-popular IDS, we
picked the system calls that have the highest frequency in
the code. The expectation is that the higher the frequency
of a system call, the better coverage it potentially provides.
In both cases, we chose the same number of system calls to
monitor as our model-based IDS, for fairness.

The detection results are shown in Table III. The random
IDS provides an average coverage of 29.3%. and the most-
popular IDS provides an average coverage of 36%. Our IDS
provides an average coverage of 69.6%, while the full-trace
IDS provides an average coverage of 88%. The reason that
the full-trace IDS does not provide 100% coverage is that
many of the procedures contain loops, and mutating the lines
within a loop does not change the system call sequences.

When building the model-based IDS according to the
steps provided in Sec. IV-B, it is possible that we have more
than one option for assigning system calls to blocks of the
concrete model to build the IDS. To study the effect of these

Table III
CODE INJECTION DETECTION COVERAGE OF OUR TECHNIQUE VERSUS
OTHER TECHNIQUES FOR EACH SUB-SYSTEM OF THE METER

options, we study the maximum and minimum coverage
provided by the different sets of system calls chosen by our
IDS. Note that the maximum/average/minimum results are
calculated for each component by considering all possible
combinations of the system calls chosen by our IDS for that
component. As the table shows, the difference between the
maximum and minimum values of total coverage is 4.3%.
This shows that the effect of different combinations on the
coverage of the IDS is negligible, as long as it is based on
the procedures provided in Sec. IV-B.

Known attacks: To evaluate our IDS against real attacks
on smart meters, we implemented two attacks introduced for
smart meters in our prior work [22]. We also implemented
two more attacks in this paper for the SEGMeter. To our
knowledge, there is no publicly available dataset of attacks
for smart meters at the system call granularity that we can
use for our evaluation.

The goal of attacks in [22] is to help the attacker gain
financial benefits from tampering with the meter software
through changing the consumption data, etc. Further, we
verified that none of these four attacks are detected by server
side defences or other techniques developed on the meter.
We briefly explain the attacks below:

1. Communication interface attack: The goal of this attack
is to modify consumption data sent to the server. ser2net is
a component of SEGMeter that receives consumption data
from the Arduino board and passes it to the gateway board
(Figure 2). We injected code to change the information flow
from ser2net and modify the data before it is sent [22].

2. Physical memory attack: The SEGeter writes data to
flash memory whenever the network is not available. We
injected code to temporarily disable the network so that data
is written to flash memory. This provides the opportunity for
the attacker to modify data on the flash memory so when
the data is retrieved, false data is sent to the server [22].

3. Buffer full attack: We changed the control flow of the
communication between the gateway board and controller
board to send fake 128 byte messages with a frequency of
30 times per second. This causes the receiver buffer on the
controller board to always be full. Therefore, any legitimate
command sent from the server will not be processed, includ-
ing disconnection requests.

4. Data omission attack: We inject code that connects to
the port 2000, which is the port through which the gateway
board and the Arduino board communicate and exchange
consumption data. The timeout for the communication is 10
seconds. Our attack code periodically (after the 10 second
timeout) connects to port 2000 and reads available consump-
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Figure 5. CPU overhead for different monitoring time values (7).

tion data. This data will be deleted by the controller board
after it is read. Therefore, when the legitimate connection
is established again, this data is not available to be sent to
the server, and hence the server records lower consumption
data than the legitimate consumption.

Our IDS was able to successfully detect all four attacks
above. As explained in Sec. IV, we follow a comprehensive
attack classification to identify security critical system calls
for blocks of our model. All of the attacks we considered
use one or more system calls that we identify as security
critical in Sec. IV. Hence, our IDS successfully detects all
the attacks. This reiterates the value of using model-based
techniques to choose the system calls to monitor in the IDS.

Detection latency: As mentioned before, our IDS reads
the generated system calls every T seconds and compares
it with the model. Therefore, the value of 7 determines the
maximum delay for detecting attacks. However, a smaller
T results in higher performance overhead, as it is more
intrusive.

Fig. 5 shows the variation of the performance overhead
incurred by our IDS versus parameter 7. We observe that at
T = 10s, the performance overhead drops to 4.15% and we
choose this value as the timeout 7. We believe this delay is a
reasonable trade-off between latency and overhead. Note that
even with a delay of 1 second, our performance overhead
is only 16%, which is 10x less than the overhead of the
full-trace IDS (at 160%). This is the average performance
overhead among different model-based IDSs that can be
built. But the performance does not change significantly
between different model-based IDSs (less than 2%) as the
size of the model is the same for all of them.

VI. CONCLUSION

In this paper, we identified the constraints posed by
smart meters for intrusion detection systems, and designed a
model-based IDS that satisfies these constraints. We showed
that our IDS incurs low performance overhead on our smart
meter while providing reasonable detection coverage for
both known and unknown attacks.

Future work will consist of improving the accuracy of our
IDS for unknown attacks and extending our IDS for smart
meters other than SEGMeter. We will also investigate tech-
niques to automate the extraction of system call sequences
from the concrete model.
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