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Abstract—Intermittent hardware faults are hard to diagnose
as they occur non-deterministically at the same location.
Hardware-only diagnosis techniques incur significant power
and area overheads. On the other hand, software-only diagnosis
techniques have low power and area overheads, but have
limited visibility into many micro-architectural structures and
hence cannot diagnose faults in them.

To overcome these limitations, we propose a hardware-
software integrated framework for diagnosing intermittent
faults. The hardware part of our framework, called SCRIBE
continuously records the resource usage information of every
instruction in the processor, and exposes it to the software
layer. SCRIBE incurs a performance overhead of 12% and
power overhead of 9%, on average. The software part of our
framework is called SIED and uses backtracking from the
program’s crash dump to find the faulty micro-architectural
resource. Our technique has an average accuracy of 84% in
diagnosing the faulty resource, which in turn enables fine-
grained deconfiguration with less than 2% performance loss
after deconfiguration.

Keywords: Intermittent Faults, Backtracking, Dy-
namic Dependence Graphs, Hardware/Software Co-
design

I. INTRODUCTION

CMOS scaling has exacerbated the unreliability of Silicon
devices and made them more susceptible to different kinds
of faults [1]. The common kinds of hardware faults are
transient and permanent. However, a third category of faults,
namely intermittent faults has gained prominence [2]. A
recent study of commodity hardware has found that inter-
mittent faults were responsible for at least 39% of computer
system failures due to hardware errors [3]. Unlike transient
faults, intermittent faults are not one-off events, and occur
repeatedly at the same location. However, unlike permanent
faults, they appear non-deterministically, and only in certain
circumstances.

Diagnosis is an essential operation for a fault-tolerant sys-
tem. In this paper, we focus on diagnosing intermittent faults
that occur in the processor. Intermittent faults are caused
by marginal or faulty micro-architectural components, and
hence diagnosing such faults is important to isolate the faulty
resource [4], [5], [6]. Components can experience intermit-
tent faults either due to design and manufacturing errors, or
due to aging and temperature effects that arise in operational
settings [2]. Therefore, the diagnosis process should be run
throughout the life-time of the processor rather than only at
design validation time. This makes it imperative to design
a diagnosis scheme that has low online performance and
power overheads. Further, to retain high performance after

repair, the diagnosis should be fine-grained at the granularity
of individual resources in a microprocessor, so that the
processor can be deconfigured around the faulty resource
after diagnosis [7].

Diagnosis can be carried out in either hardware or
software. Hardware-level diagnosis has the advantage that
it can be done without software changes. Unfortunately,
performing diagnosis entirely in hardware incurs significant
power and area overheads, as diagnosis algorithms are often
complex and require specialized hardware to implement. On
the other hand, software-based diagnosis techniques only
incur power and performance overheads during the diag-
nosis process, and have zero area overheads. Unfortunately,
software techniques have limited visibility into many micro-
architectural structures (e.g., the reorder buffer) and hence
cannot diagnose faults in them. Further, software techniques
cannot identify the resources consumed by an instruction as
it moves through the pipeline, which is essential for fine-
grained diagnosis.

In this paper, we propose a hardware-software integrated
technique for diagnosing intermittent hardware errors in
multi-core processors. As mentioned above, intermittent
faults are non-deterministic and may not be easily repro-
duced through posteriori testing. Therefore, the hardware
portion of our technique continuously records the micro-
architectural resources used by an instruction as the in-
struction moves through the processor’s pipeline, and stores
this information in a log that is exposed to the software
portion of the technique. We call the hardware portion
SCRIBE. When the program fails (due to an intermittent
fault), the software portion of our technique uses the log to
identify which resource of the microprocessor was subject
to the intermittent fault that caused the program to fail.
The software portion runs on a separate core and uses a
combination of deterministic replay and backtracking from
the failure point, to identify the faulty component. We call
the software portion of our technique SIED, which stands for
Software-based Intermittent Error Diagnosis. SCRIBE and
SIED work in tandem to achieve intermittent fault diagnosis.

Prior work on diagnosis [5] has either assumed the pres-
ence of fine-grained checkers such as the DIVA checker [8],
or has assumed that the fault occurs deterministically [9],
which is true for permanent faults, but not intermittent faults.
In contrast, our technique does not require any fine-grained
checkers in the processor nor does it rely upon determinism
of the fault, making it well suited for intermittent faults.
Other papers [10], [11] have proposed diagnosis mechanisms
for post-Silicon validation. However, these approaches target



design faults and not operational faults, which is our focus.
To the best of our knowledge, we are the first to propose
a general purpose diagnosis mechanism for in-field, inter-
mittent faults in processors, with minimal changes to the
hardware.

The main contributions of the paper are as follows:
i) Enumerate the challenges associated with intermittent

fault diagnosis and explain why a hybrid hardware-
software scheme is needed for diagnosis.

ii) Propose SCRIBE, an efficient micro-architectural
mechanism to record instruction information as it
moves through the pipeline, and expose this information
to the software layer.

iii) Propose SIED, a software-based diagnosis algorithm
that leverages the information provided by SCRIBE to
isolate the faulty micro-architectural resource through
backtracking from the failure point,

iv) Conduct an end-to-end evaluation of the hybrid ap-
proach in terms of diagnosis accuracy using fault in-
jection experiments at the micro-architectural level.

v) Evaluate the performance and power overheads in-
curred by SCRIBE during fault-free operation. Also,
evaluate the overhead incurred by the processor after
it is deconfigured upon a successful diagnosis by our
approach.

Our experiments on the SPEC2006 benchmarks show that
SCRIBE incurs an average performance overhead of 11.5%,
and a power consumption overhead of 9.3%, for a medium-
width processor. Further, the end-to-end accuracy of di-
agnosis is 84% on average across different resources of
the processor (varies from 71% to 95% depending on the
pipeline stage in which the fault occurs). We also show that
with such fine-grained diagnosis, only 1.6% performance
overhead will be incurred by the processor after deconfigu-
ration, on average.

II. BACKGROUND

In this section, we first explain what are intermittent faults,
and their causes. We then explain why resource level, online
diagnosis is needed for multi-core processors. Finally, we
explain the Dynamic Dependence Graph (DDG), which is
used in our paper for diagnosis.

A. Intermittent faults: Definition and Causes
Definition We define an intermittent fault as one that

appears non-deterministically at the same hardware location,
and lasts for one or more (but finite number of) clock
cycles. The main characteristic of intermittent faults that
distinguishes them from transient faults is that they occur
repeatedly at the same location, and are caused by an
underlying hardware defect rather than a one-time event
such as a particle strike. However, unlike permanent faults,
intermittent faults appear non-deterministically, and only
under certain conditions.

Causes: The major cause of intermittent faults is device
wearout, or the tendency of solid-state devices to degrade
with time and stress. Wearout can be accelerated by ag-
gressive transistor scaling which makes processors more
susceptible to extreme operating condition such as voltage
and temperature fluctuations [12], [13]. In-progress wearout

faults are often intermittent as they depend on the operating
conditions and the circuit inputs. In the long term, such faults
may eventually lead to permanent defects. Another cause
of intermittent faults is manufacturing defects that escape
VLSI testing [14]. Often, deterministic defects are flushed
out during such testing and the ones that escape are non-
deterministic defects, which emerge as intermittent faults.
Finally, design defects can also lead to intermittent faults,
especially if the defect is triggered under rare scenarios or
conditions [15]. However, we do not consider intermittent
faults due to design defects in this paper.

B. Why resource-level, online diagnosis ?
Our goal is to isolate individual micro-architectural re-

sources and units that are responsible for the intermittent
fault. Fine-grained diagnosis implicitly assumes that these
resources can be deconfigured dynamically in order to
prevent the fault from occurring again. Other work has also
made similar assumptions [5], [9], [6]. While it may be
desirable to go even further and isolate individual circuits or
even transistors that are faulty, it is often difficult to perform
deconfiguration at that level. Therefore, we confine ourselves
to performing diagnosis at the resource level.

Another question that arises in fine-grained diagnosis is
why not simply avoid using the faulty core instead of de-
configuring the faulty resource. This would be a simple and
cost-effective solution. However, this leads to vastly lower
performance in a high-performance multi-core processor, as
prior work has shown [7], [6]. Finally, the need for online
diagnosis stems from the fact that taking the entire processor
or chip offline to perform diagnosis is wasteful, especially
as the rate of intermittent faults increases as future trends
indicate [14]. Further, taking the chip offline is not feasible
for safety-critical systems. Our goal is to perform online
diagnosis of intermittent faults.

C. Dynamic Dependency Graphs
A dynamic dependency graph (DDG) is a representation

of data flow in a program [16]. It is a directed acyclic graph
where graph nodes or vertices represent values produced by
dynamic instructions during program execution. In effect,
each node corresponds to a dynamic instance of a value-
producing program instruction. Dependencies among nodes
result in edges in the DDG. In the DDG, there is an edge
from node N1 (corresponding to instruction I1) to node N2

(corresponding to instruction I2), if and only if I2 reads the
value written by I1 (instructions that do not produce any
values correspond to nodes with no outgoing edges).

III. APPROACH

This section first presents the fault model we consider. It
then presents the challenges of intermittent fault diagnosis.
Finally, it presents an overview of our approach and how it
addresses the challenges.

A. Fault Model
As mentioned in Section II-A, intermittent faults are faults

that last for finite number of cycles at the same micro-
architectural location. We consider intermittent faults that
occur in processors. In particular, we consider faults that



occur in functional units, reorder buffer, instruction fetch
queue, load/store queue and reservation station entries. We
assume that caches and register files are protected using ECC
or parity and therefore do not experience software visible
faults. We also assume that the processor’s control logic is
immune to errors, as this is a relatively small portion of
the chip [17]. Finally, we assume that a component may be
affected by at most one intermittent fault at any time, and
that the fault affects a single bit in the component (stuck-at
zero/one), lasting for several cycles.

B. Challenges
In this section, we outline the challenges that an intermit-

tent fault diagnosis method needs to overcome.
Non-determinism: Since intermittent faults occur non-

deterministically, re-execution of a program that has failed
as a result of an intermittent fault, often results in a dif-
ferent event sequence than the original execution. In other
words, the sequence of events that lead to a failure is not
(necessarily) repeatable under intermittent faults.

Overheads: An intermittent fault diagnosis mechanism
should incur as low overhead as possible in terms of
performance, area and power, especially during fault-free
operation, which is likely to be the common case.

Software Layer Visibility: Software diagnosis algorithms
suffer from limited visibility into the hardware layer. In
other words, software-only approaches are not aware of what
resources an instruction has used since being fetched until
retiring from the pipeline (the only inferable information
from an instruction is the type of functional unit it has used).

No information about the faulty instructions: To find
the faulty resource, the diagnosis algorithm needs to have
information about the instructions that have been affected
by the intermittent fault in order that the search domain of
the faulty resource can be narrowed down to resources used
by these instructions. One way to obtain this information
is to log the value of the destination of every instruction
at runtime, and to compare its value with that of a fault-
free run (more details in Section III-C). However, logging
the value of every executed instruction in addition to its
resource information can result in prohibitive performance
overheads as we show in Section VI. Therefore, we need to
infer this information from the failure log instead.

C. Overview of our Approach
In this section, we present an overview of our approach

and how it addresses the challenges in section III-B.
We propose a hybrid hardware-software approach for

diagnosis of intermittent faults in processors. Our approach
consists of two parts. First, we propose a simple, low-
overhead, hardware mechanism called SCRIBE to record
information about resource usage of each instruction and
expose this information to the software. Second, we propose
a software technique called SIED that uses the recorded in-
formation upon a failure (caused by an intermittent fault) to
diagnose the faulty resource by backtracking from the point
of failure through the program’s DDG (see Section II-C).
The intuition is that errors propagate along the DDG edges
starting from the instruction that used the faulty resource,
and hence backtracking on the DDG can diagnose the fault.

Assumptions: We make the following assumptions about
the system:

i) We assume a commodity multi-core system in which all
cores are homogeneous, and are able to communicate with
each other through a shared address space.

ii) We assume the availability of a fault-free core to
perform the diagnosis, e.g. using Dual Modular Redundancy
(DMR). This is similar to the assumption made by Li et al.
[9]. The fault-free core is only needed during diagnosis.

iii) The processor is able to deterministically replay the
failed program’s execution. Researchers have proposed the
use of deterministic replay techniques for debugging pro-
grams on multi-core machines [18], [19]. This is needed
to eliminate the effect of non-deterministic events in the
program during diagnosis (other than the fault).

iv) The fault has already been identified as an intermittent
fault prior to diagnosis. In particular, it has been ruled out
to be a transient fault - this can be done by only invoking
diagnosis if there are repeated failures. For example, there
has been work on distinguishing intermittent faults from
transient faults using a threshold mechanism [20].
Steps : Figure 1 shows the sequence of steps our technique
would follow to diagnose a fault.

1) As the program executes, the hardware layer SCRIBE
logs the Resource Usage Information (RUI) of the
instructions (step 1 in Figure 1) to memory. Every
instruction has an RUI, which is a bit array indicating
the resources it has used while moving through the pro-
cessor’s pipeline. SCRIBE is presented in Section IV.

2) Assume that the program fails as a result of an intermit-
tent fault burst in one of the processor resources (step
2). This failure can occur due to a crash or an error
detection by the application (e.g. an assertion failure).
The registers and memory state of the application is
dumped to memory, typically as a core dump (step 3).

3) The software layer diagnosis process, SIED is started
on another core. This core is used to perform the
diagnosis and is assumed to itself be fault-free during
diagnosis (see assumptions). SIED replays the program
using deterministic replay mechanisms, and constructs
the DDG (steps 4 and 5) of the replayed program.
The original program can be resumed on the core that
experienced the intermittent fault, as SIED does not
interfere with its subsequent execution.

4) When the replayed program reaches the instruction
at which the orignal program failed, SIED dumps its
register and memory state to memory (step 6).

5) SIED merges the DDG from step 5 with the RUI log in
step 1, to build the augmented DDG. This is a DDG in
which every node contains the RUI of its corresponding
instruction in the program.

6) SIED then compares the memory and register states
dumped in steps 3 and 6 to identify the set of nodes
in the augmented DDG that differ between the original
and replayed execution. Because the replayed execution
used deterministic replay, any differences between the
two executions are due to the intermittent fault. In case
of no deviation between two executions, a software bug
is diagnosed. This is similar to the diagnosis decision
made by Li et al. in [9].



1) Gather RUI and log to memory (SCRIBE)
2) Failure due to intermittent fault
3) Log program’s register and memory state (core dump)
4) Deterministic replay on another core (SIED)
5) Construct replayed program’s DDG (SIED)
6) Log replayed program’s register and memory state

(SIED)
7) Construct augmented DDG and backtrack using anal-

ysis heuristics (SIED)

Figure 1: End to end scenario of failure diagnosis by SCRIBE and SIED. The steps in the figure are explained in the box.

7) Finally, SIED backtracks from the faulty nodes in the
augmented DDG using analysis heuristics to find the
faulty resource (steps 7 and 8). The details of how
SIED works are explained in Section V.

Challenges Addressed: We now illustrate how our tech-
nique satisfies the constraints posed in Section III-B.
Non-determinism: Our technique gathers the micro-
architectural resource usage information online using the
SCRIBE layer (Step 1). Therefore, it requires determinism
neither in resource usage nor fault occurrence during the
replay.
Overheads: Our technique initiates diagnosis only when a
crash or error detection occurs, thus the diagnosis overhead
is not incurred during fault-free execution. However, the
SCRIBE layer incurs both performance and power overheads
as it continuously logs the resource usage information of the
instructions executing in the processor. Note that SCRIBE
only exposes the hardware RUI information to the software
layer. The complex task of figuring out the faulty component
is done in software. Hence, the power overhead of SCRIBE
is low. We describe the optimizations made to SCRIBE to
keep its performance overhead low in Section IV. We present
the performance and power overheads in section VI-B.
Software-layer visibility: The SCRIBE layer records the in-
formation on micro-architectural resource usage and exposes
it to software, thus solving the visibility problem.
No information about faulty instructions: Our technique does
not log the destination result of each instruction, and hence
cannot tell which instructions have been affected by the
fault. Instead, SIED uses the replay run to determine which
registers/memory locations are affected by the fault, and
backtracks from these in the DDG to identify the faulty
resource.

IV. SCRIBE: HARDWARE LAYER

We propose a hybrid diagnosis approach involving both
hardware and software. SCRIBE is the hardware part of
our hybrid scheme and is responsible for exposing the
micro-architectural Resource Usage Information (RUI) to
the software layer, SIED. This allows SIED to identify the
faulty resource(s) upon a failure due to an intermittent fault.
In addition, SCRIBE also logs the addresses of the executed
branches, so that the program’s control flow can be restored
in case of a failure (Section V-A). The detailed design of
the SCRIBE layer was presented in our earlier work [21].

A. RUI Format
A resource in a superscalar processor consists of the

pipeline buffers and functional units. We use the term,
Resource Usage Information (RUI) to denote the set of
micro-architectural resources used by a single instruction as
it moves through the superscalar pipeline. The RUI records
the resources used by the instruction in each pipeline stage,
as a bitmap. Each field of the RUI corresponds to a single
resource class in the pipeline. For example, consider an add
instruction which is assigned to entry 4 of the Instruction
Fetch Queue (IFQ), entry 7 of the Reorder Buffer (ROB),
entry 24 of reservation station (RS) and also uses the second
integer ALU of the processor (FU). It does not use the Load
Store Queue (LSQ), though other instructions may do so and
hence space is reserved in the RUI for the LSQ as well. The
RUI of this instruction is shown in Figure 2.

The RUI entries are stored in a circular buffer in the
process’s memory address space as the program executes on
the processor. The size of the RUI buffer is determined by
the worst-case number of instructions taken by programs to
crash or fail after an intermittent fault. Because this number
can be large, keeping the buffer on chip would lead to
prohibitive area and power overhead. Hence we choose to
keep the RUI information in the memory instead of on chip.
Therefore, in our case, the buffer size is bounded only by
the memory size.

Figure 2: The RUI entry corresponding to an add instruction

B. SCRIBE structure
To implement SCRIBE, we augment each Reorder Buffer

(ROB) entry with an X bit field (X ∝ lg(Total number of
resources)) to store the RUI of the instruction corresponding
to that entry. This field is filled with a valid RUI entry as the
instruction traverses the pipeline and makes use of specific
resources. As the instruction has completed its execution
when it reaches the commit stage, its complete RUI is known
when in the commit stage. The RUI entries are sent to the
memory hierarchy when their instructions are retired from
ROB, and hence only the RUI entries of the instructions



on the correct path of branch prediction will be sent to the
memory.

SCRIBE consists of two units:. (i) The logging unit is in
charge of aligning the RUI entries and sending them to the
priority handling unit. (ii) The priority handling unit is in
charge of choosing between a regular store and a logging
store to send to memory. We name the process of sending
RUI to the memory hierarchy as a Logging Store.

Logging Unit: Figure 3 shows the design of the logging
unit, consisting of logging buffer, alignment circuit, and
LogSQ.

Figure 3: The Logging Unit includes the Logging Buffer,
Alignment Circuit and LogSQ

When an instruction is retired from the ROB, the RUI
field of its ROB entry will be inserted into the Logging
Buffer (LB). The LB is a dual partitioned queue and is in
charge of keeping the RUI of the retired instructions. Each
of the partitions of the LB get filled separately. To enable
faster writing of the RUI data to memory, we store them
as quad-words in memory. The alignment circuits creates
quad-words from RUI data in the LB and sends them to the
LogSQ. When one of the partitions becomes full, its data
is processed by the alignment circuit and the other partition
starts getting filled and vice versa. Thus, data processing
and filling modes alternate with each other in each partition
of the logging unit.

Logging Store Queue (LogSQ) buffers the quad-words sent
by the alignment circuits before they are sent to memory.
These quadwords compete with the memory traffic sent by
the regular loads and stores of the program. This process is
explained below. If the LogSQ is full, the alignment circuits
have to be stalled until a free entry in the logSQ becomes
available.

Priority Unit: The goal of the priority handling unit is
to mediate accesses to main memory between the logging
stores and the regular stores performed by the processor.
The priority handling unit consists of the priority handling
circuit, which makes the decision of which store to send
to memory, and a multiplexer to select between the regular
store instructions and the logging stores.

When both a regular load/store instruction from the pro-
cessor and a logging store instruction from the logSQ are
ready, one of them has to be chosen to be sent to the memory
hierarchy. If logging stores are not sent to the memory on
time, the logSQ will become full and the instruction retiring
mechanism will stall, thereby degrading performance. On the

other hand, if regular stores are not sent to memory in time,
the processor’s commit mechanism will stall, also degrading
performance.

Our solution is to use a hybrid approach where we switch
the priorities between the logging stores and the regular
stores based on the size of the LogSQ. In other words, we
prioritize regular load/store instructions by default, until the
logging mechanism starts stalling the commit stage (because
of one partition becoming full before the other one is
processed). At this point, the logging store instructions gain
priority over regular load/stores, until the logSQ is drained.

V. SIED: SOFTWARE LAYER

In this section, we present SIED, the software portion of
our technique.

Figure 4: Flow of information during the diagnosis process

SIED is launched as a privileged process by the operating
system on a separate core, which enables it to read the
RUI segment in the failed program’s memory written to
by SCRIBE. Therefore, SIED has access to the history of
dynamic instructions executed before the failure, and the
micro-architectural resources used by those instructions.

Figure 4 shows the steps taken by SIED after a failure.
First, the program is replayed on a separate core until the
failed instruction, during which its DDG is built. The DDG
is augmented with the RUI and the register/memory dumps
from the original and replayed program executions. This
process is explained in Section V-A. The augmented DDG
is then fed to the DDG analysis step in Figure 4 which uses
backtracking of DDG to find the candidates of the faulty
resource. This process is explained in Section V-B.

Example: We consider the program in Table I as a
running example to explain the diagnosis steps. The example
is drawn from execution of the benchmark mcf from SPEC
2006 benchmark suite on our simulator. However, some
instructions have been removed from the real example to
illustrate as many cases as possible in a compact way. As
the program is executing, SCRIBE monitors the execution of
instructions and logs their RUI to memory. The RUI logged
by SCRIBE during the original execution is shown in Table
I (the real RUI history includes a few thousands of entries;
however, we only show the last few entries for brevity). For
example, row #2 in Table I shows that the store quadword
instruction has used entry 26 of the ROB, entry 15 of LSQ,
entry 16 of IFQ, entry 11 of RS and functional unit 5 which
is one of the memory ports (we consider memory ports as
functional units).

Assume that in this example, the processor has multiple
functional units, and the second functional unit (fu-1) is



# Instruction rob lsq ifq rs fu
1 addi r1, -1, r1 25 - 15 16 1
2 stq r1, 400(r15) 26 15 16 11 5
3 bic r3, 16, r3 52 - 2 52 2
4 stl r3, 0(r9) 53 24 3 46 5
5 bis r31, r15, r30 84 - 1 7 1
6 ldq r1, 0(r30) 85 2 2 38 6
7 ldq r3, 8(r30) 86 3 3 19 6
8 ldq r30, 16(r30) 87 4 4 40 5
9 stq r5 , -32(r30) 88 5 5 44 6

Table I: RUI of the instructions logged by SCRIBE. The
original execution crashes at instruction 9.

experiencing an intermittent fault that is triggered non-
deterministically and lasts for several cycles. When the
functional unit experiences the fault, one of the bits in its
output becomes stuck at zero for this time period. This
causes an incorrect value to be produced, as a result of which
the program crashes. After the crash, the entire register and
memory state of the process is dumped to memory. For this
example, we only show the register and memory values pro-
duced by the instructions in Table I. These values are shown
in Table II, column “Snapshot Original”. The “producer
index” column represents the index of the instructions in
Table I that last wrote to the locations in the second column.

Producer Mem/Reg Producer Snapshot Snapshot
Index Location Original Replayed
2 0xd3e0 stq r1, 400(r15) 8 12
4 0xd988 stl r3, 0(r9) 10 10
6 r1 ldq r1, 0(r30) 16 0
7 r3 ldq r3, 8(r30) 8 20
8 r30 ldq r30, 16(r30) 20 0

Table II: Snapshots: These represent the memory and register
state dumps after the original and replayed executions

A. DDG Construction with RUI
As mentioned in Section III-C, SIED uses deterministic

replay techniques to replay the execution of the failed
program and build its DDG. We refer to the first execution
leading to the failure as the original execution and the second
execution performed by SIED as the replayed execution.

The steps taken by SIED to build the DDG are as follows
(step numbers below correspond to those in Figure 1):

i) The program is started from a previous checkpoint or
from the beginning and replayed. However, the replayed
program’s control-flow may not match the control flow
of the original execution, as the latter may have been
modified by the intermittent fault. To facilitate fault
diagnosis, the only difference between the original and
the replayed execution should be the intermittent fault’s
effects on the registers and memory state. Therefore, the
control flow of the replayed execution (target addresses
of the branch instructions) is modified to match the
original execution’s control flow (step 4). To obtain
the original execution’s control flow, SCRIBE logs the
branch target addresses of the program in addition to
its RUI.

ii) From the replayed execution, the information needed
for building the Dynamic Dependence Graph (DDG)
of the program is extracted and the DDG is built

(step 5). Figure 5 shows the DDG for our example.
The information required for building the DDG can be
extracted by using a dynamic binary instrumentation
tool (e.g. Pin [22]). We note that the overheads added
by such tools would only be incurred during failure and
subsequent diagnosis, and not during regular operation.

iii) When the program flow of the replayed execution
reaches the crash instruction (the instruction at which
the original execution crashes), the register and memory
state of the replayed execution is dumped to memory
(step 6). There could be rare cases in which the replayed
execution fails due to inconsistency between the control
flow and the data. These cases lead to the diagnosis
process being stopped if happened before reaching to
the crash instruction. In the example, the replayed
execution stops when reaching instruction 9 and the
column “snapshot replayed” in Table II represents the
register and memory state of the replayed program at
that instruction.

iv) The snapshots taken after the original and replayed
executions are compared with each other to identify the
final values that are different from each other. Because
we assume a deterministic replay, any deviation in the
values must be due to the fault. The producer instruc-
tions of these values are marked as final erroneous (or
final correct) if the final values are different (or the
same) in the DDG. The branch instructions that needed
to be modified in step (i) to make the control flows
match are also marked as final erroneous in the DDG.
In the example, the values in the snapshot columns of
Table II are compared, and the differences identified.
The nodes corresponding to the instructions creating
the mismatched values are marked in the DDG as final
erroneous nodes (nodes 2, 6, 7 & 8), while node 4 with
matching values, is marked as final correct.

v) The RUI of each instruction is added to its correspond-
ing node in DDG. We call the resulting graph, the
augmented DDG. The augmented DDG is used to find
the faulty resource as shown in the next section.

Figure 5: DDG of the program in the running example. Gray
nodes are final erroneous and the dotted node is final correct

B. DDG Analysis
This section explains how SIED analyzes the augmented

DDG to find the faulty resource. Because each dynamic
instruction corresponds to a DDG node, we use the terms
node and instruction interchangeably. The main idea is to
start from final erroneous nodes in the augmented DDG
(identified in Section V-A), and backtrack to find nodes
that have originated the error, i.e., the instructions that
have used the faulty resource. The faulty resource is found



by considering the intersection of the resources used by
multiple instructions that have originated the errors. Recall
that the list of resources used by an instruction is present in
its corresponding node in the augmented DDG.

There are three types of nodes in the augmented DDG: i)
Nodes that have used the faulty resource (originating nodes),
ii) Nodes to which the error is propagated from an ancestor,
iii) Nodes that have produced correct results (correct nodes).
The goal of backtracking is to search for the originating
nodes, by going backward from the final erroneous nodes
(i.e., erroneous nodes in the final state), while avoiding the
correct nodes. Naive backtracking does not avoid correct
nodes, and because there can be many correct nodes in the
backward slice of a final erroneous node, it will incur false-
positives. Therefore, we propose two heuristics to narrow
down the search space for the faulty resource based on the
following observations:

i) If a final erroneous node has a correct ancestor node,
the probability of the originating node being in the path
connecting those two nodes is high. In other words, the
faulty resource is more likely to be used in this path.

ii) Having a final correct descendent decreases the proba-
bility that the node is erroneous.

iii) Having an erroneous ancestor decreases the probability
of the node being an originating node.

iv) An erroneous node with all correct predecessors is an
originating node.

Heuristics: To find faulty resources, each resource in the
processor is assigned a counter which is initialized to zero.
The counter of a resource is incremented if an instruction
using that resource is likely to participate in creating an
erroneous value, as determined by the heuristics. Resources
having larger counter values are more likely to be faulty.

Algorithm 1 shows the pseudocode for heuristic 1. The
main idea behind heuristic 1 is to examine the backward
slices of the final erroneous nodes and increase the counter
values of the appropriate resources based on the first three
observations. In lines 3 to 8, for each final erroneous node
n, the set Sn1 is populated with the nodes between n and its
final correct ancestors. The counters of the resources used
by the nodes in the Sn1 are incremented. Lines 9 to 11
correspond to the second observation. Every node in the
backward slice of the final erroneous node n is added to set
Sn2 unless it has a final correct descendent. Finally, in lines
12 to 17, the nodes that are added to the set Sn2 are checked
to see if they have a faulty ancestor. If so, their counters are
incremented by 0.5, and if not, the counters are incremented
by 1. This is in line with the third observation that nodes
with faulty ancestors are less likely to be originating nodes.

Algorithm 2 presents the second heuristic which is based
on Observation 4. The algorithm starts from the final correct
nodes and recursively marks the nodes that are likely to have
produced correct output (lines 1 to 2). Then it recursively
marks the nodes that have likely produced erroneous outputs
starting from the final erroneous nodes (lines 3 and 4).
Finally, it checks all the erroneous nodes for the condition
in the fourth observation i.e., being erroneous with no
erroneous predecessor (lines 5 to 9). If the condition is
satisfied, it increments the counters for the resources used
by the erroneous nodes by 1.

Algorithm 1: Heurisitc 1
input: resources
Algorithm heuristic1

1 foreach node n of final erroneous nodes do
2 Sn1 = Sn2 = φ // Initializing sets
3 foreach node k of n.ancestors do
4 if k.isLastCorrect() then
5 Sn1.add(getNodesBetween(n , k))

end
6 foreach R of resources do
7 if R is used in Sn1 then
8 counters[R]++;

end
9 foreach node k of nodes in backward slice of

n do
10 if not(k.hasFinalCorrectDescendent) then
11 Sn2.add(k)

end
12 foreach R of resources do
13 if R is used in Sn2 then
14 if n.hasFaultyAncestor() then
15 counters[R] += 0.5
16 else
17 counters[R] += 1

end
end

Algorithm 2: Heurisitc 2
Procedure markCorrect(node n)

foreach node p of the predecessors of n do
ec ← p.getErroneousChildrenCount()
if not (p.isErroneous() OR ec ≥ 2) then

p.correct ← True
markCorrect(p)

end
end

Procedure markErroneous(node n)
foreach node p of the predecessors of n do

cp ← p.getNonCorrectPredecessorsCount()
cc ← p.getCorrectChildrenCount()
if cp == 1 AND cc ≤ 1 then

p.erroneous ← True
markErroneous(p)

end
end

Algorithm heuristic2
1 foreach node n of the final correct nodes do
2 markCorrect(n)

end
3 foreach node n of the final erroneous nodes do
4 markErroneous(n)

end
5 foreach node n of the erroneous nodes do
6 cond1 ← (n.erroneousParentsCount == 0)
7 cond2 ← (n.correctParentsCount ≥ 1)
8 if cond1 AND cond2 then
9 Increment Counters of resources used in n;

end



After both heuristics are applied, the counter values
computed by the heuristics are averaged to obtain the final
counter values. The diagnosis algorithm identifies the top
Ndeconf resources with the highest counter values as candi-
dates of the faulty resource, where Ndeconf is a fixed value.
These are the processor resources that are disabled to fix the
intermittent fault after diagnosis. Thus Ndeconf represents a
trade-off between diagnosis accuracy and granularity. We
study this trade-off in Section VI-B1.

In general, we disable all the Ndeconf resources identified
by the diagnosis algorithm, with one exception. Because the
number of functional units in a processor is typically low,
we never disable more than one functional unit. This means
that if the number of functional units among the resources
with Ndeconf highest final counter values is more than one,
only the unit with the highest counter value is disabled.

Example: Due to space constraints, we only demonstrate
the application of the first heuristic to the augmented DDG in
Figure 5. Heuristic 1 starts from erroneous nodes (nodes 2, 6,
7 & 8). None of the erroneous nodes in this DDG have a final
correct ancestor and therefore S21 = S61 = S71 = S81 = φ.
The backward slice for each of the erroneous nodes are
collected by the algorithm (S22 = {2, 1}, S82 = {8, 5},
S72 = {7, 5}, S62 = {6, 5}). The counters of resources
in these sets are incremented by 1 as they have each
participated in creating an erroneous value.

These nodes might also have participated in creating a
final correct value. If so, they are pruned from the back-
ward slice before their counters are incremented (Line 10).
However, none of the nodes in the backward slices of the
erroneous nodes in Figure 5 have final correct nodes as their
children. Therefore, no pruning occurs in the example.

We can see that node 5 which has used the faulty resource
fu-1, appears in the backward slices of three erroneous nodes
(6, 7 & 8). This means that the counter related to fu-1 is
incremented 3 times. Meanwhile, fu-1 is also used by the
node 1 in the backward slice of erroneous node 2 (based on
Table I), and hence its counter value is again incremented
by 1. The final counter values are shown in Table III. As
seen from the table, the faulty resource fu-1 is the resource
with the highest counter value of 4.

Resource Value Resource Value
fu-1 4 fu-5 2

rob-84 3 rob-85 1
ifq-1 3 lsq-2 1
rs-7 3 ... 1

Table III: Counter values after applying heuristic 1 to DDG
in Figure 5

Fault Recurrence: The above discussion considers a
single occurrence of an intermittent fault. However, by their
very definition, intermittent faults will recur, thus giving us
an opportunity to diagnose them again. The above diagnosis
process is repeated after every failure resulting from an
intermittent fault, and each iteration of the process yields
a different counter value set. The final counter values are
averaged across multiple iterations, thus boosting the diag-
nosis accuracy, and smoothing the effect of inaccuracies.

VI. EVALUATION

We answer the following research questions to evaluate
our diagnosis technique:

1) RQ 1: What is the diagnosis accuracy or the probability
that the technique correctly finds the faulty resource?

2) RQ 2: What is the performance overhead of repairing
the processor after finding the faulty resource?

3) RQ 3: How much online performance, power and area
overhead is incurred because of SCRIBE?

4) RQ 4: What is the offline performance overhead of
SIED (Replay + DDG Construction and analysis)?

In this section, we present the experimental setup and the
results of our evaluations.

A. Methodology
SCRIBE: We implemented SCRIBE in sim-mase, a cycle-
accurate micro-architectural simulator, which is a part of the
SimpleScalar family of simulators [23]. We based our im-
plementation on the SimpleScalar Alpha-Linux, developed
as part of the XpScalar framework [24].
Configurations: To understand the overhead of our diagno-
sis mechanism across different processor families, we use
three different configurations (Narrow, Medium and Wide
pipelines) for our experiments. These respectively represent
processors in the embedded, desktop and server domains,
and have been used in prior work on instruction-level
duplication [25]. Table IV lists the common configurations
between the simulated processors and Table V shows the
configurations that vary across processor families.

Parameter Value

Level 1 Data Cache 32K, 4-way, LRU, 1-cycle
latency

Level 1 Instruction Cache 32K, 4-way, LRU, 1-cycle
latency

Level 2 combined data 512K, 4-way, LRU,
& instruction cache 8-cycle latency
Branch Predictor Bi-modal, 2-level
Instruction TLB 64K, 4-way, LRU
Data TLB 128K, 4-way, LRU
Memory Access Latency 200 CPU Cycles

Table IV: Common machine configurations

We choose the RUI length based on the type of the
processor (recall from Section IV that RUI Length∝ lg(Total
number of resources)). We choose the LogSQ and Logging
Buffer to be 32 and 64 entries respectively, as our experi-
ments indicate that increasing the sizes of these resources
beyond 32 and 64 makes no significant improvement on
performance. More details may be found in our earlier
paper [21].
Benchmarks: We use eight benchmarks from the SPEC
2006 integer and floating-point benchmarks set. We chose
these benchmarks as they were compatible with our infras-
tructure. We did not cherry-pick them based on the results.
Fault Injector: We extended sim-mase to build a detailed
micro-architecture level fault injector. For each injection, the
program is fast-forwarded 20 million instructions to remove
initialization effects. Then a single intermittent fault burst
is injected into one of the following: i) Reorder Buffer
entries, ii) Instruction Fetch Queue entries, iii) Reservation



Topic Parameter Machine Width
Nar. Med. Wide

Pipeline Width

Fetch 2 4 8
Decode 2 4 8
Issue 2 4 8
Commit 2 4 8

Array Sizes ROB Size 64 128 256
LSQ Size 32 32 32

Number of Integer Adder 2 4 8
Integer Multiplier 1 1 1

Functional Units FP Adder 1 1 2
FP Multiplier 1 1 1

Table V: Different machine configurations

Station entries, iv) Load/Store Queue entries v) functional
unit outputs. The starting cycle of the fault burst is uniformly
distributed over the total number of cycles executed by the
program. The number of cycles for which the fault persists
(fault duration) is also uniformly distributed over the interval
[5, 2000], as voltage and temperature fluctuations last for
around 5 to several thousands of cycles ([26], [27]).

After injecting the fault burst, the benchmark is executed
and monitored for 1 million instructions to see if it crashes.
We consider only faults that lead to crashes for diagnosis.
This is because we do not assume the presence of error
detectors in the program that can detect an error and halt
it. To simulate a recurrent intermittent fault, we re-execute
a benchmark up to 50 times while keeping the injection
location unchanged. Note however that the starting cycle and
fault duration are randomly chosen in each run. We report
the results for scenarios in which 10 or more of the fault
injections into a location led to crashes (out of 50 injections).
Diagnosis: SIED is implemented using Python scripts and
starts whenever a benchmark crashes as a result of fault
injection. We extract the traces required to build the pro-
gram’s DDG by modifying the MASE simulator. However,
these traces would be extracted by a virtual machine or a
dynamic binary instrumentation tool in a real implemen-
tation of SIED (as explained in Section V-A). SIED also
relies upon deterministic replay mechanisms (as explained
in Section III-C) for diagnosis. We have extended sim-
mase to enable deterministic replay. Again, this would be
implemented by a deterministic replay technique in a real
implementation of SIED. We conducted the simulations and
diagnosis experiments on an Intel Core i7 1.6GHz system
with 8MB of cache.
Deconfiguration Overhead: The deconfiguration overhead
is measured as the processor’s slow-down after disabling the
candidate locations of the faulty resource suggested by our
diagnosis approach. We assume that the precise subset of
resources suggested by our technique can be deconfigured.
We used the medium width processor configuration from
Table V for measuring the overhead after deconfiguration.
SCRIBE Performance and Power Overhead: The per-
formance overhead is measured as the percentage of extra
cycles taken by the processor to run the benchmark programs
when SCRIBE is enabled. For measuring the overhead, we
execute each benchmark for 109 instructions in the MASE

simulator 1. We also implemented SCRIBE in the Wattch
simulator [28] to evaluate its power overhead. The metric
by which the power overhead of SCRIBE is evaluated is the
average total power per instruction. We used the CC3 power
evaluation policy in Wattch as it also takes into account the
fraction of power consumed when a unit is not used [28].

B. Results
1) Diagnosis Accuracy (RQ 1): Figure 6 shows the

accuracy of our diagnosis approach for faults occurring in
different units of the medium-width processor. We find that
the average accuracy is 84% across all units. To put this in
perspective, our diagnosis approach identifies 5 resources
out of more than 250 resources in the processor as faulty,
and the actual faulty resource is among these 5 resources,
84% of the time (later, we explain why we chose 5).

The diagnosis accuracy depends on the unit in which
the fault occurs, and ranges from 71% for IFQ to 95%
for LSQ. The reason for IFQ having low accuracy is that
faults in the IFQ cause the program to crash within a short
interval of time (i.e., they have shorter crash distances). Short
crash distances lead to lower accuracy, which is counter-
intuitive as one expects longer crash distances to cause loss
in the fault information and hence have lower accuracy.
However, our DDG analysis algorithm explained in Section
V-B uses backtracking the paths leading to final erroneous
data. The more the number of these paths, the easier it is
for our algorithm to distinguish the faulty resource from
other resources, and hence higher the accuracy. Shorter crash
distances mean fewer paths, and hence lower accuracy.

The main source of diagnosis inaccuracies is that
SIED has only knowledge about final data (correctness of
memory and register values at the failure point). The DDG
analysis heuristics in Section V-B use backtracking from
final erroneous data to speculate on the correctness of the
data before the failure point. However, non-faulty resources
are also used in the paths leading to final erroneous data, and
can be incorrectly diagnosed as faulty by our technique.

One way to improve the diagnosis accuracy is to record
the output of every instruction, thus eliminating the need for
speculation on the correctness of the data before the failure
point. However, storing the output of every instruction
imposes prohibitive performance overhead. Figure 7 shows
the performance overhead of storing the destination regis-
ter of every instruction, for 32-bit instructions and 64-bit
instructions, for three SPEC 2006 programs. The overhead
for storing 0 extra bits corresponds to that of storing only
the resource usage bits, as done by our technique (explained
in Section IV). As seen from the Figure 7, the overheads
for storing the results of 32 and 64 bit instructions are
respectively 2X and 3X that of the overhead of only storing
the resource usage information. Therefore, we chose not to
record the output of every instruction for diagnosis.

As explained in Section V-B, SIED uses information from
multiple occurrences of the intermittent fault to enhance the
diagnosis accuracy. Let RN denote the number of recur-
rences of the failure, after which the diagnosis is performed.

1We do not use Simpoints due to incompatibilities between the bench-
mark format for the simulator and the format required by Simpoints.



Figure 6: Accuracy Results for applying the heuristics (RN = 4 and Ndeconf = 5)

Figure 7: Effect of sending the destination register values
of every instruction on performance overhead (0 bits corre-
sponds to only sending the RUI as in our technique)

Figure 8: Average accuracy across benchmarks with respect
to the number of failures (Ndeconf = 5)

There is a trade-off among diagnosis accuracy and the
failure recurrence number (RN) for performing diagnosis.
This means that diagnosis can be performed earlier at the
expense of less accuracy or be postponed to receive more
information from the subsequent failures and hence achieve
higher accuracy, which in turn decreases the probability of
the fault recurring after deconfiguration (and hence has lower
overheads). Figure 8 shows how changing the RN value
can affect the accuracy of diagnosis. We choose RN = 4 to

perform diagnosis (Figure 6), as beyond this point, there is
only a marginal increase in diagnosis accuracy with increase
in RN .

2) Deconfiguration overhead (RQ 2): As mentioned in
section V-B, Ndeconf is the number of resources suggested
by SIED as most likely to be faulty. Diagnosis accuracy is
defined as the probability of the actual faulty resource being
among the resources suggested by SIED. For the accuracies
reported in Figure 6, Ndeconf is chosen to be 5.

The processor is deconfigured after diagnosis by disabling
these Ndeconf resources. Although increasing Ndeconf in-
creases the likelihood of the processor being fixed after
deconfiguration, it also makes the granularity of diagnosis
more coarse-grained. In other words, by increasing Ndeconf ,
deconfiguration disables more non-faulty resources along
with the actual faulty resource. This results in performance
loss after deconfiguration.

Figure 9a shows the accuracy of diagnosis as Ndeconf

varies from 1 to 5. As expected, increasing Ndeconf in-
creases the accuracy of diagnosis to 84% for Ndeconf =
5. Figure 9b shows the average slowdown by disabling
Ndeconf = 5 resources suggested by our technique. As
can be seen in the figure, the slowdown varies from 1%
to 2.5%, with an average of 1.6%. This shows that disabling
Ndeconf = 5 resources only incurs a modest performance
overhead after reconfiguration, and hence we choose this
value.

3) SCRIBE Performance, Power and Area Overhead
(RQ 3): Figure 10 shows the performance overhead in-
curred by SCRIBE across three processor configurations,
narrow, medium and wide, described in Section VI-A. The
geometric mean of the overheads across all configurations
is 14.7%. In all but one case (except soplex), the wide
configuration (GeoMean = 23.21%) incurs higher over-
head than the medium (GeoMean = 11.88%) and narrow
(GeoMean = 11.53%) configurations. The Medium and
narrow configurations are comparable in terms of overhead.
The wide processor has high overhead as it is able to utilize
the resources better, thus leaving fewer free slots to be used
by SCRIBE for sending logging stores to memory.

As far as power is concerned, SCRIBE has 9.3% power
overhead on average. This includes both active power and
idle power. Figure 11 shows the breakdown of the power



(a) Accuracy with respect to Ndeconf (RN = 4) (b) Performance overhead after deconfiguration (Ndeconf = 5)

Figure 9: The reported values are averages of values for benchmarks mentioned in Section VI-A

Figure 10: The performance overhead of SCRIBE applied
to three configurations: Narrow, Medium and Wide

Figure 11: The breakdown of power consumption of
SCRIBE

consumption overhead. As seen in the figure, only 7.9% of
the extra power is used by the components of SCRIBE. The
rest of the power overhead is due to the extra accesses to
the D-Cache and the extra cycles due to SCRIBE (indicated
in the figure as Other Components).

We have not synthesized SCRIBE on hardware, and hence
cannot measure its area overhead. However, we can estimate
the area overheads from other techniques that have been
synthesized. For example, a comparable technique, IFRA,

which add 50 Kbytes of storage to a chip, has an area
overhead of 2% [11]. SCRIBE adds less than 2 KBytes of
distributed on chip storage (estimated from the number of
bits added by each component). Therefore, we believe the
area overhead of SCRIBE will be much less than 2%.

4) SIED Offline Performance Overhead (RQ 4): This
overhead consists of: i) Replay time ii) DDG construction
and analysis time. The average replay time depends on the
program and whether it is replayed from a checkpoint or
from the beginning. We do not consider this time as it
depends on the checkpointting interval. The DDG construc-
tion and analysis time took 2 seconds on average, for our
benchmarks.

VII. RELATED WORK

Bower et al. [5] propose a hardware-only diagnosis mech-
anism by modifying the processor pipeline to track the
resources used by an instruction (similar to SCRIBE), and
finding the faulty resources based on resource counters.
However, their scheme relies on the presence of a fine-
grained checker (e.g., DIVA [8]) to detect errors before an
instruction commits. This limits its applicability to proces-
sors that are specifically designed with such fine-grained
checkers.

Li et al. [9] use a combination of hardware and software
to diagnose permanent errors. Similar to our approach,
theirs is also a hybrid technique that splits the diagnosis
between hardware and software. However, they rely on the
determinism of the fault, as they replay a failed program
execution (due to a permanent fault) from a checkpoint
and gather its micro-architectural resource usage information
during the replay. Unfortunately, this technique would not
work for intermittent faults that are non-deterministic, as
the fault may not show up during the replay.

IFRA [11], is a post-silicon bug localization method,
which records the footprint of every instruction as it is
executed in the processor. IFRA is similar to SCRIBE in
how it records the information. However, SCRIBE differs
from IFRA in two ways. First, IFRA records the instruction
information within the processor, and this information is
scanned out after the failure, after the processor is stopped.
On the other hand, SCRIBE writes the gathered information
to memory during regular operation. Second, IFRA required



the presence of hardware-based fault detectors to limit the
error propagation. In contrast, SCRIBE does not require any
additional detectors in the hardware or software.

DeOrio et al. [29] introduce a hybrid hardware-software
scheme for post-silicon debugging mechanism, in which
the hardware logs the signal activities during post-silicon
validation, and the software uses anomaly detection on the
logged signals to identify a set of candidate root-cause
signals for a bug. Because their focus is on post-silicon
debugging, they do not present the performance overhead
of their technique, and hence it is not possible for us to
compare their performance overheads with ours.

Carratero et al. [10] performs integrated hardware-
software diagnosis for faults in the Load-Store Unit (LSU).
Our work is similar to theirs in some respects. However,
our approach covers faults in the entire pipeline, and not
only the Load Store Unit. Further, their goal is to diagnose
design faults during post-silicon validation, while ours is to
diagnose intermittent faults during regular operation.

There has been considerable work on online testing for
fault diagnosis. For example, Constantinides et al. [30]
propose a periodic mechanism to run directed tests on the
hardware using a dedicated set of instructions. However, this
technique may find errors that do not affect the application,
which in turn may initiate unnecessary recovery or repair
actions, thus resulting in high overheads. To mitigate this
problem, Pellegrini and Bertacco. [31] propose a hybrid
hardware-software solution that monitors the hardware re-
source usage in the application, and tests only the resources
that are used by the application. While this is useful, all
testing-based methods require that the fault appears during
at least one of the testing phases, which may not hold for
intermittent faults.

VIII. CONCLUSION

In this paper, we proposed a hardware/software integrated
scheme for diagnosing intermittent faults in processors. Our
scheme consists of SCRIBE, the hardware layer, which
enables fine-grained software layer diagnosis, and SIED,
the software layer which uses the information provided by
SCRIBE after a failure to diagnose the intermittent fault. We
found that using SCRIBE and SIED, the faulty resource can
be correctly diagnosed in 84% of the cases on average. Our
scheme incurs about 12% performance overhead, and about
9% power consumption overhead (for a desktop class pro-
cessor). The performance loss after disabling the resources
suggested by our technique is 1.6% on average.
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