A Systematic Methodology for Evaluating the Error
Resilience of GPGPU Applications

Bo Fang*, Karthik Pattabiraman*, Matei Ripeanu*, Sudhanva Gurumurthi f
*Department of Electrical and Computer Engineering, University of British Columbia
fCloud Innovation Lab, IBM Corporation
{bof, karthikp, matei} @ece.ubc.ca; sgurumu@us.ibm.com

Abstract—The wide adoption of graphics processing units
(GPUs) as accelerators for general-purpose applications makes
the end-to-end reliability implications of their use increasingly
significant. Fault injection is a widely adopted method to evaluate
the resilience of applications. However, building a fault injector
for general-purpose GPU applications is challenging due to
their massive parallelism, which makes it difficult to achieve
representativeness while being time-efficient.

This paper makes four key contributions. First, it presents a
fault-injection methodology to evaluate the end-to-end reliability
properties of application kernels running on GPUs. Second, it
introduces GPU-Qin, a fault-injection tool that uses real GPU
hardware and offers a tunable and efficient balance between the
representativeness and the cost of a fault-injection campaign.
Third, it characterizes the error resilience characteristics of
seventeen application kernels. Finally, it provides preliminary
insights on correlations between the algorithmic properties of
applications and their error resilience.

Index Terms—GPU, fault tolerance, error resilience

I. INTRODUCTION

GPUs were originally designed for applications where re-
liability was not a primary concern (e.g., image rendering,
where a few wrong pixels are not noticeable by human
eyes). Today, however, GPUs are widely used to accelerate
general purpose applications in areas where correctness is
critical (e.g., medicine, oil and gas exploration, scientific
computing). Understanding the behavior of these applications
in the presence of hardware faults thus becomes important,
especially as the rate of such faults increase with technology
scaling [1]. Particle-induced transient faults are especially a
key source of hardware faults [2].

Manufacturers have invested significant effort to improve
GPU reliability. For instance, most modern GPUs such as
NVIDIA Fermi™and AMD Radeon 7970™provide error cor-
recting code (ECC) support that covers the memory space, the
register file, the shared memory and caches [3], [4]. However,
ECC entails area, power, and performance overheads. The
computational and control datapaths are also susceptible to
transient faults and more challenging to protect efficiently
using ECC. Therefore, designing a reliable GPU and providing
resilience for applications that run on the device is a challeng-
ing problem.

The long-term goal of our work is to develop application-
specific, software-based fault-tolerance mechanisms for gen-
eral purpose GPU applications. As a first step towards this
goal, we have developed a fault injection methodology and

the associated tool-chain to investigate the error-resilience
characteristics of these applications. Fault-injection is the
act of perturbing an application to emulate faults, and then
studying their effect on the application outcome [5]. While
there has been substantial work in the realm of fault injection
for CPU applications [6], [7], there have been relatively few
studies that have explored the reliability properties of GPGPU
applications and proposed methodologies and tools to support
this exploration.

Prior work [8] has performed fault injections at the source-
code level (i.e., mutating the source code of a program). Un-
fortunately, injecting faults at this level is coarse-grained, and
does not represent accurately the hardware faults that occur
at the granularity of microarchitectural units and instructions.
To model hardware faults, the standard approaches are to
inject faults into a register transfer language (RTL) model
or a microarchitectural simulator [9]. While these approaches
facilitate studying the impact of various types of hardware
faults, as they are based on simulations they are considerably
slower than executing applications on real hardware. One way
to alleviate the performance bottleneck is to execute only
a small section of the application. However, this limits the
ability to obtain insights into the end-to-end behavior of the
application under faults.

To avoid the above issues, we choose to perform fault
injections at the assembly-language level using a GPU-based
debugger. While not as detailed as fault injections at the
microarchitectural level, this approach allows us to model the
impact of faults that lead to errors in the architectural state of
instructions, and thus is more precise than injecting at the high-
level language level. Compared to the microarchitectural level
injectors based on simulation, this approach is much more
efficient and scalable as the application is executed on the
actual GPU hardware. This approach serves well our final goal:
we aim to understand applications’ error resilience (rather
than compute raw hardware FIT rates hardware) and explore
software techniques to improve resilience.

This paper makes the following contributions:

1) Proposes a methodology to evaluate the resilience of
GPU applications (Section III) and describes and quanti-
tatively characterizes (Section IV-B) the design decisions
and the corresponding trade-offs between fault injection
campaign coverage and the cost required to handle the
massive parallelism of GPU applications.



2) Describes the design and implementation of a fault-
injection tool, GPU-Qin, that is able to inject faults
into applications running on the actual GPU hardware
(Section III).

3) Performs an end-to-end error-resilience characterization
of 14 GPU applications (17 kernels) (Section IV-C).
We find that there are significant variations in the
error resilience characteristics of GPU applications. For
example, the silent data corruption (SDC) rates range
from 1% to 38% while the crash rates range from 6% to
69%. This further highlights the potential of application-
specialized error resilience mechanisms implemented at
the software level.

4) Provides an additional set of scenarios where our
methodology and tool can be used. We characterize
the causes of application crashes and crash latencies
(Section IV-E). We further attempt to correlate applica-
tion characteristics with their observed error resilience
(Section IV-D), and discuss the use of GPU-Qin in
the context of guiding code optimizations, algorithm
choice or application-level configuration to maximize
error resilience (Section V-B).

II. BACKGROUND AND FAULT MODEL

This section offers background information on the depend-
ability metrics associated with this work, the fault model used,
and the NVIDIA GPU architecture and programming model.
We chose to prototype our fault injector on an NVIDIA GPU
because NVIDIA’s CUDA™tool chain providers debugging
capabilities that facilitate software fault injection.

A. Dependability Metrics: Error Resilience and Vulnerability

Error resilience is the conditional probability of a sys-
tem/program not experiencing a failure given that a hardware
fault has occurred. Program failures can be classified as
crashes (i.e., hardware/operating system exceptions), hangs,
and SDCs (i.e., incorrect output). Faults that do not cause
failures are known as benign.

We focus on hardware faults that propagate to software be-
cause we are interested in building error resilient applications.
Different hardware platforms usually have different fault-
tolerance mechanisms. At the same time, different applications
correspond to different instruction streams, which determine
fault propagation. Thus, error resilience is a property of both
the platform and the application. Since our evaluation is
performed on one hardware platform, in our context error
resilience becomes a property of the application alone.

Vulnerability is the probability that the system experiences
a fault that causes a failure (e.g., an SDC) of a program.
Note that vulnerability is different from error resilience as
it contains two conditions: (1) the probability of the system
experiencing a fault, and (2) the probability that this fault leads
to a failure.

B. Characterizing Error Resilience

There are three commonly used methods to characterize
error resilience:

Accelerated Testing: This method refers to the use of particle
sources, such as an alpha source or neutron beams, to impinge
on a device under test to induce faults [10]. The main
advantage of this method is that it can be used to create faults
that can mimic those that would occur under normal operating
conditions at an accelerated rate. However, accelerated testing
can be expensive, often limited by availability of beam-time
and cost, and it is challenging to control how and on what
components the faults are induced.

Fault Injection: This is a procedure to introduce faults in a
systematic, controlled manner and study the resulting system’s
behavior. Fault injection techniques can be generally cate-
gorized into hardware-based and software-based [11], [12].
Hardware-based fault injection techniques normally require
specialized hardware equipment in addition to the target sys-
tems, and they cannot be directly used to target applications or
operating systems. Software-based fault-injection techniques
typically emulate the effects of hardware faults on the software
by perturbing the values of selected data/instructions in the
program. The appealing properties of these techniques are:
relatively low-cost as they require no special equipment,
provide higher controllability, and less constrained in terms
of the number of experiments that can be done.

As mentioned before, fault injection can be performed at the

RTL or microarchitectural levels. However, injecting faults at
this level requires detailed RTL or microarchitectural simula-
tors which makes end-to-end application-level resilience eval-
uation impractical. For this reason, we perform fault injection
at a higher level, namely at the level of assembly instructions,
and execute on real hardware. Our goal is to obtain sufficient
coverage in terms of number of instructions executed, rather
than in terms of the proportion of hardware state covered by
the injections, as is typical in RTL/microarchitectural fault
injections.
AVF/PVF Analysis: Mukherjee et al. [13] introduce the ar-
chitecture vulnerability factor (AVF) analysis that quantifies
the vulnerability of microarchitectural components to soft
errors. Sridharan et al. [14] study the vulnerability of software
independent of hardware by introducing the program vulnera-
bility factor (PVF) analysis. Although AVF and PVF measure
properties that are different from error resilience, they can be
used for a first estimate of the error resilience of an application.
The key limitation, however, is that AVF and PVF treat all
failure outcomes equally, that is, they do not differentiate
between crashes, SDCs and benign faults. We elaborate on
AVF and PVF in Section VI

C. The Fault Model

Hardware faults can be broadly classified as transient or
permanent. Transient faults usually are “one-off” events and
occur non-deterministically, while permanent faults persist at
a given location (e.g. stuck-at-faults) [15]. Further, transient
faults are caused by external events such as cosmic rays, while
permanent hardware faults are usually caused by manufactur-
ing defects or wearout. Transient faults are one of the major
sources of faults in processors [16] and are the focus of our
evaluations. In this paper, we consider faults in architecturally
visible registers.



Our methodology is agnostic to whether a fault arises in the
register file or is propagated to the registers from elsewhere.
We do not consider faults in cache, memory because we
assume that they are protected by ECC. This is the case for
recent server GPUs from major vendors. However, our fault
injector can model memory faults and other fault models too
with minimal modifications.

We use the single-bit-flip model as it is the most common
SRAM transient fault mode in today’s systems [2]. However,
our fault injector can support both single- and multiple-bit flips
by choosing corresponding fault generation functions with
minimal modifications.

D. GPU Architecture and Programming Model

We focus on GPGPU applications written in the NVIDIA
Compute Unified Device Architecture(CUDA), a widely
adopted programming model and toolchain for GPUs. The
CUDA programming model defines a GPU application as a
control program that runs on the host and a computation
kernel that runs on the GPU device. CUDA kernels use a
single instruction/multiple thread (SIMT) model that exploits
the massive parallelism of the GPU device.

From a software perspective, CUDA abstracts the SIMT
model into a hierarchy of kernels, blocks and threads. A
CUDA kernel consists of blocks, and a block, in turn, consists
of threads. From a hardware perspective, blocks of threads run
on hardware units known as streaming multiprocessors (SMs)
that feature a shared memory space for the threads inside the
same block. Inside a block, threads are scheduled in a fixed
group of 32 threads, known as warps. All the threads in a warp
execute the same instructions, but on different data values.
The kernel is implemented as a collection of functions in a
language similar to C, with annotations for identifying GPU
code and for delineating different types of memory spaces on
the GPU.

III. METHODOLOGY

This section outlines our methodology to characterize the
error resilience of GPGPU applications and the tradeoffs
we make to balance coverage and efficiency. To support
our methodology, we develop GPU-Qin, which consists of a
profiler and a fault injector.

Any fault-injection methodology should satisfy the follow-
ing three requirements:

1) Representativeness: The faults injected should be repre-
sentative of the actual hardware faults that occur at run-
time. In particular, the faults should be injected over
the set of all instructions executed by the application.
We assume that each dynamic instruction carries the
same probability of fault occurrence. While this is a
simplistic model, if a more realistic model is available
(i.e., a model that reflects the differentiated instruction-
level likelihood to experience a fault) our methodology
will need only minor modifications to incorporate such
a model. In particular, the change for GPU-Qin will
be to assign different cycle counts (i.e. probability to
experience a fault) to different instructions. However,

the result of the above change to the applications’ error
resilience is not clear.

2) Efficiency: Fault-injection experiments should be fast
enough to allow the application to be executed to
completion in reasonable time. The reason is that a
large number (typically thousands) of faults-injection
experiments need to be performed to obtain statistically
significant estimates of error resilience and hence each
individual run should be fast.

3) Minimum Interference: The tools supporting the fault-
injection experiments should interfere minimally with
the original application so that they do not modify its
resilience characteristics. In particular, the fault injector
should not change either the code or the data of the
application other than for the objective of injecting the
faults themselves.

Y
Grouping threads /\1
Detects groups of threads with GPGPU-Sim
similar behavior (Section I1L.A)
A,
Profiling P 4
Profiles one thread in each of
the most populargroups GPU-Qin
¢ (Section II1.B)
Fault injection runs
= Selects an instruction y
within a profile N
»| =  Adds breakpoint, runs GPU-Qin
and single-steps to the (Section IIL.C)
target instruction
= Injects a fault
Monitoring
= Run to completion or y
timeout N
Check outcome GPU-Qin
95% confidence 18

reached

Aggregates results

Fig. 1: Overview of GPU-Qin, our fault-injection methodology highlighting
the main phases: grouping, profiling, fault injection, and result aggregation
and the corresponding sections that describe them.

Figure 1 shows an overview of our methodology. The
process consists of three main phases, which we briefly
introduce here and detail in the rest of this section. In the
first phase (described in Section III-A), we use the profiling
information obtained by using a cycle accurate GPU simulator
to group application threads based on the similarity of their
behaviour. The goal is to reduce the number of threads we



characterize: as GPU applications usually launch thousands
or tens of thousands of threads, it would be extremely time-
consuming to evaluate the error resilience of each GPU thread.
Instead, we identify the representative groups of threads, and
choose one thread from each group to profile in the next phase.
To balance coverage and efficiency, in some cases we use only
the most popular groups, as we detail in Section III-A.

In the second phase (described in Section III-B), we profile
the threads selected in the first phase and obtain for each of
them an execution trace. This information is necessary in the
next phase to locate, at runtime, the instruction at which to
pause execution and inject the fault.

In the third phase (described in Section III-C), for each
injection run, we randomly choose one executed instruction
from one of the traces obtained in the second phase. The
choice of the trace is biased proportionally based on the
popularity of the thread group it represents. We also randomly
pick a thread from the entire set of application run-time threads
for each injection run. The choice of the instruction is done
uniformly over the space of the instructions of the profile; thus,
our methodology simulates the occurrence of a transient error
that occurs with uniform probability over all thread lifetime.
This satisfies the representativeness requirement.

We implemented our methodology based on the CUDA
GPU debugging tool: cuda-gdb '. The cuda-gdb interface
provides an external method to control the application, and
to trace/modify it without making any changes to the ap-
plication code or data. This makes it possible to satisfy
the minimum interference goal. In addition to cuda-gdb, we
employ GPGPU-Sim [9], a cycle-accurate GPU simulator for
the initial profiling of the application. This preliminary step
does not distort the characteristics of a program, compared to
profiling on the real GPU. cuda-gdb introduces timing delays
in the application; however, we have not seen any cases in
which there is considerable deviation in the behavior of the
application due to such delays. We automate the interactions
between cuda-gdb and GPU-Qin.

A. Phase I: Grouping

GPU applications often have a massive number of threads
(often tens of thousands) and it would be infeasible to obtain
the execution traces for all threads in an application kernel for
the purpose of fault injection. Therefore, a key challenge is
to identify a fraction of threads that are representative of the
workload behavior. To this end, we seek to separate threads
into groups of threads with similar behaviour and select one
thread from each group to obtain a trace. To identify groups we
use dynamic instruction counts as a proxy for thread behaviour.
The intuition is that, as GPUs are built on Single Instruction
Multiple Threads (SIMT) [17] computation model, similar
threads execute exactly the same dynamic instructions. Our
grouping strategy offers a conservative representation of the
thread behaviours because the threads from two groups can
share the same set of most-executed instructions resulting from
for example, difference in number of loop iterations executed,

Ihttps://developer.nvidia.com/cuda-gdb

il group2
16% -

# groupl
12.50%

. N group2
TEEREEREEEST

® groupl 50.00%

84%

Fig. 2: Number of groups and their size in selected application kernels. Each
group contains threads that have similar instruction counts. The group size is
expressed as the percentage of the total number of threads of the kernel that
belongs to the group. Left: LBM Right: Monte Carlo

hence the error resilience characteristics could remain similar
between threads in two groups.

Because the GPUs used do not have a built-in, per-thread,
instruction counter, we have instrumented the state-of-the-
art GPU simulator GPGPU-Sim (v3.2.0) [9] to obtain the
number of dynamic instructions executed per thread. GPGPU-
Sim simulates the execution of GPGPU programs from both
functional and performance perspectives, and hence the num-
ber of instructions executed matches the number of instructions
executed on the real hardware. We perform the group identifi-
cation operation only once per application, so it is acceptable
for this phase to be slower than the fault-injection phase, which
is performed thousands of times. We then group the threads
executing the same number of dynamic instructions.

We note that the instruction count includes conditionally
executed instructions regardless of the condition being true or
not. We have verified that, in practice, this approximation does
not impact our grouping accuracy.

Based on the results of the group identification process, we
find that our benchmarks (presented in detail in Section IV
and Table II) can be categorized in three categories (Table I).
In the first category, all threads execute the same number
of instructions, and hence there is only one group. In the
second category, there is a limited amount of divergence (i.e.,
the threads execute different instructions) among the threads,
which leads to only a few groups (2 to 10). Finally, in the
third category, there is significant divergence leading to tens
of groups or more.

In Section IV-B3 we validate the grouping methodology
through an extensive fault injection experiment.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

CDF of the number of groups

L L L L L L L
50 100 150 200 250 300 350 400 450
Insutruction executed by different groups of BFS

(=]
o

Fig. 3: Cumulative distribution function(CDF) of number of threads covered
by groups in BFS. One group contains over 60% of threads, and the rest are
equally popular.



TABLE I: The group identification process leads to classifying the bench-
marks in three categories.

Category] Benchmark Groups Groups Thread
to profile | coverage

I AES, MRI-Q, MAT, | 1 1 100%
MergeSort-k0, Trans-
pose

i SCAN, Stencil, | 2 - 10 1-4 95% -
Monte Carlo, SAD, 100%
LBM, HashGPU

111 BFS, PageRank, | >10 2 >60%
SSSP

B. Phase II: Profiling

The goal of the profiling phase is to map the Source and
Assembly (SASS) instructions (the raw CUDA instructions)
executed by a thread (identified during the previous phase) to
their corresponding CUDA source-code line. This will enable
GPU-Qin, which uses conditional breakpoints, to inject faults
(phase III). The reason is that cuda-gdb, on which GPU-
Qin is built, requires the source-code line number for setting
a conditional breakpoint and a single source-code line may
correspond to multiple instructions. We will explain later how
GPU-Qin locates the specific assembly instruction to inject to.

The profiling phase consists of single-stepping the program
using cuda-gdb for the thread(s) selected in the first phase. At
each step, the program counter (pc) value of the instruction is
recorded, along with the dynamic instructions corresponding
to the source line. The output of the profiling step is an
instruction trace consisting of the program counter values and
the source line associated with each instruction.

As thread profiling a is time-consuming, to balance coverage
and efficiency, we propose the following method: for appli-
cations in which there is only one group, we profile a single
thread, randomly chosen. For applications with a small number
of groups, we select the groups that include the majority of
the threads and randomly pick one thread from each selected
group to profile. Figure 2 shows two examples of how we pick
such major groups. For example, LBM has two groups: one
has 84% and the other has 16%, of the total number of threads.
To satisfy the representativeness requirement, we pick both
groups. However, in some cases, we ignore the less popular
groups: Monte Carlo benchmark has five groups, but one of the
groups is responsible only for 0.4% of total number of threads,
and hence we ignore this group for profiling and statistically
addressing the impact of this choice as shown in Section III
- Confidence and confidence interval. For applications that
have a large number of groups (i.e. Category III), we again
use group popularity to make informed choices. For BFS,
around 60% of the threads fall in a popular group (shown
as a vertical line in Figure 3), while all the other 78 groups
are equally popular; therefore, we profile random threads from
the large group and other groups. For page Rank and single
source shortest path, more than 90% of threads are running
for processing the same amount of vertices with the virtual
warp-centric programming model [18] resulting in a similar
profiling strategy of BFS. At the cost of additional time, more
groups can be sampled to increase coverage.

C. Phase IlI: Fault Injection

The third phase of the process is to inject faults into the
application at runtime and monitor the outcomes. Figure 4
briefly illustrates this process. GPU-Qin has instruction traces
from the second phase and it obtains the associated source
code line for each instruction from the trace. In each injection
campaign, to ensure representativeness, the thread to inject
is chosen randomly from the set of all threads used by the
program, rather than only from the ones chosen during the
grouping phase. GPU-Qin uses the profile from the profiling
phase and uniformly selects a SASS instruction. To inject a
fault, it sets up a conditional breakpoint in the program at
the source code line that corresponds to that target SASS
instruction using cuda-gdb. The conditional breakpoint is trig-
gered when the chosen thread reaches the chosen source line.
When the breakpoint is triggered and the chosen instruction is
reached, a fault is injected into the application. The application
is then monitored to determine if the fault is activated (i.e.,
the modified state is read by the application). The application
runs natively on the hardware until the breakpoint is triggered
and after the fault is injected (i.e., except for a short window
of time when it is single-stepped to monitor fault activation).
This satisfies the efficiency requirement. The fault injection is
repeated until the desired confidence is obtained. The rest of
this section presents the details of this process.

Breakpoint PC: hit

native hit native

. single step _ ¢ single step __§ .
'é * 'é— . '>"é execution
execution P~ execution >‘ execution . >|
f—— e
A
A A
activation
window

Fault

. injection .
start y end

GPU program execution via cuda-gdb

Fig. 4: Phase III - the fault-injection process

Reaching the target SASS instruction: After the breakpoint
is set, the program is launched under cuda-gdb, and runs na-
tively until the conditional breakpoint is hit. Because multiple
dynamic instructions can map to the same source line, hitting
the breakpoint does not mean that the target SASS instruction
is reached. To reach the target instruction, GPU-Qin performs
two steps:

1) If an instruction that is the target of the fault-injection
occurs in a loop, GPU-Qin estimates the loop iteration
in which that dynamic instruction gets executed. It can
perform this estimate based on the information gathered
in the profiling phase. If the current loop iteration is less
than the estimated iteration, GPU-Qin increments the
iteration count and continues the program natively until
the next time the conditional breakpoint is reached. To
level the time of the injection process, GPU-Qin bounds
the loop iteration estimate at 64. In other words, if the
iteration that needs to be injected exceeds 64, GPU-Qin
generates a random number between 0 and 64 and injects
a fault at the corresponding loop iteration. We examine
the implications of this heuristic in Section IV-B.



2) Once the current loop iteration matches the target it-
eration, GPU-Qin single-steps the program from the
breakpoint until the program counter matches the in-
struction we want to inject. For performance reasons,
GPU-Qin uses a fixed window to limit the number of
times the single-stepping is invoked. If this window has
been exceeded and the target instruction has not been
reached, GPU-Qin abandons the run. Currently, GPU-
Qin uses 300 instructions as the window size because we
find that over 99% source lines correspond to at most
a few tens of instructions. This window’s size can be
configured by the user.

The location to inject: The location to inject the fault
depends on the instruction executed. GPU-Qin considers three
types of instructions to inject:

1) Arithmetic instruction: GPU-Qin injects faults into the
destination register of the instruction. For vector instruc-
tions that have multiple destination registers, GPU-Qin
randomly chooses a destination register to inject into.

2) Memory instructions: GPU-Qin injects faults into either
the destination register or the address register in load/s-
tore instructions.

3) Control-flow instruction: NVIDIA instruction set archi-
tecture (ISA) uses predicate registers to control the
branches of the program. Instructions such as "ISETP”
are used to set values to the predicate registers and an
optional predicate guard is used to control the condi-
tional execution. Unfortunately, cuda-gdb does not let us
modify the predicate registers, so GPU-Qin injects faults
into the source operands of the control-flow instructions,
instead of directly manipulating the predicate registers.

The fault: A fault is injected by flipping a randomly chosen
single bit in the register chosen as above (Section II-C dis-
cusses the fault model). Only one fault is injected in each run
because hardware faults are relatively rare events compared to
the execution time of a typical application.

Successful fault injections: In rare cases a fault might
not be injected in a run even when the desired instruction
is reached. This can occur either because cuda-gdb will not
allow us to modify the instruction, or because the thread
GPU-Qin randomly picks does not execute the corresponding
instruction (recall that choosing the thread for injection is
based on all threads but the profile comes from a particular
group of threads). GPU-Qin discards the executions that do not
lead to fault injections. For example, GPU-Qin is not allowed
to change the address involved in BRA (which is a branch
instruction to jump a relative address) and hence choosing
this instruction leads to the run being discarded. Overall, less
1% of total fault injection runs are discarded.

Activated fault: Once a fault is injected, GPU-Qin checks
if the faulty location is read by the program (and not overwrit-
ten). Such faults are said to be activated. Only activated faults
are considered in the evaluation because our goal is to measure
the application’s resilience (the conditional probability that
given a fault, the program is able to work correctly). To track
the activation of a fault, GPU-Qin single-steps the program
after injection to check if there is another instruction that reads

the registers modified by the fault. To ensure that this process
terminates in a reasonable amount of time, GPU-Qin picks a
threshold: the activation window. If the fault is not activated
within the activation window after injection, GPU-Qin lets the
program continue and consider the fault inactivated. We set
the window to be 1600 instructions for our experiments. We
explore the implications of this choice in Section IV-B.

Execution Outcome: If the fault is activated, the application
execution has one of the following outcomes: (1) Throws an
exception (crash), (2) Times out by going into an infinite loop
(hang), (3) Completes with incorrect output (SDCs) 2 or (4)
Completes with correct output (benign). These four outcomes
are mutually exclusive and exhaustive.

Confidence and confidence intervals: Our fault injection
process can be essentially modeled with binomial distribution,
as each individual fault injection trial produces either a fail-
ure (i.e., SDC, hang, or crash) or non-failure outcome. The
grouping mechanism produces separate groups of threads that
may have different error resilience characteristics, hence it is
necessary to combine their characteristics to obtain application
resilience characteristics.

We propose a uniform approach to interpret the characteris-
tics of error resilience for the benchmarks that contain multiple
groups. This approach includes two components:

(i) Estimating the failure rate for a set of groups based on
sampling, i.e., fault injection experiments, conducted in each
group: We use the stratified sampling technique [19]: each
group of threads is considered as a stratum, while whole thread
population is the full strata. Equation 1 and 2 compute the fail-
ure rate estimate and its variance. The 95% confidence interval
of the failure by approximating the binomial distribution as a
normal distribution (Equation 3).

(ii) Estimating the overall failure rate and confidence inter-
val when incorporating small groups: Since the ignored group
size is relatively much smaller, we can obtain conservative
uppet/lower bounds for the 95% confidence interval of the
error rate estimate by assuming all fault injection trials (if
conducted) for this small group produces a failure (either SDC
or crash) and, respectively, a non failure outcome. (Equation 4
and 5).

k _
N;p;

Pstrata = Z ki (1)
i=1 Zj:l Nj
p(l-p) N
i\l — Pi — Ny
Var pstrata Z b s P N —1 (2)

E] lN

=1

ﬁupper/lowerbound = Pstrata = 1.96 * V Var (ﬁstrata) 3)

pupper bound * Ez 1 N +1 4
pupper bound — N ( )

2We define an SDC as an outcome that fails the correctness check of
the benchmark (if one is provided), or output mismatch between fault-free
and fault-injected runs if a correctness check is not provided. Thus, we take
application-specific characteristics into account in our definition of an SDC.



Dlower bound * I‘g— Nz
ﬁ;ower bound — b : ]{i/v Zlil (5)
Where:
Di = Failure (SDC, crash) rate estimate for group i
k = Number of popular groups
N; = (number of threads in group i)*(number of
dynamic instructions executed by a thread in
group i), that is, the population size of stratum i
N = the sum of all V;
Dstrata = The failure rate estimate for the set of groups
n; = Number of samples (i.e., fault injection trials)

conducted for group i (much smaller than N;)

IV. CHARACTERIZATION STUDY

This section uses a wide variety of applications (presented
in Section IV-A) to validate GPU-Qin design choices (Sec-
tion IV-B), to demonstrate the use of our methodology to
characterize applications’ error resilience (Section IV-C), and
to explore the causes of crashes and characterize crash latency
(Section IV-E). All of our experiments are conducted on
NVIDIA Tesla C2075.

A. Benchmarks

Our benchmarks are drawn from the Parboil benchmark
suite [20], NVIDIA CUDA SDK package, Rodinia bench-
mark suite [21], Totem graph processing engine [22] and
applications that contain well-known GPU kernels (e.g. AES,
LBM). A short description of each benchmark is given in the
appendix, along with the inputs used in our evaluation. Table II
summarizes the characteristics of each benchmark.

B. Validating Design Choices

This section offers empirical support for the heuristics used
in Section I'V. These heuristics (e.g., the grouping strategy, the
size of the activation window) represent choices in the trade
off space between coverage (in terms of distinct code paths
profiled then used for fault injection) and efficiency (run-time
characterize an application).

1) Validation of Design Choices - Limiting the Iteration
Count: As mentioned in Section III, one of the design
decisions we make to bound the cost of the fault injection
campaigns is to limit the number of loop iterations explored.
That is, if the instruction to be injected belongs to a loop
iteration that exceeds a specified threshold T, we generate a
random number between 0 and T and inject a fault at the
corresponding loop iteration. In our experiments we use T=64.
This design choice is based on the observation that GPU
applications usually consist of repetitive program states, and
the faults occurring in different iterations of a GPU program
are likely to result in similar program states.

To validate the above heuristic, we count the total number
of iterations executed by each loop of each kernel, and then
consider the loop with the largest number of iterations (shown
in Figure 5). We disregard applications that execute fewer than

64 iterations (in all loops) because they fall within the chosen
threshold already. For the two applications that have loops that
exceed the threshold (i.e., 128 in MAT and 512 in MRI-Q), we
vary the threshold from 32 to 128 for MAT and 32, 64, 128
and no threshold for MRI-Q, and repeat the characterization
experiments.

Figure 6 presents the SDC and crash rates with these
thresholds. We find that varying this threshold does not affect
the resulting SDC rate and crash rate for these benchmarks.
This indicates that limiting the number of iterations does not
affect the overall error resilience estimation. Although the limit
for the number of iterations we use in our study is sufficient
of our benchmark suite, it is still possible that applications
with different characteristics in terms of loop iterations need
different application-specific thresholds.

T

100 - = =mm o H Iy - e

Number of iterations (log scale)
- =
- t
©
%
i
i

R <
& N g

Fig. 5: The maximum number of loop iterations executed by each kernel.

2) Validation of Design Choices: Activation Window Size:
As mentioned in Section III another heuristic used to improve
efficiency is the following: If the injected fault is not activated
within an activation window of 1,600 dynamic instructions
from its injection, we consider it inactivated and drop the run.

To validate the second heuristic, we count the number of
instances when the activation window threshold is exceeded.
We find that for only three benchmarks (HashGPU-shal,
MAT and MRI-Q) there are fault-injection runs in which the
activation window is exceeded: two cases in HashGPU-shal,
36 in MAT, and 29 in MRI-Q. However, the proportion of these
is negligible, compared to the thousands of fault-injected runs
executed for each benchmark. Thus our choice of the activation
window size leads to only minimal inaccuracy.

3) Validation of Design Choices: Grouping: The purpose
of grouping is to identify the representative threads and thus
reduce the cost of profiling. As we describe in Section III-A,
we use the number of dynamic instructions executed by

SDC rate

Fig. 6: SDC and crash rate estimates for different iteration thresholds. Left:
SDC. Right: Crash. Varying the threshold of loop iterations does not affect
the resulting SDC and crash rate estimate.



TABLE II: Benchmarks properties. LOC: lines of code. Scale: number of blocks in a grid and number of threads in a block (generally a 3D*3D space).
Launch times: the number of times the kernel is launched.

Kernel properties

Benchmark Benchmark Suite Name Approximate LOC Scale Number of threads | Launch Times
AES Other [23] aesEncrypt256 400 (257,1,1)*(256,1,1) 65,792 1

shal_kernel_overla 1000 (64,1,1)*(64,1,1) 4,096 1
HashGPU | Other [24] mdS_kernel_overlag 1000 | (64.1.1)%(64.1.1) 4,096 1
MRI-Q Parboil ComputeQ_GPU 50 (128,1,1)*(256,1,1) 32,768 3
MAT CUDA SDK matrixMul 110 (4,6,1)%(32,32,1) 98,304 1
Transpose® CUDA SDK transposeDiagonal 40 (64,64,1)*(16,16,1) 1,048,576 1

mb_sad_calc 220 (44,36,1)*(61,1,1) 96,624 1
SAD Parboil larger_sad_calc_8 60 (44,36,1)*(61,1,1) 96,624 1

larger_sad_calc_16 50 (11,9,1)*(32,4,1) 13,464 1
Stencil Parboil block2D_hybrid_coarsen_x 100 (2,32,1)*(32,4,1) 8,192 5
SCAN-block | CUDA SDK scanExclusiveShared 70 | (6656,1,1)*(256,32,1) 54,525,952 1
MONTE CUDA SDK MonteCarloOneBlockPerOption 40 (32,1,1)*(256,1,1) 8,192 1
MergeSort CUDA SDK mergeSortSharedKernel 50 (4096,1,1)*(512,1,1) 2,097,152 1
BFS Rodinia Kernel 20 (8,1,1)*(512,1,1) 4,096 8
PageRank Totem [22] page_rank_incoming_kernel 40 (9468,1,1)*(512,1,1) 4,847,616 5
SSSP Totem [22] sssp_vwarp_kernel 40 9,1,1)*(512,1,1) 3,708 9
LBM? Parboil performStreamCollide 150 | (120,150,1)*(120,1,1) 2,160,000 100

2 Randomly picking blocks to inject faults takes too long for LBM and Transpose because cuda-gdb launches the application block-by-block; thus, in practice,

we only inject into the first 256 blocks

a thread as a proxy for thread behavior, and we group a
program’s threads based on this metric.

This heuristic can be validated through an instruction
level classification analysis. First we profile randomly chosen
threads of an application and compare the grouping decision
based on number of dynamic instruction with a detailed
instruction-level classification analysis. While we have exe-
cuted the above comparison successfully for all applications
we show here only two examples applications from categories
I and II, namely MAT and SAD below.

MAT: Since in MAT all the threads execute the same number
of dynamic instructions (Category I), our validation aims to
verify if the same number of instructions implies an identical
set of instructions executed by each thread. We randomly
choose 100 threads in MAT and record using GPU-Qin the
instructions each thread executes. We observed that all the
resulting execution traces are identical.

SAD: As we show in Table I, SAD-kO has five groups. We
randomly profile two threads from each group of SAD-kO and
compare the dynamic instructions they execute, and find that
they are also identical.

To highlight the fact that our grouping strategy is conser-
vative, i.e., threads from different groups may have similar
resilience characteristics, we pick a random thread from each
of the two most popular groups separately to classify the
instructions. Figure 7 shows the classification of instructions
executed by the two threads we pick. In total, we found 10
categories of instructions used in SAD-kO defined in NVIDIA
SASS ISA [25], and we present the break-down of the number
of executed instructions in each category. The difference in
terms of number of instructions between the two threads is
786, which constitutes about 2% of total number of instruc-
tions in a thread. After comparing the dynamic instructions,
95% instructions are identical. Fault injection results on those
groups show approximately 1% difference in both SDC and
crash rates, which matches the small variance in different
groups. Thus a more aggressive grouping strategy could further
reduce the cost of the fault injection campaign at the cost of
a small accuracy loss.

Finally, we have validated that grouping is useful: that is,
that threads in groups that differ widely in number/type of
instructions do have different error resilience properties. To
this end, we compare the fault-injection results of applica-
tions in categories II and III (see Table I). The crash rates
vary considerably for different groups of threads in Stencil,
LBM, SCAN and BFS, which is 5%, 10%, 10% and 25%
respectively.

The above experiments suggest that grouping is a reason-
able representation of the program’s behaviour under errors,
further providing evidence that using the number of dynamic
instructions as the representation of a thread’s behaviour is a
reasonable but conservative metric.

NGroup | of SAD-kO N Group Il of SAD-kO

« 25000
% 20000
% 15000 D
E € 10000 %%
S = 5000 N §§
25 o — N S \ \ —
L

A
I S G FEE T E S
g & ‘Qb Qﬁ*’ N Qe \\;,,Q
£ (PQ < &
= &
zZ

Instruction Category

Fig. 7: The instruction classification of two random threads from different
groups. Small difference in instruction classification matches the difference
in SDC and crash rates.

C. Characterization of Error Resilience

We characterize the error resilience of 17 kernels from the
14 applications mentioned earlier. Table III presents, for each
kernel, the total number of injected runs, the overall activation
rate, and the average time for a fault-injection run. The total
number of injected runs includes runs when the fault was
injected successfully and was activated, overwritten, or ignored
due to it exceeding the activation window.

In Section III-C Confidence and confidence interval, we
have described our an approach to estimate the combined SDC
and crash rates for applications that contain multiple groups



TABLE III: Fault-injection experiments information

Kernels Injected | Activated | Activation Average

runs runs rate runtime (s)
AES 2,351 2,042 87% 84
HashGPU-md5 2,699 2,683 99% 13
HashGPU-shal 2,400 2,305 96% 27
MRI-Q 2,830 2,475 87% 123
MAT 2,575 2,186 85% 82
Transpose 2,395 2,160 90% 44
SAD-kO 2,671 2,435 91% 76
SAD-k1 2,208 2,195 99% 26
SAD-k2 2,627 2,618 100% 12
Stencil 2,426 2,148 89% 31
SCAN-block 1,083 1,080 99% 710
MonteCarlo 3,744 2,723 73% 66
MergeSort-kO 1,930 1,884 98% 359
BFS 2,334 2,330 100% 22
PageRank 2,039 1,740 85.37% 68
SSSP 1,845 1572 85% 14
LBM 1,895 1,845 97% 165

TABLE IV: Experimental details for FI in different groups of MONTE

Group % of # of dyr}amic # of a‘ctivated SDC Crash
threads | instructions FT trials rate rate

1 50% 2006 1,368 0.6% | 23.8%

2 25% 2013 1,122 | 044% | 21.8%

3 12.5% 2020 970 | 0.46% | 21.5%

4 12.11% 2067 854 | 0.52% | 22.6%

5 0.39% 2076 NA NA NA

and the small ones are not sampled. We provide an example
to clarify this process. Recall that MONTE has five groups
of threads (Section III-A) that include 50%, 25%, 12.5%,
12.11% and 0.39% of all threads respectively. We conduct fault
injection experiments on the threads from first four groups, and
Table IV shows the detailed profiling and outcome information
of the experiment.

To estimate the overall SDC rate of MONTE and compute
its 95% confidence interval, we take the approach described
in Section III-C and calculate the upper and lower bound of
the 95% confidence interval (1.1%, 0.3%).

Figure 8 presents the SDC and crash rate for all kernels. We
do not show the hang rates as they are uniformly lower than
1%. Fault injections in CPUs exhibit similar hang rates [26]. A
first observation is that both the SDC rate and the crash rate

50%

40
% -
£ 30%
S I I I
2 20% 1 l L L I
10% R I
" I
0% = =
o (NS SR O 0 > x & O O o’
R I R I . g P SINC i S NP S
N N SRS SO S I SR 3
S & <& S & <
R S ¢
L@ <
80%
70% I 1
60% I I 1 I s
£ so% B
a0% oL
g & L L
5 30% 1

I ] y O 12 S > O > x & 8 S N & 3
R ,@b @ @@ F Q°" 5 (—?Q\- Lyo\- &c p\o" S & D P &
L8 & TN N o

E A $ «° <

EE

Fig. 8: SDC (top) and crash (bottom) rates with error bars representing 95%
confidence interval for each kernel.

vary widely across benchmarks. In particular, the SDC rate
ranges from 0.7% to nearly 38%. This observation suggests
that it is important to take into account the inherent error re-
silience characteristics of an application when designing mech-
anisms to protect it from SDC-causing errors. For example,
the SDC rate for MONTE is less than 1%, likely because the
results of each simulation path in the Monte-Carlo simulation
will eventually be aggregated, which mitigates the effect of
the incorrect output of a simulation path if a fault occurs
on one of them. We note that similar applications in terms
of application behaviour, e.g., HashGPU-shal and HashGPU-
md5 as well as SAD-k1 and SAD-k2, exhibit similar SDC
rates. On the other hand, crash rates vary even more than the
SDC rates, from 6% to 71%. In total, across all benchmarks,
failure rates (crash+SDC+hang) range from 24% (MONTE)
to 91% (SCAN), and the mean failure rate is 65% across
the applications. We explore the possible reasons behind these
variations in the next section.

D. Exploring the Correlation between Error Resilience and
Application Characteristics

The characterization study presented in the previous section
shows that the SDC rate varies widely across kernels. For
example, Monte Carlo has nearly no SDCs while HashGPU-
shal and HashGPU-md5 have SDC rates of about 40%. In this
section, we explore whether there are instruction-level (Sec-
tion IV-D1) or algorithm-level (Section IV-D2) characteristics
that correlate well with the observed SDC rates.

1) A Negative Result: SDC rates are only weakly cor-
related with application’s instruction-mix characteristics:
Prior studies have shown that errors have different effects on
different types of instructions. For example, Thaker et. al. [27]
have found that on CPU applications “computations involving
control are more sensitive to inaccuracy than data and address
operations”. The reason is that errors involved in address
calculations are likely to cause crashes: accessing invalid
addresses will lead to paging or segmentation faults [26].

Since the SDC rate reflects the impact of transient faults on
program’s internal state, we hypothesized that it is possible to
correlate the SDC rate of an application and its instruction-
level characteristics.

We used GPU-Qin to characterize the 17 GPU kernels
used previously in terms of instruction-level characteristics: we
captured dynamic instructions of each application and counted
the instructions of each type (including ALU, FP, memory and
control flow) to obtain their relative frequency.

We then attempted to find correlations: we delineated in-
struction frequency as explanatory variables and the SDC
rate as the dependent variable, and applied multiple types of
regression analysis. However, even after extensive attempts,
we were unable to find a satisfactory model that successfully
predicted the estimated SDC rate based on instruction-level
characteristics. Note that we did not confine ourselves to linear
combinations. For example, we tried non-linear combinations
such as log or square root exhaustively on each variable. The
best model we were able to obtain is a linear model, which had
an R? around 0.5 and the p-value about 0.04, which indicates



a weak correlation between the SDC rate and the variables we
used.

While, of course, our negative experience does not con-
stitute a proof of the absence of such a model, it indicates
that explanatory models that use only instruction-level features
may not be sufficient for SDC rate prediction. A key factor,
we believe, is that instruction classification does not capture
the semantics of the sequence of the instructions, which is
a determining factor in the error resilience of applications.
This inspired us to explore, in the next section, the impact of
algorithmic application characteristics.

2) Algorithmic-Level Properties: Does algorithmic struc-
ture correlate with observed SDC rates?: Asanovic et al. [28]
describe the “thirteen dwarfs of parallelism” to design and
evaluate templates for parallel computing applications. Each
of these dwarfs captures a pattern of computation common to a
class of parallel applications. We grouped our benchmarks ac-
cording to their structure as defined by the dwarfs” (Table V).
As showed in Table V, applications in different dwarfs exhibit
diverse error resilience characteristics. We can attribute this to
micro-level code patterns as we describe below. We highlight
the two operations that are correlated with fault resilience.

1) Averaging-Out: This operation includes computations
in which the final state is a converging product of
multiple temporary states, either in space or time. The
core pattern here is that the product of all states is
likely to be obtained via averaging operations over these
intermediary states. If a fault happens in one of the
temporary states, it is likely that it would be averaged
out in the final state given application-specific precision
requirements. Examples of this class of applications are
stencil computations and Monte-Carlo simulations.

2) Search-based Application: Search is a subset of the class
of computations in the dwarf ”Branch and bound algo-
rithms”. The core computation pattern is that the search
space is divided into segments and queries are searched
in parallel in each segment. Depending on the actual
search criteria, search would be considered to return
the solutions that are either accurate or optimal. Search-
based applications usually contain frequent comparison
operations, and those operations are much more error
resilient than other operations. One example from our
benchmarks is MergeSort, which implements parallel
sorting based on binary search [29], and we observe
that it has a relatively low SDC rate (6%).

E. Characterizing Crashes: Causes and Latency

GPU-Qin can be used to gain a deeper understanding of the
error-resilience characteristics of GPGPU applications. For ex-
ample, it can be used to understand the reasons for the crashes
observed in the characterization study, and characterize the
crash latency. This investigation is important for two reasons.
First, crashes are a form of error detection performed by the
GPU hardware and CUDA run-time, and understanding the
reasons for crashes can help understand the effectiveness of the
existing error-detection mechanisms. Second, it is important to
detect the crashes early to contain the errors.

TABLE VI: Description of CUDA hardware exceptions

Exception type Description

Occurs when a thread exceeds its stack
memory limit

Lane user stack overflow

Warp out-of-range address | Occurs when a thread within a warp ac-
cesses an out-of-bounds local or shared

memory address

Warp misaligned address Occurs when a thread within a warp ac-
cesses an incorrectly aligned local or shared

memory address

Occurs when a thread accesses an out-of-
bounds global memory address

Device illegal address

2%

¥ Lane User Stack
Overflow

® Warp out-of-range
Address

53%

¥ Warp Misaligned
Address

N Device Illegal
Address

Fig. 9: Root-cause breakdown of crashes for AES (left:) and MAT (Right:).
Out-of-bounds memory addressing is the leading cause of crashes.

When a hardware exception occurs, the application crashes
and the crash cause is reported to cuda-gdb. GPU-Qin traps
these exceptions and logs them. Overall, we observe four types
of hardware exceptions: lane user stack overflow, warp out-
of-range address, warp misaligned address and device illegal
address (Table VI).

We report results for only two benchmarks, AES and
MAT, however, the observations generalize to all benchmarks.
Figure 9 shows the relative frequency of various root causes
for crashes in these two applications. The two most common
causes are warp out-of-range addresses and device illegal
address. Warp misaligned address also plays an important role
in crashes for the MAT benchmark.

Crash latency measures the time interval between the mo-
ment a fault is activated and the moment a crash occurs.
Our measurements do not include the time for single-stepping
to the target instruction. We measure crash latency for each
exception type above, to understand how quickly the crash is
detected. Figure 10 shows the crash latency for each exception
type for AES and MAT. In AES, 90% of the warp out-of-range
address exceptions occur within around 500 milliseconds,
compared to 70% of warp misaligned address exceptions and
60% of device illegal address.

In MAT, warp out-of-range address exceptions occur faster
compared to warp misaligned address exceptions. Only in the
Stencil benchmark, does the device illegal address exception
occur, and it occurs faster than the other three exception
types. In all other benchmarks, the warp out-of-range address
exceptions have lower crash latency than the other three
exception types.

We can compare crash latency for CPUs and GPUs: A
fault injection study by Gu et al. [26] found on CPUs that
crashes usually happen within thousands of cycles after the
fault injection, which translates to a few micro-seconds at most
on their architecture. In contrast, on GPUs, crashes happen in
milliseconds. This could result from both the more aggressive
CPU hardware and the OS checking mechanisms and from



TABLE V: Benchmark representative operations and the mapping to the dwarfs of parallelism

Dwarf Kernel Measured SDC rate | Key Operation as explanation
. Transpose, MAT, LBM, SCAN-block, .

Linear Algebra LBM,pSAD—kO, SADk1, SAD-k2 15 ~ 25% Not Avaliable

Structured Grids Stencil 6% Average-out Effect

Graph Traversal BFS, PageRank, SSSP 25~ 11% Overwrite

Monte Carlo MONTE 1% Average-out Effect

Combinational Logic HashGPU-md5, HashGPU-shal, AES | 25 ~ 38% Bit-wise Operation

Backtrack and Branch+Bound | MergeSort-kO 6% Search-based

100%-

3 90%
T 80%
=
8 70%
% 60%)
S 500
o
w— 40%
L? 30% —e— Warp ogt—qf—range address
a o4 —4&— Warp misaligned address
O 20% —— Device illegal address
AR
10/3

0 200 400 600 800
Crash latency in milliseconds

—6— Warp out-of-range address

CDF of crash latency
3
N

Warp misalignment address

0 100 200 300 400 500 600 700 800 900 1000
Crash latency in milliseconds

Fig. 10: Crash latency analysis for AES and MAT. Top: AES Down: MAT.
Warp out-of-range address exceptions occur faster than other exceptions.

GPUs execution model that round-robins over all execution
warps. Systems that have longer crash latency may allow
faults to propagate to more states, and faults have higher
chance to affect states beyond the current context via shared
memory, disk or network. Recovery in this scenario is more
complicated because the whole system-wide state rebuilding
maybe required.

V. DISCUSSION

This section presents supporting data that justifies for our
choice to base GPU-Qin methodology on executions on real
hardware (as opposed to microarchitectural simulations, Sec-
tion V-A), presents a number of additional usage scenarios
where our methodology can be used (Section V-B), and
discusses its limitations (Section V-C).

A. Running Time for Fault Injection

The average runtime of each fault-injection run varies across
kernels from 11 seconds to 710 seconds, and is directly
proportional to the block size (i.e., number of threads used by
the kernel, shown in Table II). We observe that our worst-case
kernel, SCAN, which takes 710 seconds on average, is 10x
faster with GPU-Qin than running with GPGPU-Sim. Other
benchmarks show speedups as high as 100x. The average
speedup across benchmarks (that the simulator is able to
finish within a couple of hours) is 22x. This demonstrates

the efficiency of GPU-Qin compared to architectural level
simulation based fault injection techniques.

B. QPU-Qin Usage Scenarios

GPU-Qin can be used to evaluate error resilience charac-
teristics of general purpose GPU applications in a number of
contexts. We provide three usage scenarios to show how our
tool can be used.

1) Scenario I: Evaluating SDC Vulnerability of Different
Code Sections: The key problem that selective fault tolerance
mechanisms need to solve is to identify which parts of a
program are more “important” than others, and protect these
parts such that an increased fault tolerance can be achieved
with minimal overhead [30]-[32]. In our context, selective
mechanisms need to pinpoint the code sections of a program
that have high probability to cause SDCs. These code sections
are different across different applications. GPU-Qin can be
used to analyze the fault injection results that lead to SDCs,
and identify the source code statements/instructions where the
fault gets activated. For example, our preliminary observation
is that some code patterns associated with CUDA program-
ming model (e.g., computations involving thread IDs) have
higher probability to lead to SDCs. A detailed use case can
be found in our prior work on this topic [33].

2) Scenario II: Comparing Error Resilience of Different Al-
gorithms: As reliability becomes increasingly critical to com-
puting systems, applications now need to choose algorithms by
also taking into account their error resilience characteristics. In
this scenario, GPU-Qin can be used to evaluate error resilience
of different algorithms solving the same problem. For example,
sorting is a popular operation in many application domains.
Using GPU-Qin for characterizing the resilience of different
sorting algorithms like quicksort can suggest which algorithm
to choose to target a desired reliability level and also maintain
acceptable performance and power consumption. Further, even
for the same algorithm, GPU-Qin can also be used to decide
which version/implementation of the algorithm to choose.

3) Scenario III: Guiding Configurations: High performance
computing (HPC) applications usually have complex system-
wide configurations. GPU-Qin can be used to build on the
understanding of the error resilience characteristics of the
system users and help them better configure its reliability
options, e.g. setting up appropriate checkpointing intervals,
turning on ECC. It can also allow users to test the error
resilience of an application under different configurations.

C. Limitations

Our evaluation study is subject to four main limitations:



1) Experimentally derived configuration parameters such as
the limit on the number of iterations of a loop and the size of
the activation window may be specific to our benchmark suite.
For example, based on our evaluation on the two benchmarks
that contain the largest and smallest number of loop iterations,
we found no difference in terms of SDC rate for different upper
bound values. These configurations are based on empirical
experience; thus they may also need to be adjusted for new
sets of applications.

2) As CUDA GPU-Qin relies on cuda-gdb applications need
to be compiled in debug mode, some compiler optimizations
will be disabled. This choice, however is in line with prior
studies such as NFTAPE, FERRARI and Xception that imple-
ment debugger-based fault injection infrastructures focusing
on the dependability of CPU-based systems. Past work by
Sangchoolie et al. [34] has found that turning on/off standard
optimization flags for gcc (i.e. Ol, O2 and O3) had only
marginal impact on the SDC rates. This study was conducted
for CPU applications, however. The impact of disabling com-
piler optimizations on error resilience characteristics for GPU
applications remains unclear, and we will investigate this in
our future work.

3) cuda-gdb allows access only to a subset of the GPU
state for injecting faults (i.e., the state available for register file
or memory, but not for structures like warp scheduler, cache,
etc). Studying the impact of faults in other structures requires
either access to lower-level tools or hardware fault injection
support. In addition, cuda-gdb does not allow directly altering
the opcode of an instruction. Adding this feature would require
significant effort to extend the current GPU-Qin.

To provide an understanding of how much state can be
injected into by GPU-Qin, we compute the ratio of the number
of bits in the register files that can be injected (i.e. data
bits) to the total number bits including instruction registers,
flags (i.e. instruction bits) and register files (i.e. data bits) in
appendix B. In particular, in the NVIDIA Fermi architecture,
each instruction register contains 64 bits and each register
used in SASS instructions contain 32 bits. As GPUs use the
Single Instruction Multiple Thread (SIMT) model, a single
instruction may be shared by all threads in a warp, and hence
this ratio is also a function of the level of warp divergence
in a benchmark. The average value of the ratio across our
benchmarks is 94.23%, with the highest 96.30% for MAT, and
lowest 85.40% for SCAN. This shows that the GPU-Qin is able
to cover most of the GPU program states in our benchmarks.

4) Many application attributes whether they are
performance- or dependability-related (e.g., run-time,
crash latency, vulnerability, etc) will vary with the input (size
and characteristics). We do not explore the possible variation
in application characteristics when varying the input size.
In our experiments, for benchmarks from the Parboil suite,
we use small/medium input size. For other benchmarks, we
use the default input inputs that are representative of the
applications’ real-world usage, based on our own judgement.
The goal of this paper is to present a methodology and
a practical tool to explore different resilience aspects of a
diverse set of applications. We are not aiming for an definitive
characterization of the error resilience GPGPU applications.

VI. RELATED WORK

This section provides an overview of related work in the
areas of software-based error resilience techniques and GPU
vulnerability studies, and positions our work vis-a-vis these
related projects.

Fault injection. Fault injection has been well-explored on
CPUs using run-time debuggers (e.g., GOOFI [7] and NF-
TAPE [6]) or dynamic binary instrumentation (PIN frame-
work [35]). However, neither of these injectors work on
GPUs. More importantly, they do not consider multi-threaded
programs, nor do they concern themselves with choosing
representative parts of the program for injection. In very recent
work, Hari et al. [36] propose a compile-time fault injection
tool for GPGPU applications called SASSIFI. SASSIFI is
similar to GPU-Qin in many respects. In addition, it also
allows faults to be injected into predicate and condition code
registers. The authors of SASSIFI do not consider techniques
to reduce the fault injection space like GPU-QIn does, and
leave it to the user to determine the fault injection sites.
AVF and PVF. A common way to estimate vulnerability
is through the architectural vulnerability factor (AVF) [37],
which analyzes the vulnerability of specific microarchitectural
structures to soft errors. The main idea is to track the execution
of a program through the processor, typically by executing it
in a microarchitectural simulator, and identifying the ACE bits
(Architecturally Correct Execution bits): that is the bits that
would cause faulty execution if flipped. The total number of
ACE bits in a microarchitectural structure is an estimate of
its vulnerability. Several studies [13], [38] have attempted to
characterize the vulnerability of different microarchitectural
structures in GPUs. For example, Tan et al. [13] character-
ized GPU instructions (CUDA PTX) based on whether the
execution of an instruction impacts the final output of the
application, and hence determines the AVF by the quantity
of ACE instructions per cycle and their residency time within
the hardware structures.

The Program Vulnerability Factor (PVF) is a metric pro-
posed by Sridharan et al. [14] to separate the architectural
and microarchitectural components of the AVF and isolate the
impact of the program on vulnerability. While this metric takes
application properties into account, it still does not consider
the end-to-end impact of faults on the application (i.e., it does
not separate crashes, hangs, SDCs and benign faults).

Typically, AVF/PVF approaches do not consider the end-
to-end impact of faults in applications, nor do they attempt
to understand the behavior of the application under errors.
Moreover, AVF analysis has been shown to have significant in-
accuracies compared to fault-injection based approaches [39].
In contrast, our work is from the applications’ perspective, and
focuses on understanding the behaviors of GPU applications
under errors through fault injection.

Generic fault tolerance techniques. Dimitrov et al. [40]
proposed three approaches for GPU application reliability
that leverage both instruction-level parallelism and thread-level
parallelism to replicate the application code. Their approach
incurs performance overheads of 85 to 100%, and they con-
clude that understanding both the application characteristics



and the hardware platform is necessary for efficient protection.
They do not characterize the reliability of GPU applications,
nor do they develop application-specific mechanisms. Wadden
et al. [41] designed three compiler-implemented redundant
multi-threading algorithms to protect GPU applications from
hardware faults. Their methodology allows automatic transfor-
mation for GPU kernels with the respect to performance and
power overheads. Their evaluation shows that the performance
of redundant multi-threading depends on the behavior of
kernels and the required sphere of reliability.

Shoestring [30] aims to reduce SDCs by selectively pro-

tecting program instructions that potentially lead to SDCs. It
identifies high value instructions that write to global memory
or produce function call arguments in the program and apply
vulnerability analysis heuristics to the program instruction
level for selective duplication. At a high-level, Shoestring
attempts to correlated program level characteristics with SDC-
proneness in CPU applications. Lu et al. [31] proposed SD-
Ctune,a empirical model to predict the SDC proneness of a
programs data. However, we have not observed similar trends
for GPU applications.
Application specific fault tolerance. Some studies have
attempted to establish correlations between SDCs and program
characteristics. For example, Thaker et al. [27] observes that
errors in control-data are more likely to lead to SDCs and
catastrophic failures in multimedia applications. Thomas et
al. [42] find that errors in data affecting a large amount of
computation are likely to lead to egregious outcomes (what
they call EDCs) for soft computations.

These observations and findings are only applied to some
categories of applications and they can not be used to explain
a particular SDC rate exclusively.

Hari et al. [43] present a low-cost, program-level fault
detection mechanism for reducing SDCs in CPU applications.
They use their own prior work, Relyzer [44] to profile appli-
cations and select a small portion of the program fault site
to identify static instructions that are responsible for SDCs.
Then by placing program level error detectors on those SDC-
causing sections, they can achieve high SDC coverage at low
cost. It is noteworthy that application-specific behaviours are
major contributors of SDCs for half of their benchmarks,
which makes it difficult to extend their technique to other
applications, especially GPU applications which have different
behaviours compared to CPU applications.

Finally, Yim et al. [8] proposed a technique to detect errors
through data duplication at the programming-language level
(loop code and non-loop code) for GPU applications. This is
different from our focus which is to understand the inherent
error-resilience characteristics of an application in order to find
the most efficient protection. They perform fault injections at
the source code level, while we do so at the executable code
level. Because many hardware faults cannot be easily modelled
at the source code level, our injections are more representative
of hardware faults.

VII. CONCLUSION

This paper presents a systematic methodology and a tool-set
to investigate the end-to-end error resilience characteristics of

GPGPU applications through fault injection. One of the main
challenges in building a fault injector for GPGPU applications
is balancing representativeness with time efficiency, due to
their massive parallelism. We first build a fault-injection tool,
GPU-Qin, to efficiently inject faults on real GPU hardware,
while maintaining representativeness of the faults injected.
Then, we provide empirical support for design choices we
made thoroughly for validation. Using GPU-Qin, we study the
error resilience characteristics of twelve GPGPU applications
comprised of fifteen kernels. The investigation showed that
1% to 38% of the faults result in SDCs and 6% to 70%
of the results in crashes, which suggests that application-
specific fault tolerance mechanisms are needed to deal with
such variety of levels of error resilience. Our fault injector
enables the opportunity to study various reliability character-
istics of applications, such as instruction-level error resilience
and crash latency, which is useful for guiding the design of
application-specific fault tolerance techniques. We also find
that algorithmic characteristics of the application (such as
dwarfs) can help us understand the variation in the SDC rates
among applications.

ACKNOWLEDGMENT

The authors would like to thank Wilson Fung, Lauro Beltrao
Costa, Elizeu Santos-Neto, Jiesheng Wei, Anna Thomas and
Abdullah Gharaibeh for their suggestions on the different
phases of this project. This work was funded in part by
an NSERC Discovery grant, an equipment donation from
NVIDIA, and a research gift from AMD corporation. We also
thank the anonymous reviewers of ISPASS 2014 for their feed-
back to improve the paper. GPU-Qin is publicly available at
https://github.com/DependableSystemsLab/GPU-Injector.

REFERENCES

[1] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,” in
IEEE MICRO, 2003.

[2] V. Sridharan, N. DeBardeleben, a. K. F. S. Blanchard, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems: The
good, the bad, and the ugly,” in Proceedings of International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2015.

[3] NVIDIA. (2009) Nvidia fermi whitepaper. [Online].
Available: http://www.nvidia.ca/content/PDF/fermi\_white\_papers/
NVIDIA\_Fermi\_Compute\_Architecture\_Whitepaper.pdf

[4] M. Mantor. (2012) Amd radeon hd 7970 with
graphcis  core  next (gen)  architecture.  [Online].  Avail-
able:  http://www.hotchips.org/wp-content/uploads/hc\ _archives/hc24/

HC24-3-ManyCore/HC24.28.315- AMD.GCN.mantor\_v1.pdf

[5]1 M.-C. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and tools,”
Computer, vol. 30, no. 4, pp. 75-82, 1997.

[6] D. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. Iyer, “Nftape:
a framework for assessing dependability in distributed systems with
lightweight fault injectors,” in /PDPS 2000, 2000, pp. 91 —100.

[71 J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “Goofi: generic
object-oriented fault injection tool,” in Dependable Systems and Net-
works, 2001 International Conference on, 2001, pp. 83-88.

[81 K. S. Y. et al., “Hauberk: Lightweight silent data corruption error
detector for gpgpu,” in IEEE International Parallel and Distributed
Processing Symposium, 2011.

[91 A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing

cuda workloads using a detailed gpu simulator,” in Performance Analysis

of Systems and Software. ISPASS 2009.

T. Gaitonde, S.-J. Wen, R. Wong, and M. Warriner, “Component failure

analysis using neutron beam test,” in Physical and Failure Analysis of

Integrated Circuits, 2010 17th IEEE International Symposium on the.

[10]



[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

(351

(36]

(371

M.-C. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and tools,”
vol. 30, no. 4, apr 1997, pp. 75 -82.

J. Arlat, Y. Crouzet, and J.-C. Laprie, “Fault injection for dependabil-
ity validation of fault-tolerant computing systems,” in Fault-Tolerant
Computing, 1989. FTCS-19. Digest of Papers., Nineteenth International
Symposium on, June 1989, pp. 348-355.

J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulnerability
on gpgpu microarchitecture,” in IEEE International Symposium on
Workload Characterization (IISWC), 2011, pp. 226-235.

V. Sridharan and D. Kaeli, “Eliminating microarchitectural dependency
from architectural vulnerability,” in High Performance Computer Archi-
tecture, 2009. HPCA IEEE 15th International Symposium on.

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” Dependable and
Secure Computing, IEEE Transactions on.

S. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10-16, Nov. 2005.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” Micro, IEEE, vol. 28,
no. 2, pp. 39-55, March 2008.

S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating cuda
graph algorithms at maximum warp,” in Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming.

W. G. Cochran, Sampling techniques. John Wiley & Sons, 2007.

J. A. S. et al., “Parboil: A revised benchmark suite for scientic and
commercial throughput computing,” in IMPACT Technical Report, 2012.
S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC 2019.

A. Gharaibeh, L. B. Costa, E. Santos-Neto, and M. Ripeanu, “On graphs,
gpus, and blind dating: A workload to processor matchmaking quest,”
in IPDPS 2013.

S. A. Manavski, “Cuda compatible gpu as an efcient hardware acceler-
ator for aes cryptography,” in IEEE Intl Conf. on Signal Processing and
Communication, 2007, pp. 65-68.

S. A. Kiswany, A. Gharaibeh, E. S. Neto, G. Yuan, and M. Ripeanu,
“StoreGPU: exploiting graphics processing units to accelerate distributed
storage systems,” in HPDC '08: Proceedings of the 17th international
symposium on High performance distributed computing.

NVIDIA. (2014) Cuda binary utitilies. [Online]. Available: http:
//docs.nvidia.com/cuda/cuda-binary-utilities/index.html

W. Gu, Z. Kalbarczyk, and R. Iyer, “Error sensitivity of the linux kernel
executing on powerpc g4 and pentium 4 processors,” in Dependable
Systems and Networks, 2004 International Conference on, 2004.

D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart, T. Metodi,
and F. Chong, “Characterization of error-tolerant applications when
protecting control data,” in Proc. IISWC, 2006, pp. 142-149.

K. e. a. Asanovic, “The landscape of parallel computing research: A view
from berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006.

N. Satish, M. Harris, and M. Garland, “Designing efficient sorting algo-
rithms for manycore gpus,” NVIDIA Corporation, NVIDIA Technical
Report NVR-2008-001, Sep. 2008.

S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: probabilistic
soft error reliability on the cheap,” in Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, 2010.

Q. Lu, K. Pattabiraman, M. S. Gupta, and J. A. Rivers, “Sdctune: A
model for predicting the sdc proneness of an application for configurable
protection,” in CASES 2014.

A. Thomas and K. Pattabiraman, “Error detector placement for soft
computation,” in Dependable Systems and Networks (DSN), 2013 43rd
Annual IEEE/IFIP International Conference on, June 2013, pp. 1-12.
B. Fang, J. Wei, K. Pattabiraman, and M. Ripeanu, “Towards building
error resilient gpgpu applications,” in 3rd Workshop on Resilient Archi-
tecture (WRA) in conjunction with MICRO, 2012.

B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson, “A study of
the impact of bit-flip errors on programs compiled with different opti-
mization levels,” in Dependable Computing Conference 2014 (EDCC),.
D. Li, J. Vetter, and W. Yu, “Classifying soft error vulnerabilities
in extreme-scale scientific applications using a binary instrumentation
tool,” in SC 12.

S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“Sassifi: Evaluating resilience of gpu applications,” in Proceeding of
the 11th Workshop on Silicon Errors in Logic - System Effects.

S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “Mea-
suring architectural vulnerability factors,” in IEEE MICRO, 2003.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

R. U. N. Farazman and and D. Kaeli, “Statistical fault injection-based
avf analysis of a gpu architecure,” in IEEE Workshop on Silicon Errors
in Logic.

N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ace analysis
reliability estimates using fault-injection,” in Proceedings of the 34th
annual international symposium on Computer architecture.

M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software ap-
proaches for gpgpu reliability,” in Proceedings of 2nd Workshop on
General Purpose Processing on Graphics Processing Units, 2009.

J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and K. Skadron,
“Real-world design and evaluation of compiler-managed gpu redundant
multithreading,” in Proceeding of the 41st Annual International Sympo-
sium on Computer Architecuture, ser. ISCA *14.

A. Thomas and K. Pattabiraman, “Error detector placement for soft
computation,” in Dependable Systems and Networks (DSN), 2013 43rd
Annual IEEE/IFIP International Conference on.

S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-level de-
tectors for reducing silent data corruptions,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2012.

S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
exploiting application-level fault equivalence to analyze application
resiliency to transient faults,” in ACM ASPLOS, 2012.

M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum (scan)
with CUDA,” in GPU Gems 3, H. Nguyen, Ed. Addison Wesley, August
2007, ch. 39, pp. 851-876.

Bo Fang Bo Fang received his bachelor’s from the
Wuhan university in China in year 2006 and Master
of Applied Science from the University of British
Columbia in 2014. He joined the Ph.D program in
the electrical and computer engineering department
at UBC since 2014. Bo’s research interests include
error resilience characterization and fault tolerance
techniques from the perspective of applications.

Karthik Pattabirman Karthik Pattabiraman re-
ceived his M.S and PhD. degrees from the University
of Illinois at Urbana-Champaign (UIUC) in 2004
and 2009 respectively. After a post-doctoral stint at
Microsoft Research (Redmond), Karthik joined the
University of British Columbia (UBC) as an assistant
professor of electrical and computer engineering.
Karthik’s research interests include programming
languages, compilers and computer architecture for
building error resilient software systems.

Matei Ripeanu Matei Ripeanu is an Associate
Professor at the University of British Columbia.
Matei is broadly interested in experimental parallel
and distributed systems research with a focus on
massively parallel accelerators, data analytics, and
storage systems. The Networked Systems Labora-
tory website (netsyslab.ece.ubc.ca) offers an up-to-
date overview of the projects he works on together
with a fantastic group of students.

Sudhanva Gurumurthi Sudhanva Gurumurthi is a
Senior Data Center Engineer and Manager at the
IBM Cloud Innovation Lab and a Visiting Associate
Professor in the Computer Science Department at the
University of Virginia. Prior to joining IBM, he was
a Senior Member of the Technical at AMD where
he directed projects on resiliency and reliability. He
used to be a tenured Associate Professor at the
University of Virginia. Sudhanva’s interests are in
the field of computer architecture and systems. He
is a Senior Member of the IEEE and the ACM.



APPENDIX A

We provide a short description for our benchmark applica-
tions and their application inputs below.

AES encryption (AES): AES supports both encryption and
decryption. We encrypt a 256-KB file with a 256-bit key.

HashGPU: HashGPU [24] is a library that accelerates hash-
based primitives. We use SHA1 and MDS5 on a 32KB dataset.

Magnetic Resonance Imaging - Q (MRI-Q): MRI-Q com-
putes a matrix, representing the scanner configuration for
calibration, used in a 3D MRI reconstruction algorithms in
non-Cartesian space. We use 32%32*32 3D matrix.

Matrix Multiplication (MAT): Matrix multiplication is a
common building block widely used in many linear algebra
algorithms. We modify the code so that MAT launches the
CUDA kernel code only once, to ensure that subsequent
runs do not overwrite the results. We multiply two 192*128
floating-point matrices.

Matrix Transpose: Matrix transpose is a common building
block for many linear algebra algorithms. We use the diagonal
kernel optimized for the highest memory bandwidth. We
transpose a 512*512 floating-point matrix.

Sum of Absolute Differences (SAD): SAD computes the sum
of absolute differences, used in MPEG video encoders. It is
based on a full-pixel motion-estimation algorithm found in the
IJM reference H.264 video encoder. There are three kernels
in this benchmark and each kernel uses the previous kernel’s
output. We use the default data frame as the initial input.

3-D Stencil Operation (Stencil): Stencil performs an itera-
tive Jacobi stencil operation on a regular 3-D grid. We use a
128*128*32 3D FP matrix and iterate the operation five times.

CUDA Parallel Prefix Sum (SCAN). SCAN [45] demon-
strates an efficient CUDA implementation of a parallel prefix
sum. Given an array of numbers, SCAN computes a new array
in which each element is the sum of all the elements before
it in the input array. We include SCAN-block, which works
with any given length of arrays.

Monte Carlo (MONTE): MONTE simulates the price of
an underlying asset using the Monte Carlo method. We let
it simulate 262,144 paths for 256 options.

Merge Sort (MS): MergeSort [29] implements a merge-sort
algorithm to sort batches of short- to mid-sized (key, value)
array pairs. We sort 32,768 key-value pairs.

Breadth-First Search (BFS): Breadth-first search on a graph.
We use a random graph with 4096 nodes.

Page Rank (PageRank): PageRank counts the links and
quality of those links of webpages to estimate how important
those webpages are. We run Page Rank on a R-MAT graph
with 1 million vertices.

Single Source Shortest Path (SSSP): SSSP finds the shortest
path to reach every vertex from the source vertex.

Lattice-Boltzman Method Simulation (LBM): LBM imple-
ments a solution of the system of partial differential equations
for fluid simulation, which can be derived for the propagation
and collision of fictitious particles. The input file is a discrete
representation of immobile flow obstructions (120,120,150) in
the simulated volume.

APPENDIX B

We can measure the number of data bits in a program, and
also the number of instruction bits for each thread. Using this,
we can calculate the ratio of the number of data bits to the
total number of bits for each warp. Let v denote the ratio
of the number of data bits to the total number of bits for a
single thread (i.e., sum of data bits and instruction bits), and
let n denote the warp divergence observed. For simplicity,
we assume that all threads in the program have the same
numbers of instruction and data bits. Equation 6 shows the
formula for calculating the ratios of the number of data bits
to the total number of bits for the entire warp. Instruction bits
are multiplied by n as each warp has a separate instance of
the instruction. Equation 7 shows how to express the ratio
based on the values of v and n. The values of v and n for
each benchmark are shown in Table VII. We obtain these
values through measurements and manual inspection. We use
Equation 7 to calculate the ratio for each program in Table VII.

32 % Data bits

Ratiowary = - - - 6
AHtOwarp 32 x Data bits + n * Instruction bits ©
Rati 71 @)
atiowarp =
nx(1—7)
L+ 32*y’y

TABLE VII: The ratio of data bits to the total bits (data bits + instruction
bits) both in a single thread and within a warp, for our benchmarks. For
benchmarks that have multiple groups, we show the average ratio of threads
from different groups. The level of warp divergence is presented as the number
of divergent groups of threads inside a warp.

Benchmark Ratio for a Level of warp | Ratio for
single thread () | divergence (n) | a warp
SAD-kO (47.84+/-0.01)% 2 (31:1) 93.60%
SAD-k1 45.81% 2 (31:1) 93.10%
SAD-k2 45.78% 2 (31:1) 93.10%
Stencil (47.80+/-0.01)% 2 (31:1) 93.58%
MRI-Q 46.57% 0 95.88%
LBM (45.25+/-0.1)% 2 (31:1) 92.97%
MAT 45.91% 0 96.30%
MONTE (47.82+/-0.02)% 0 95.98%
HashGPU-md5 (49.52+/-0.01)% 0 96.12%
HashGPU-shal (49.40+/-0.01)% 0 96.11%
MergeSort-kO 46.78% 0 95.90%
Transpose 47.29% 0 95.94%
Scan (47.76+/-0.1)% 2 (28:4) 85.40%
BFS 52.99% 4 (29:1:1:1) 90.07%
AES 47.41% 0 95.95%
PageRank 48.90% 0 96.07%
SSSP 46.00% 0 95.83%
Average 47.58% N/A 94.23%




