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ABSTRACT
Web applications have become one of the fastest growing
types of software systems today. Despite their popularity,
understanding the behaviour of modern web applications is
still a challenging endeavour for developers during develop-
ment and maintenance tasks. The challenges mainly stem
from the dynamic, event-driven, and asynchronous nature
of the JavaScript language. We propose a generic technique
for capturing low-level event-based interactions in a web ap-
plication and mapping those to a higher-level behavioural
model. This model is then transformed into an interactive
visualization, representing episodes of triggered causal and
temporal events, related JavaScript code executions, and
their impact on the dynamic DOM state. Our approach,
implemented in a tool called Clematis, allows developers to
easily understand the complex dynamic behaviour of their
application at three di↵erent semantic levels of granularity.
The results of our industrial controlled experiment show that
Clematis is capable of improving the task accuracy by 61%,
while reducing the task completion time by 47%.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging-
Tracing; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement

General Terms
Design, Algorithms, Experimentation

Keywords
Program comprehension, event-based interactions, JavaScript

1. INTRODUCTION
JavaScript is widely used today to create interactive mod-

ern web applications that replace many traditional desktop
applications. However, understanding the behaviour of web
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applications is a challenging endeavour for developers [19,
24]. Program comprehension is known to be an essential
step in software engineering, consuming up to 50% [8] of the
e↵ort in software maintenance and analysis activities.

First, the weakly-typed and highly-dynamic nature of Java-
Script makes it a particularly di�cult language to analyze.
Second, JavaScript code is extensively used to seamlessly
mutate the Document Object Model (DOM) at runtime.
This dynamic interplay between two separate entities, name-
ly JavaScript and the DOM, can become quite complex to
follow [18]. Third, JavaScript is an event-driven language al-
lowing developers to register various event listeners on DOM
nodes. While most events are triggered by user actions, tim-
ing events and asynchronous callbacks can be fired with no
direct input from the user. To make things even more com-
plex, a single event can propagate on the DOM tree and
trigger multiple listeners according to the event capturing
and bubbling properties of the event model [22].

Unfortunately, despite its importance and challenges, the-
re is currently not much research dedicated to supporting
program comprehension for web applications [10]. Popular
tools, such as Firebug and Chrome DevTools, are limited in
their capabilities to support web developers e↵ectively.

In this paper, we present a generic, non-intrusive tech-
nique, calledClematis, for supporting web application com-
prehension. Through a combination of automated Java-
Script code instrumentation and transformation, we capture
a detailed trace of a web application’s behaviour during a
particular user session. Our technique transforms the trace
into an abstract behavioural model, preserving temporal and
causal relations within and between involved components.
The model is then presented to the developers as an interac-
tive visualization that depicts the creation and flow of trig-
gered events, the corresponding executed JavaScript func-
tions, and the mutated DOM nodes, within each episode.

To the best of our knowledge, we are the first to provide a
generic technique for capturing low-level event-based inter-
actions in a JavaScript application, and mapping and visual-
izing those interactions as higher-level behavioural models.
Our work makes the following key contributions:

• We propose a generic technique for capturing and pre-
senting the complex dynamic behaviour of web appli-
cations. In particular, our technique:

– Captures the consequences of JavaScript and DOM
events in terms of the executed JavaScript code,
including the functions that are called indirectly
through event propagation on the DOM tree.



– Extracts the source-and-target relations for asyn-
chronous events, i.e., timing events and XML-
HttpRequest requests/callbacks.

– Identifies and tracks mutations to the DOM re-
sulting from each event.

• We build a novel model for capturing the event-driven
interactions as well as an interactive, visual interface
supporting the comprehension of the program through
three di↵erent semantic levels of zooming granularity.

• We implement our technique in a generic open source
tool calledClematis [1], which (1) does not modify the
web browser, (2) is independent of the server technol-
ogy, and (3) requires no extra e↵ort from the developer
to use.

• We empirically evaluate Clematis through two con-
trolled experiments comprising 34 users in total. One
of the studies is carried out in a lab environment, while
the other is carried out in an industrial setting. The
results of the industrial experiment show that Clema-
tis can reduce the task completion time by 47%, while
improving the accuracy by 61%.

2. RELATED WORK
UI Feature Location. Li and Wohlstadter [13] present a
tool called Script Insight to locate the implementation of a
DOM element in JavaScript code. Similarly, Maras et al.
[14, 15] propose a technique for deriving the implementa-
tion of a UI feature on the client side. While similar to our
work at a high level, in these approaches the user needs to
select a visible DOM element and its relevant behaviour in
order to investigate its functionality. This manual e↵ort can
easily frustrate the user in large applications. Further, these
techniques are not concerned with capturing event-based in-
teractions. Finally, the model they derive and present to the
user contains low-level information and noise, which can ad-
versely influence program comprehension.

Capture and Replay. Related to our work are ‘capture
and replay’ techniques for web applications [5, 6, 16, 17, 21].
The goal in most of these techniques is to find a deterministic
way of replaying the same set of user events for debugging
purposes. Instead of simply replaying recorded events, our
approach aims at detecting causal and temporal event-based
interactions and linking them to their impact on JavaScript
code execution and DOM mutations.

Visualization. There are many tools that use visualiza-
tion to improve the process of understanding the behaviour
of software applications. For instance, Extraviz [9] visual-
izes dynamic traces of Java applications to assist with pro-
gram comprehension tasks. However, their approach does
not concern itself with building a model of the web applica-
tion, while ours does.

Zaidman et al. [24] propose a Firefox add-on called FireDe-
tective, which captures and visualizes a trace of execution
on both the client and the server side. Their goal is to make
it easier for developers to understand the link between client
and server components, which is di↵erent from our approach
which aims to make it easier for developers to understand
the client-side behaviour of the web application.

FireCrystal [19] is another Firefox extension that stores
the trace of a web application in the browser. It then vi-
sualizes the events and changes to the DOM in a timeline.
FireCrystal records the execution trace selectively similar to

our work. But unlike Clematis, FireCrystal does not cap-
ture the details about the execution of JavaScript code or
asynchronous events. Another limitation of FireCrystal is
that it does not link the triggering of events with the dy-
namic behaviour of the application, as Clematis does. Dy-
naRIA [4] focuses on investigating the structural and quality
aspect of the code. While DynaRIA captures a trace of the
web application, Clematis facilitates the process of com-
prehending the dynamic behaviour using a high-level model
and visualization based on a semantically partitioned trace.

3. CHALLENGES AND MOTIVATION
Modern web applications are largely event-driven. Their

client-side execution is normally initiated in response to a
user-action triggered event, a timing event, or the receipt
of an asynchronous callback message from the server. As a
result, web developers encounter many program comprehen-
sion challenges in their daily development and maintenance
activities. We use an example, presented in Figures 1–2, to
illustrate these challenges. Note that this is a simple exam-
ple and these challenges are much more potent in large and
complex web applications.

Challenge 1: Event Propagation. The DOM event
model [22] makes it possible for a single event, fired on a
particular node, to propagate through the DOM tree hierar-
chy and indirectly trigger a series of other event-handlers at-
tached to other nodes. There are typically two types of this
event propagation in web applications; (1) with bubbling en-
abled, an event first triggers the handler of the deepest child
element on which the event was fired, and then it bubbles up
and triggers the parents’ handlers. (2) when capturing is en-
abled, the event is first captured by the parent element and
then passed to the event handlers of children, with the deep-
est child element being the last. Hence, a series of lower-level
event-handlers, executed during the capturing and bubbling
phases, may be triggered by a single user action. The ex-
istence or the ordering of these handlers is often inferred
manually by the developer, which becomes more challeng-
ing as the size of the code/DOM tree increases.

Example. Consider the sample code shown in Figures 1–2.
Figure 1 represents the initial DOM structure of the appli-
cation. It mainly consists of a fieldset containing a set of
elements for the user to enter their email address to be reg-
istered for a service. The JavaScript code in Figure 2 partly
handles this submission. When the user clicks the submit

button, a message appears indicating that the submission
was successful. This message is displayed from within the
event-handler submissionHandler() (line 7), which is at-
tached to the button on line 2 of Figure 2. However, after a
few seconds, the developer observes that the message unex-
pectedly starts to fade out. In the case of this simple exam-
ple, she can read the whole code and find out that the click
on the submit button has bubbled up to its parent element,
namely fieldset. Closer inspection reveals that fieldset’s
anonymous handler function is responsible for changing the
value of the same DOM element through a setTimeout func-
tion (lines 3–5 in Figure 2). In a more complex application,
the developer may be unaware of the existence of the par-
ent element, its registered handlers, or the complex event
propagation mechanisms such as bubbling and capturing.

Challenge 2: Asynchronous Events. Web browsers pro-
vide a single thread for web application execution. To cir-



1 <BODY>
2 <FIELDSET class="registration">
3 Email: <INPUT type="text" id="email"/>
4 <BUTTON id="submitBtn">Submit </BUTTON >
5 <DIV id="regMsg"></DIV>
6 </FIELDSET >
7 </BODY>

Figure 1: Initial DOM state of the running example.

cumvent this limitation and build rich responsive web ap-
plications, developers take advantage of the asynchronous
capabilities o↵ered by modern browsers, such as timeouts
and XMLHttpRequest (XHR) calls. Asynchronous program-
ming, however, introduces an extra layer of complexity in
the control flow of the application and adversely influences
program comprehension.

Timeouts: Events can be registered to fire after a cer-
tain amount of time or at certain intervals in JavaScript.
These timeouts often have asynchronous callbacks that are
executed when triggered. In general, there is no easy way
to link the callback of a timeout to its source, which is im-
portant to understand the program’s flow of execution.

XHR Callbacks: XHR objects are used to exchange data
asynchronously with the server, without requiring a page
reload. Each XHR goes through three main phases: open,
send, and response. These three phases can be scattered
throughout the code. Further, there is no guarantee on the
timing and the order of XHR responses from the server. As
in the case of timeouts, mapping the functionality triggered
by a server response back to its source request is a challeng-
ing comprehension task for developers.

Example. Following the running example, the developer
may wish to further investigate the unexpected behaviour:
the message has faded out without a direct action from the
developer. The questions that a developer might ask at this
point include: “What exactly happened here?” and “What
was the source of this behaviour?”. By reviewing the code,
she can find out that the source of this behaviour was the
expiration of a timeout that was set in line 4 of Figure 2 by
the anonymous handler defined in lines 3–5. However the
callback function, defined on line 22 of Figure 2, executes
asynchronously and with a delay, long after the execution of
the anonymous handler function has terminated. While in
this case, the timing behaviour can be traced by reading the
code, this approach is not practical for large applications. A
similar problem exists for asynchronous XHR calls. For in-
stance, the anonymous callback function of the request sent
in the informServer function (line 17, Figure 2) updates the
DOM (line 18).

Challenge 3: Implications of Events. Another chal-
lenge in understanding the flow of web applications lies in
understanding the consequences of (in)directly triggered ev-
ents. Handlers for a (propagated) DOM event, and callback
functions of timeouts and XHR requests, are all JavaScript
functions. Any of these functions may change the observable
state of the application by modifying the DOM. Currently,
developers need to read the code and make the connections
mentally to see how an event a↵ects the DOM state, which
is quite challenging. In addition, there is no easy way of pin-
pointing the dynamic changes made to the DOM state as a
result of event-based interactions. Inferring the implications
of events is, therefore, a significant challenge for developers.

1 $(document).ready(function () {
2 $( '#submitBtn ').click(submissionHandler);
3 $( ' fieldset.registration ').click(function () {
4 setTimeout(clearMsg , 3000);
5 }); });
6 ...
7 function submissionHandler(e) {
8 $( '#regMsg ').html("Submitted!");
9 var email = $( '#email ').val();

10 if (isEmailValid(email)) {
11 informServer(email);
12 $( '#submitBtn ').attr("disabled", true);
13 }
14 }
15 ...
16 function informServer(email) {
17 $.get( '/register/ ' , { email }, function(data) {
18 $( '#regMsg ').append(data);
19 });
20 }
21 ...
22 function clearMsg () {$( '#regMsg ').fadeOut (2000) ;}

Figure 2: JavaScript code of the running example.

Example. After the submitBtn button is clicked in the
running example, a confirmation message will appear on-
screen and disappear shortly thereafter (lines 8&22, Figure
2). Additionally, the attributes of the button are altered to
disable it (line 12). It can be di�cult to follow such DOM-
altering features in an application’s code.

4. APPROACH
In this section, we describe our approach for addressing

the challenges mentioned in the previous section. The over-
all process consists of the following main steps:

• First, our technique captures a fine-grained trace of all
semantically related event-based interactions within a
web application’s execution, in a particular user ses-
sion. The collection of this detailed trace is enabled
through a series of automated JavaScript transforma-
tions (Section 4.1).

• Next, a behavioural model is extracted from the infor-
mation contained within the trace. The model struc-
tures the captured trace and identifies the implicit
causal and temporal relationships between various eve-
nt-based interactions (Section 4.2).

• Finally, based on the inferred behavioural model, our
approach generates an interactive (web-based) user in-
terface, visualizing and connecting all the pieces to-
gether. This interactive visualization assists develop-
ers during their web application comprehension and
maintenance tasks (Section 4.3).

We describe each step further below. Our technical report [3]
contains a more elaborate description of the technical details
of the approach.

4.1 JavaScript Transformation and Tracing
To automatically trace semantically related event-based

interactions and their impact, we transform the JavaScript
code on-the-fly. Our approach generates a trace comprising
multiple trace units. A trace unit contains information ac-
quired through the interception of a particular event-based
interaction type, namely, DOM events, timing events, XHR



calls and callbacks, function calls, and DOMmutations. The
obtained trace is used to build a behavioural model (as de-
scribed in subsection 4.2).

Interposing on DOM Events. There are two ways event
listeners can be bound to a DOM element in JavaScript.
The first method is programatically using the DOM Level
1 e.click=handler or DOM Level 2 e.addEventListener

methods [22] in JavaScript code. To record the occurrence of
such events, our technique replaces the default registration
of these JavaScript methods such that all event listeners are
wrapped within a tracing function that logs the occurring
event’s time, type, and target.

The second and more traditional way to register an event
listener is inline in the HTML code, e.g., <DIV onclick=‘-

handler();’>. The e↵ect of this inline assignment is seman-
tically the same as the first method. Our technique inter-
poses on inline-registered listeners by removing them from
their associated HTML elements, annotating the HTML el-
ements, and re-registering them using the substituted ad-

dEventListener function. This way we can handle them
similarly to the programmatically registered event handlers.

Capturing Timeouts and XHRs. For tracing timeouts,
we replace the browser’s setTimeout() method and the call-
back function of each timeout with wrapper functions, which
allow us to track the instantiation and resolution of each
timeout. A timeout callback usually happens later and trig-
gers new behaviour, and thus we consider it as a sepa-
rate component than a setTimeout(). We link these to-
gether through a timeout_id and represent them as a causal
connection later. In our model, we distinguish between
three di↵erent components for the open, send, and response

phases of each XHR object. We intercept each component
by replacing the XMLHttpRequest object of the browser. The
new object captures the information about each component
while preserving its functionality.

Recording Function Traces. To track the flow of execu-
tion within a JavaScript-based application, we instrument
three code constructs, namely function declarations, return
statements, and function calls. Each of these code constructs
are instrumented di↵erently, as explained below.

Function Declarations: Tracing code is automatically add-
ed to each function declaration allowing us to track the flow
of control between developer-defined functions by logging
the subroutine’s name, arguments, and line number. In case
of anonymous functions, the line number and source file of
the subroutine are used as supplementary information to
identify the executed code.

Return Statements: Apart from reaching the end of a
subroutine, control can be returned back to a calling func-
tion through a return statement. There are two reasons
for instrumenting return statements: (1) to accurately track
nested function calls, and (2) to provide users with the line
numbers of the executed return statements.

Function Calls: In order to report the source of a function
invocation, our approach also instruments function calls.
When instrumenting function calls, it is important to pre-
serve both the order and context of each dynamic call. To
accurately capture the function call hierarchy, we modify
function calls with an inline wrapper function. This allows
us to elegantly deal with two challenging scenarios. First,
when multiple function calls are executed from within a sin-
gle line of JavaScript code, it allows us to infer the order

of these calls without the need for complex static analysis.
Second, inline instrumentation enables us to capture nested
function calls.

DOM Mutations. Information about DOMmutations can
help developers relate the observable changes of an applica-
tion to the corresponding events and JavaScript code. To
capture this important information, we introduce an ob-
server module into the system. This information is inter-
leaved with the logged information about events and func-
tions, enabling us to link DOM changes with the JavaScript
code that is responsible for these mutations.

4.2 Capturing a Behavioural Model
We use a graph-based model to capture and represent

a web application’s event-based interactions. The graph
is multi-edge and directed. It contains an ordered set of
nodes, called episodes, linked through edges that preserve
the chronological order of event executions.1 In addition,
causal edges between the nodes represent asynchronous even-
ts. We describe the components of the graph below.

Episode Nodes. An episode is a semantically meaningful
part of the application behaviour, initiated by a synchronous
or an asynchronous event. An event may lead to the exe-
cution of JavaScript code, and may change the DOM state
of the application. An episode node contains information
about the static and dynamic characteristics of the applica-
tion, and consists of three main parts:

1. Source: This is the event that started the episode and
its contextual information. This source event is either
a DOM event, a timeout callback, or a response to an
XHR request, and often causes a part of the JavaScript
code to be executed.

2. Trace: This includes all the functions that are exe-
cuted either directly or indirectly after the source event
occurs. A direct execution corresponds to functions
that are called from within an event handler on a DOM
element. An indirect execution corresponds to func-
tions that get called due to the bubbling and capturing
propagation of DOM events. The trace also includes
all (a)synchronous events that were created within the
episode. All the invoked functions and initiated events
are captured in the trace part, and their original order
of execution and dependency relations are preserved.

3. Result: This is a section in each episode summariz-
ing the changes to the DOM state of the application.
These changes are caused by the execution of the episo-
de trace and are usually observable by the end-user.

Edges. In our model, edges represent a progression of time
and are used to connect episode nodes. Two types of edges
are present in the model:

• Temporal: The temporal edges connect one episode
node to another, indicating that an episode succeeded
the previous one in time.

• Causal: These edges are used to connect di↵erent com-
ponents of an asynchronous event, e.g., timeouts and
XHRs. A causal edge from episode s to d indicates
episode d was caused by episode s in the past.

1
Because JavaScript is single-threaded on all browsers, the events are

totally ordered in time.



Figure 3: Top: menu of Clematis. Bottom: overview of a captured story.

Algorithm 1: Story Creation
input : trace
output: story

Procedure CreateModel() begin

1 G < V,E > story  ;
2 ecurr, eprev  ;
3 ⌃tu ExtractAndSortTraceUnits(trace)
4 foreach tu 2 ⌃tu do

5 if eprev == ;||eprev.ended()&&
tu.type == episodeSource then

6 ecurr  CreateEpisode()
7 ecurr.source SetEpisodeSource(tu)
8 V  V [ ecurr

9 else if tu.type == FunctionTrace||EventHandler ||
(tu.type == XHRCallback||TimeoutCallback
&& ¬episodeEndCriteria) then

10 ecurr.trace ecurr.trace [ tu

11 else if tu.type == DOMMutation then

12 ecurr.results ecurr.results [ tu

13 if episodeEndCriteriaSatisfied then

14 E  E [ createTemporalLink(eprev, ecurr)
15 eprev  ecurr

16 timeoutMap<TimeoutSet, TimeoutCallback>
 MapTimeoutTraceUnits(⌃tu)

17 XHRMap<XHROpen, XHRSend, XHRCallback>
 MapXHRTraceUnits(⌃tu)

18 E  E [ ExtractCausalLinks(timeoutMap, XHRMap)
19 story  BuildStory(G < V,E >)
20 return story

Story. The term story refers to an arrangement of episode
nodes encapsulating a sequence of interactions with a web
application. Di↵erent stories can be captured according to
di↵erent features, goals, or use-cases that need investigation.

Algorithm 1 takes the trace collected from a web appli-
cation as input and outputs a story with episodes and the
edges between them. First, the trace units are extracted
and sorted based on the timestamp of their occurrence (line
3). Next, the algorithm iteratively forms new episodes and
assigns trace units to the source, trace, and the result fields
of individual episodes. If it encounters a trace unit that
could be an episode source (i.e., an event handler, a time-
out, or an XHR callback), a new episode is created (lines
5–6) and added to the list of nodes in the story graph (line
8). The encountered trace unit is added to the episode as its
source (line 7). Line 9 shows di↵erent types of trace units
that could be added to the trace field of the episode. This
trace is later processed to form the complete function call
hierarchy as well as each function’s relation with the events
inside that episode. Next, DOM mutation units that were
interleaved with other trace units are organized and linked to
their respective episode (lines 11–12). An episode terminates
semantically when the execution of the JavaScript code re-

lated to that episode is finished. The algorithm also waits
for a time interval ⌧ to ensure that the execution of immedi-
ate asynchronous callbacks is completed (line 13). When all
of the trace units associated with the source, trace, and re-
sult of the episode are assigned and the episode termination
criteria are met, a temporal edge is added to connect the
recently created episode node to the previous one (line 14).
The same process is repeated for all episodes by proceeding
to the next episode captured in the trace (line 15). After
all episodes have been formed, the linkages between distant
asynchronous callbacks – those that did not complete im-
mediately – are extracted and added to the graph as causal
edges (lines 16–18). Finally, the story is created based on
the whole graph and returned (lines 19–20).

4.3 Visualizing the Captured Model
In the final step, our technique produces an interactive

visualization of the generated model, which can be used by
developers to understand the behaviour of the application.
The main challenge in the visualization is to provide a way
to display the model without overwhelming the developer
with the details. To this end, our visualization follows a
focus+context [7] technique that provides the details based
on a user’s demand. The idea is to start with an overview
of the captured story, let the users determine which episode
they are interested in, and provide an easy means to drill
down to the episode of interest. With integration of focus
within the context, developers can semantically zoom into
each episode to gain more details regarding that episode,
while preserving the contextual information about the story.

Story Map, Queries, and Bookmarking. A menu bar is
designed for the visualization that contains two main parts:
the story map and the query mechanism (Figure 3, top).
The story map represents a general overview of the whole
story as a roadmap. Based on a user’s interaction with the
story (e.g., episode selection), the episodes of interest are
highlighted on the roadmap. The query section enables users
to search and filter the information visualized on the screen.
Users can filter the episodes displayed on the screen by the
episode types (i.e., Event, Timeout, or XHR). They can also
search the textual content of the events as well as the ac-
tual code. Moreover, they have the option to bookmark
one or more episodes while interacting with the target web
application. Those episodes are marked with a star in the
visualization to help users to narrow the scope and spot re-
lated episodes (e.g., episode #6 in Figure 3 is bookmarked).
The episodes’ timing information is also shown.

Semantic Zoom Levels. The visualization provides 3
semantic zoom levels. The first level displays all of the



Figure 4: Three semantic zoom levels in Clematis.
Top: overview. Middle: zoomed one level into an
episode, while preserving the context of the story.
Bottom: drilled down into the selected episode.

episodes in an abstracted manner, showing only the type
and the timestamp of each episode (Figure 3, bottom).

When an episode is selected, the view transitions into the
second zoom level, which presents an outline of the selected
episode, providing more information about the source event
as well as a high-level trace (Figure 4, middle). The trace at
this level contains only the names of the (1) invoked func-
tions, (2) triggered events, and (3) DOM mutations, caused
directly or indirectly by the source event. The user can view
multiple episodes to have a side-by-side comparison.

The final zoom level exhibits all the information embedded
in each episode, i.e., detailed information about the source
event, the DOM mutations caused by the episode, and the
low-level trace. The trace of an episode at this level includes
a sequence diagram of the dynamic flow of all the invoked
JavaScript functions and events within that episode. Upon
request, the JavaScript code of each executed function is
displayed and highlighted (Figure 4, bottom).

Table 1: Adapted comprehension activities.
Activity Description
A1 Investigating the functionality of (a part of) the sys-

tem
A2 Adding to / changing the system’s functionality
A3 Investigating the internal structure of an artifact
A4 Investigating the dependencies between two artifacts
A5 Investigating the run-time interaction in the system
A6 Investigating how much an artifact is used
A7 Investigating the asynchronous aspects of JavaScript
A8 Investigate the hidden control flow of event handling

4.4 Tool Implementation: Clematis
We implemented our approach in a tool called Clematis,

which is freely available [1]. We use a proxy server to au-
tomatically intercept and inspect HTTP responses destined
for the client’s browser. When a response contains Java-
Script code, it is transformed by Clematis. We also use
the proxy to inject a JavaScript-based toolbar into the web
application, which allows the user to start/stop capturing
their interactions with the application. The trace data col-
lected is periodically transmitted from the browser to the
proxy server in JSON format. To observe low-level DOM
mutations, we build on and extend the JavaScript Mutation
Summary library [12]. The model is automatically visual-
ized as a web-based interactive interface. Our current im-
plementation does not capture the execution of JavaScript
code that is evaluated using eval. Clematis provides ac-
cess to details of captured stories through a RESTFul API.
More details may be found in our technical report [3].

5. CONTROLLED EXPERIMENTS
To assess the e�cacy of our approach, we conducted two

controlled experiments [23], one in a research lab setting
and the other in an industrial environment. Common design
elements of both experiments are described in this section.
The next two sections (6–7) are each dedicated to describing
the specific characteristics and results of each experiment
separately. Details of the tasks and questionnaires used for
both experiments can be found in our technical report [3].

Our evaluation aims at addressing the following research
questions:
RQ1 Does Clematis decrease the task completion duration

for common tasks in web application comprehension?
RQ2 Does Clematis increase the task completion accuracy

for common tasks in web application comprehension?
RQ3 For what types of tasks is Clematis most e↵ective?
RQ4 What is the performance overhead of using Clema-

tis? Is the overall performance acceptable?

5.1 Experimental Design
The experiments had a “between-subject” design; i.e., the

subjects were divided into two groups: experimental group
using Clematis and control group using other tools. The as-
signment of participants to groups was done manually, based
on the level of their expertise in web development. We used
a 5-point Likert scale in a pre-questionnaire to collect this
information, and distributed the level of expertise in a bal-
anced manner between the two groups. None of the partic-
ipants had any previous experience with Clematis and all
of them volunteered for the study.

Task Design. The subjects were required to perform a
set of tasks during the experiment, representing tasks nor-
mally used in software comprehension and maintenance ef-



Table 2: Comprehension tasks used in study 1.
Task Description Activity

T1 Locating the implementation of a
feature modifying the DOM

A1, A4

T2 Finding the functions called after a
DOM event (nested calls)

A1, A4, A5

T3.a Locating the place to add a new func-
tionality to a function

A2, A3

T3.b Finding the caller of a function A4, A5
T4.a Finding the functions called after a

DOM event (nested calls + bubbling)
A1, A4, A5

T4.b Locating the implementation of a UI
behavior

A1, A3, A4

T5.a Finding the functions called after a
DOM event (bubbling + capturing)

A1, A5, A8

T5.b Finding the changes to DOM result-
ing from a user action

A4, A5

T6.a Finding the total number of sent
XHRs

A6, A7

T6.b Finding if there exists an un-
responded XHR

A4, A5, A7

forts. We adapted the activities proposed by Pacione et al.
[20], which cover categories of common tasks in program
comprehension, to web applications by replacing two items.
The revised activities are shown in Table 1. We designed
a set of tasks for each experiment to cover these activities.
Tables 2 and 3 show the tasks for studies 1 and 2 accord-
ingly. Because study 2 was conducted in an industrial set-
ting, participants had limited time. Therefore, we designed
fewer tasks for this study compared to study 1.

Independent Variable (IV). This is the tool used for per-
forming the tasks, and has two levels: Clematis represents
one level, and other tools used in the experiment represent
the other level (e.g., Chrome developer tools, Firefox devel-
oper tools, Firebug).

Dependent Variables (DV). These are (1) task comple-
tion duration, which is a continuous variable, and (2) accu-
racy of task completion, which is a discrete variable.

Data Analysis. For analyzing the results of each study, we
use two types of statistical tests to compare dependent vari-
ables across the control and experimental groups. Indepen-
dent-samples t-tests with unequal variances are used for du-
ration and accuracy in study 1, and for duration in study
2. However, the accuracy data in study 2 was not normally
distributed, and hence we use a Mann-Whitney U test for
the analysis of accuracy in this study. We use the statistical
analysis package R [11] for the analysis.

5.2 Experimental Procedure
All experiments consisted of four main phases. First, the

subjects were asked to fill a pre-questionnaire regarding their
expertise in the fields related to this study.

In the next phase, the participants in the experimental
group were given a tutorial on Clematis. They were then
given a few minutes to familiarize themselves with the tool
after the tutorial.

In the third phase, each subject performed a set of tasks,
as outlined in Tables 2 and 3. Each task was given to a par-
ticipant on a separate sheet of paper, which included instruc-
tions for the task and had room for the participant’s answer.
Once completed, the form was to be returned immediately
and the subject was given the next task sheet. This allowed
us to measure each task’s completion time accurately, to
answer RQ1 and RQ3. To address RQ2 and RQ3, the ac-
curacy of each task was later evaluated and marked from 0

Table 3: Comprehension tasks used in study 2.
Task Description Activity

T7 Extracting the control flow of an
event with delayed e↵ects

A1, A4, A5,
A7

T8 Finding the mutations in DOM after
an event

A1, A5

T9 Locating the implementation of a
malfunctioning feature

A1, A2, A3

T10 Extracting the control flow of an
event with event propagation

A1, A5, A8

to 100 according to a rubric that we had created prior to
conducting the experiment. The design of the tasks allowed
the accuracy of the results to be quantified numerically. The
tasks and the rubric are available in our technical report [3].

In the final phase, participants filled out a post-questionn-
aire form providing feedback on their experience with the
tool used (e.g., limitations, strength, usability). We catego-
rized the qualitative data and present it in Section 9.4.

6. EXPERIMENT 1: LAB ENVIRONMENT
The first controlled experiment was conducted in a lab set-

ting with students and postdocs at the University of British
Columbia (UBC).

6.1 Approach
Experimental Design. For this experiment, both groups
used Mozilla Firefox 19.0. The control group used Firebug
1.11.2. We chose Firebug in the control group since it is the
de facto tool used for understanding, editing, and debugging
modern web applications.2 Firebug has been used in other
similar studies [24].

Experimental Subjects. We recruited 16 participants for
the study, 3 females and 13 males. The participants were
drawn from di↵erent educational levels: 2 undergraduate
students, 5 Master’s students, 8 Ph.D. students, and 1 Post-
doctoral fellow, at UBC. The participants represented dif-
ferent areas of software and web engineering and had skills
in web development ranging from beginner to professional.
The tasks used in this study are enumerated in Table 2.

Experimental Object. We decided to use a web-based
survey application that was developed in our lab. The ap-
plication had modest size and complexity, so that it could be
managed within the time frame anticipated for the experi-
ment. Yet it covered the common comprehension activities
described in Table 1.

Experimental Procedure. We followed the general proce-
dure described in section 5.2. After filling the pre-questionnaire
form, the participants in the control group were given a tuto-
rial on Firebug and had time to familiarize themselves with
it, though most of them were already familiar with Firebug.

6.2 Results
Duration. To address RQ1, we measured the amount of
time (minutes:seconds) spent on each task by the partici-
pants, and compared the task durations between Clema-
tis and Firebug using a t-test. According to the results
of the test, there was a statistically significant di↵erence (p-
value=0.002) in the durations between Clematis (M=23:22,
SD=4:24) and Firebug (M=36:35, SD=8:35).

2
Firebug has over 3 million active daily users: https://addons.

mozilla.org/en-US/firefox/addon/firebug/statistics/usage/

https://addons.mozilla.org/en-US/firefox/addon/firebug/statistics/usage/
https://addons.mozilla.org/en-US/firefox/addon/firebug/statistics/usage/


To investigate whether certain categories of tasks (Table
2) benefit more from using Clematis (RQ3), we tested each
task separately. The results showed improvements in time
for all tasks. The improvements were statistically significant
for tasks 2 and 5, and showed a 60% and 46% average time
reduction with Clematis, respectively. The results show
that on average, participants using Clematis require 36%
less time than than the control group using Firebug, for per-
forming the same tasks.

Accuracy. The accuracy of answers was calculated in per-
centages. We compared the accuracy of participants’ an-
swers using a t-test. The results were again in favour of
Clematis and were statistically significant (p=0.02): Clema-
tis (M=83%, SD=18%) and Firebug (M=63%, SD=16%).
As in the duration case, individual t-tests were then per-
formed for comparing accuracy per task (related to RQ3).
Clematis showed an increased average accuracy for all tasks.
Further, the di↵erence was statistically significant in favour
of Clematis for task 5, and subtasks 4.a and 5.a. The re-
sults show that participants using Clematis achieved 22%
higher accuracy than participants in the control group. We
discuss the implications of these results in Section 9.

7. EXPERIMENT 2: INDUSTRIAL
To investigate Clematis’s e↵ectiveness in more realistic

settings, we conducted a second controlled experiment at a
large software company in Vancouver, where we recruited
professional developers as participants and used an open-
source web application as the experimental object.

7.1 Approach
Experimental Design. Similar to the first experiment,
the participants were divided into experimental and control
groups. The experimental group used Clematis throughout
the experiment. Unlike the previous experiment, members
of the control group were free to use the tool of their choice
for performing the tasks. The intention was for the par-
ticipants to use whichever tool they were most comfortable
with. 5 participants used Google Chrome’s developer tools,
2 used Firefox’s developer tools, and 3 used Firebug.

Experimental Subjects. We recruited 20 developers from
a large software company in Vancouver, 4 females and 16
males. They were 23 to 42 years old and had medium to
high expertise in web development.

Task Design. For this experiment, we used fewer but more
complex tasks compared to the first experiment. We de-
signed 4 tasks (Table 3) spanning the categories: following
the control flow, understanding event propagation, detect-
ing DOM mutations, locating feature implementation, and
determining delayed code execution using timeouts.

Experimental Object. Phormer [2] is an online photo
gallery in PHP, JavaScript, CSS and XHTML. It provides
features such as uploading, commenting, rating, and display-
ing slideshows for users’ photos. It contains typical mecha-
nisms such as dynamic DOM mutation, asynchronous calls
(XHR and timeouts), and event propagation. Phormer has
around 6,000 lines of JavaScript, PHP and CSS code in to-
tal. It was rated 5.0 star on SourceForge and had over 38,000
downloads at the time of conducting the experiment.

Experimental Procedure. We followed the same proce-
dure described in 5.2, with one di↵erence: the participants
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Figure 5: Notched box plots of task completion du-
ration data per task and in total for the control and
experimental groups (lower values are desired).

in the control group were not given any tutorial regarding
the tool they used throughout the experiment, as they were
all proficient users of the tool of their choice.

7.2 Results
Box plots of task completion duration and accuracy, per

task and in total, for the control (Ctrl) and experimental
(Exp) groups, are depicted in Figures 5 and 6, respectively.

Duration. Similar to the previous experiment, we ran a set
of t-tests for the total task duration as well as for the time
spent on individual tasks. The results of the tests showed
a statistically significant di↵erence (p-value = 0.0009) be-
tween the experimental group using Clematis (M=15:37,
SD=1:43) and the control group (M=29:12, SD=5:59), in
terms of total task completion duration. The results showed
improvements in duration when using Clematis for all four
tasks. We found significant di↵erences in favour of Clema-
tis for tasks T7, T8 and T9. The results show that developers
using Clematis took 47% less time on all tasks compared to
developers in the control group.

Accuracy. We used Mann-Whitney U tests for compar-
ing the results of task accuracy between the control and the
experimental group, since the data was not normally dis-
tributed. For the overall accuracy of the answers, the tests
revealed a statistically significant di↵erence with high confi-
dence (p-value = 0.0005) between Clematis (M=90%, SD-
=25%) and other tools (M=35%, SD=20%). We then per-
formed the comparison between individual tasks. Again, for
all tasks the experimental group using Clematis performed
better on average. We observed statistical significant im-
provements in the accuracy of developers using Clematis
for tasks T7, T8 and T10. The results show that developers
using Clematis performed more accurately across all tasks
by 61% on average, compared to developers in the control
group.
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Figure 6: Notched box plots of task completion ac-
curacy data per task and in total for the control and
experimental groups (higher values are desired).

8. PERFORMANCE OVERHEAD
With respect to RQ4, there are two sources of performance

overhead: (1) instrumentation overhead, and (2) execution
overhead. The former pertains to the overhead incurred due
to the instrumentation code added by Clematis, while the
latter pertains to the overhead of processing the trace and
constructing the model. We do not measure the overhead of
visualization as this is dependent on the user task performed.

Phormer, the experimental object in study 2, was used to
collect performance measurements over 10 one-minute trials.
The results were as follows:

Instrumentation overhead. Average delays of 15.04 and
1.80 seconds were experienced for pre and post processing
phases with Clematis respectively. And a 219.30 ms ad-
ditional delay was noticed for each page. On average, each
captured episode occupies 11.88 KB within our trace.

Execution overhead. For processing one minute of ac-
tivity with Phormer, Clematis experienced an increase of
250.8 ms, 6.1 ms and 11.6 ms for DOM events, timeouts and
XHRs, respectively.

Based on our experiments, there was no noticeable delay
for end-users when interacting with a given web application
through Clematis.

9. DISCUSSION

9.1 Task Completion Duration
Task completion duration is a measure of task perfor-

mance. Therefore, Clematis improves web developers’ per-
formance by significantly decreasing the overall time required
to perform a set of code comprehension tasks (RQ1).

Dynamic Control Flow. Capturing and bubbling mech-
anisms are pervasive in JavaScript-based web applications
and can severely impede a developer in understanding the
dynamic behaviour of an application. These mechanisms
also complicate the control flow of an application, as de-
scribed in Section 3. Our results show that Clematis signif-
icantly reduces the time required for completing tasks that
involve a combination of nested function calls, event prop-

agation, and delayed function calls due to timeouts within
a web application (T2, T5.a, and T7). Hence, Clematis
makes it more intuitive to comprehend and navigate the dy-
namic flow of the application (RQ3).

One case that needs further investigation is T10. This
task mainly involves following the control flow when most
of the executed functions are invoked through event propa-
gation. The results of this task indicate that although us-
ing Clematis caused an average of 32% reduction in task
completion duration, the di↵erence was not statistically sig-
nificant. However, closer inspection of the results reveals
that the answers given using Clematis for T10 are 68%
more accurate in average. This huge di↵erence shows that
many of the developers in the control group were unaware
of occurrences of event propagation in the application, and
terminated the task early. Hence, they scored significantly
lower than the experimental group in task accuracy and still
spent more time to find the (inaccurate) answers.

Feature Location. Locating features, finding the appro-
priate place to add a new functionality, and altering existing
behaviour are a part of comprehension, maintenance and
debugging activities in all software tools, not only in web
applications. The results of study 1 suggested that Clema-
tis did reduce the average time spent on the tasks involving
these activities (T1, T3, T4.b), but these reductions were
not statistically significant. These tasks mostly dealt with
static characteristics of the code and did not involve any of
the features specific to JavaScript-based web applications.
Study 2, however, involved more complicated tasks in more
realistic settings. T9 represented the feature location activ-
ity in this study, and the results showed that using Clema-
tis improved the average time spent on this task by 68%.
Thus, we see that Clematis speeds up the process of locat-
ing a feature or a malfunctioning part of the web application
(RQ3).

State of the DOM. The final category of comprehension
activities investigated in this work is the implications of
events on the state of the DOM. Results of Study 1 displayed
a significant di↵erence in duration of the task involving find-
ing DOM mutations in favour of Clematis (T5). The re-
sults of Study 2 further confirmed the findings of Study 1 by
reducing the duration in almost half (T8). Thus, Clema-
tis aids understanding the behaviour of web applications by
extracting the mutated elements of the DOM, visualizing
contextual information about the mutations, and linking the
mutations back to the corresponding JavaScript code (RQ3).

9.2 Task Completion Accuracy
Task completion accuracy is another metric for measuring

developers’ performance. According to the results of both
experiments, Clematis increases the accuracy of develop-
ers’ actions significantly (RQ2). The e↵ect is most visible
when the task involves event propagation (RQ3). The out-
come of Study 1 shows that Clematis addresses Challenge 1
(described in Section 3) in terms of both time and accuracy
(T5.a). Study 2 further indicates that Clematis helps de-
velopers to be more accurate when faced with tasks involving
event propagation and control flow detection in JavaScript
applications (67% and 68% improvement for T7 and T10
respectively).

For the remaining tasks of Study 1, the accuracy was
somewhat, though not significantly, improved. We believe
this is because of the simplistic design of the experimental



object used in Study 1, as well as the relative simplicity of
the tasks. This led us towards the design of Study 2 with
professional developers as participants and a third-party web
application as the experiment object in the evaluation of
Clematis. According to the results of Study 2, Clematis
significantly improves the accuracy of completion of tasks
(T8) that require finding the implications of executed code
in terms of DOM state changes (RQ3). This is related to
Challenge 3 as described in Section 3.

For the feature location task (T9), the accuracy results
were on average slightly better with Clematis. However,
the experimental group spent 68% less time on the task com-
pared to the control group. This is surprising as this task is
common across all applications and programming languages
and we anticipated that the results for the control group
would be comparable with those of the experimental group.

9.3 Consistent Performance
Looking at Figures 5 and 6, it can be observed that using

Clematis not only improves both duration and accuracy of
individual and total tasks, but it also helps developers to
perform in a much more consistent manner. The high vari-
ance in the results of the control group shows that individual
di↵erences of developers (or tools in Study 2) influence their
performance. However, the low variance in all the tasks for
the experimental group shows that Clematis helped all de-
velopers in the study to perform consistently better by mak-
ing it easier to understand the internal flow and dependency
of event-based interactions.

9.4 Participants’ Feedback
We analyzed the qualitative data obtained through the

post-questionnaire forms. Overall the feedback was very
positive. The main features that the participants found most
useful were the (1) semantic zooming: presenting the over-
view first and providing more details on demand, (2) visual-
izing the hierarchy of functions and events in the customized
sequence diagram, (3) linking the visualization back to Java-
Script code, and (4) extracting DOM mutations per event.
The participants also requested for a number of features to
be included in future versions of the tool. These features in-
cluded (1) filtering and query options for DOM mutations,
(2) ability to attach notes to bookmarked episodes, and (3)
integrating Clematis with debugging techniques such as
breakpoints. Overall, according to two of our industrial par-
ticipants, Clematis is “Helpful and easy to use” and “Very
useful. A lot of potential for this tool!”.

9.5 Threats to Validity
Internal Threats. The first threat is that di↵erent levels
of expertise in each subject group could a↵ect the results.
We mitigated this threat by manually assigning the subjects
to experimental and control groups such that the level of ex-
pertise was balanced between the two groups. The second
threat is that the tasks in the experiment were biased to-
wards Clematis. We eliminated this threat by adopting
the tasks from a well-known framework of common code
comprehension tasks [20]. A third threat arises from the
investigators’ bias towards Clematis when rating the ac-
curacy of subjects’ answers. We addressed this concern by
developing an answer key for all the tasks before conduct-
ing the experiments. A similar concern arises regarding the
task completion duration measurements. We mitigated this

threat by presenting each task to subjects on a separate
sheet of paper and asking them to return it upon completion.
The duration of each task was calculated from the point a
subject received the task until they returned the paper to
the investigators, thus eliminating our bias in measuring the
time (and the subjects’ bias in reporting the time). Finally,
we avoided an inconsequential benchmark by choosing a tool
for the control group in Study 1 that was stable and widely-
deployed, namely Firebug. In Study 2, the developers in
the control group were given the freedom to choose any tool
they preferred (and had experience with).

External Threats. An external threat to validity is that
the tasks used in the experiment may not be representa-
tive of general code comprehension activities. As mentioned
above, we used the Pacione’s framework and thus these tasks
are generalizable. A similar threat arises with the represen-
tativeness of the participants. To address this threat, we
used both professional web developers and students/post-
docs with previous web development experience.

Reproducibility. As for replicating our experiments, Clema-
tis [1], the experimental object Phormer [2], and the details
of our experimental design (e.g., tasks and questionnaires)
[3], are all available making our results reproducible.

10. CONCLUDING REMARKS
Modern web applications are highly dynamic and inter-

active, and o↵er a rich experience for end-users. This in-
teractivity is made possible by the intricate interactions be-
tween user-events, JavaScript code, and the DOM. How-
ever, web developers face numerous challenges when trying
to understand these interactions. In this paper, we pro-
posed a portable and fully-automated technique for relating
low-level interactions in JavaScript-based web applications
to high level behaviour. We proposed a behavioural model
to capture these event interactions, and their temporal and
causal relations. We presented a novel interactive visual-
ization mechanism based on focus+context techniques, for
presenting these complex event interactions in a more com-
prehensible format to web developers. Our approach is im-
plemented in a code comprehension tool, called Clematis.
The evaluation of Clematis points to the e�cacy of the ap-
proach in reducing the overall time and increasing the accu-
racy of developer actions, compared to state-of-the-art web
development tools. The greatest improvement was seen for
tasks involving control flow detection, and especially event
propagation, showing the power of our approach.

As part of future work, we plan to improve the interac-
tive visualization and extend the details captured in each
story to allow the programmer to gain a better insight into
the application. Another direction we will pursue is in de-
bugging, where Clematis can potentially help developers
to better detect and localize faulty behaviour of JavaScript
applications.
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