Quantifying the Accuracy of
High-Level Fault Injection
Techniques for Hardware Faults

Jiesheng Wei, Anna Thomas,
Guanpeng Li, Karthik Pattabiraman

UB Dependable Systems Lab
=7~ University of British Columbia (UBC)

4

Hardware Errors: Traditional “Solutions’
e Guard-banding * Duplication

Hardware duplication
(DMR) can result in 2X
slowdown and/or
energy consumption

Guard-banding wastes
power as gap between
average and worst-case
widens due to variations

Guard-band

Average Worst-case

Our Research: Application-level
Selective Fault-Tolerance

* Add detectors to applications to selectively
detect errors causing Silent Data Corruption
(SDCs) i.e., incorrect outputs

= o

Application Execution

e e D
e D

Application-level Fault Injection

- To obtain coverage estimates for applications

- Iteratively improve coverage based on the
errors missed by fault tolerance mechanisms

- Analyze the errors that are missed by the FTMs

NO

Insert fault
tolerance
mechanisms in
the application’s
source code

Inject Faults
into application
protected with

mechanisms

Is obtained
coverage

sufficient ?

Low-level Fault Injection

* Inject faults into programs at the assembly code
level e.g., NFTAPE, FERRARI, GOOFI, Xception

* Pros:

e Accurate at emulating hardware faults in registers,
instructions and computation units (e.g., ALUs)

* Cons:
* Difficult to map injection results back to source code
* Difficult to inject faults into selected source data

High-Level Fault Injection

* Inject faults directly at the source code or
similar levels e.g., PROPANE, Relax, Kulfi

* Pros:

* Easy to map back injection results to source code
* Ability to inject faults into specific data-types

* Cons:
e Difficult to emulate hardware faults accurately

High-Level Fault Injection: Reasons
for Potential Inaccuracies

* Lack of one-to-one mapping

* A single source code statement may map to
multiple assembly code statements (e.g., pointers)

* Some source statements have no analogue in the
assembly code (e.g., type-cast statements)

 Hidden States

* Many elements in assembly code cannot be seen
in the source code (e.g., stack manipulation code)

High-Level Vs. Low-Level Injectors:
Accuracy Comparison

Low-level

Injectors 1
§ How big is
= this gap in
3 practice ?
<

4 High-level
Injectors

Ease of Analysis and Configurability

Related Work

e Software Faults [MadeiraO0][Natellal3]

* Emulate software faults at the assembly code level

* Inverse of our problem, as software faults occur in the
source code level and are more accurate at that level

 Safety-critical systems error consequences
[Skarin-EDCCO8][Pattabiraman-DSNO8]

* Examine consequences of not considering faults at the
assembly language level in design of FT mechanisms

* Do not quantitatively measure how much the gap is

This Paper: Research Question

* How accurate is fault injection at the high-
level (i.e., source code or similar levels)
compared to fault injection at the low-level
(i.e., assembly code or similar levels) ?

* For different kinds of failures (e.g., crashes, SDCs)

* For different kinds of instructions (e.g., loads)

Our Approach

* Build a high-level fault injector to inject faults
at the LLVM compiler’s IR level: LLFI

* Build a low-level fault injector to inject faults
using Intel’s PIN tool: PINFI

* Compare the outcomes of LLFI and PINFI by
injecting similar faults into benchmarks

Fault Model

* Single bit-flip in the destination registers of a
single dynamic instruction in the program

* Models transient faults in the computational
parts of the processor (e.g., ALU, registers)

* Does not model memory/cache faults — assumes
that these are ECC-protected

e Does not model faults in the instruction encoding

Outline

* Motivation and Approach

 LLFI Architecture and Operation
* PINFI Architecture and Operation
* Experimental Evaluation

* Conclusions

LLVM Fault Injector: LLFI

Works at LLVM compiler’s intermediate (IR) code
level [Lattner’05] — LLVM widely used in industry

L | .|,
- 4 Assembler

_ | Front-end _\"—

.. Compiler

——

How does LLFI work ?

Fault injection Instrument IR code of
instruction/register the program with
selector function calls

Fault injection Profiling

executable executable
Compile time

Custom fault Next
injector instruction

Runtime

Outline

* Motivation and Approach

* LLFI Architecture and Operation

* PINFI Architecture and Operation
* Experimental Evaluation

* Conclusions

PINFI Architecture

* Built using Intel’s PIN tool for dynamic binary
analysis [Luk-2005]

* Modifies executable to inject faults at runtime

Load Executable Instrument with
under PIN callback functions

Custom fault Next

Loadtime injector instruction

Runtime

Corner Cases in x86 Assembly

* Branch conditions: Flags Register

LLVM IR X86 Assembly

%11 = icmp sle i32 %9, %10 cmp $0xa4, %eax //sets %rflags
br 11 %11, label %bb, Tabel %bb2 j1 4006e0

* Floating point operations: Data Width

LLVM IR X86 Assembly
%3 = fadd double %1, %2 addsd %xmm2, %xmmO

Outline

* Motivation and Approach

* LLFI Architecture and Operation
* PINFI Architecture and Operation
* Experimental Evaluation

* Conclusions

Experimental Setup

* Fault Injection
e Single bit-flip in the result of a dynamic instruction
* 1000 injections per benchmark, per instruction category

* Benchmarks

* Four SPEC2006: bzip2, libquantum, hmmer, mcf
* Two SPLASH-2: ocean, raytrace

* Outcomes
* Crash, Hang, Benign and Silent data corruption (SDC)
* SDCs measured by comparing with golden output

Fault Injection: Insn. Categories

Instruction LLFI selection PINFI selection criteria
category criteria
arithmetic Instructions that Instructions that perform
perform arithmetic or arithmetic or logical
logical operations operations
cast Instructions with ‘cast’ Instructions with ‘convert’
opcode category
cmp ‘cmp’ instructions Instructions whose next
instruction is conditional
branch
load ‘load’ instructions ‘moV’ instructions with

memory as the source and
register as the destination

all All instructions All instructions

Results: Overall Failure Distribution

B Crash BSDC ¥ Benign

100.0%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%
10.0%

0.0%

LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI

Percentage of each outcome category

bzip2 libquantum ocean hmmer mcf raytrace average
Benchmark programs

Results: SDCs for all instructions

20.0%

18.0%
16.0%
14.0%

()
2 12.0%

-

SDC rates are comparable between LLFI

and PINFI for “all instructions”

. 00
0.0%
LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI

bzip2 libquantum ~ ocean hmmer mcf raytrace
Benchmark programs

Error bars are computed at the 95% confidence level

Results: SDCs for ‘cmp’ instructions

100.0%
90.0%

80.0%

SDC rates are comparable between LLFI
and PINFI for selected insn categories

LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI

bzip2 libquantum ocean hmmer mcf raytrace
Benchmark programs

Error bars are computed at the 95% confidence level

Results: Crashes for all instructions

70.0%

Crash rates differ widely between LLFI and
PINFI for “all instructions”

LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI
bzip2 libquantum ~ ocean hmmer mcf raytrace

Error bars are computed at the 95% confidence level

Why do crashes have poor
accuracy in LLFI ?

* Pointer computations in LLVM IR
* Abstracted away by GetElementPtr Instruction

* Some pointer computations are a part of the
instructions’ encoding in assembly code

* Mov instructions in x86 assembly code can
move data between memory and registers

* Represented by loads and stores in LLVM IR
* Some mov instructions are due to register spills

Outline

* Motivation and Approach

* LLFI Architecture and Operation
* PINFI Architecture and Operation
* Experimental Evaluation

* Conclusions

Conclusion

 Evaluate accuracy of high-level fault injection
* LLFI* as the high-level fault injector
* PINFI? as the low-level fault injector

* Results for accuracy of high-Level injection
e Accurate for SDC causing errors
* Inaccurate for crash causing errors

1. https://github.com/DependableSystemslLab/LLFI
2. https://qgithub.com/DependableSystemsLab/PINFI

LLFI Framework: Operation

int main() {

entry:
n, = atoi (argv[l]);
br BBI

int main() {
int fact, i, n;
n = atoi (argv[l]);
fact = [;

for(i=1;i<=n; i+t+) BB:

fact, = mul fact,, i, .
i, =add iy, | insert fault

br BBI injection function

fact = fact * i;

print fact;

}

BBI:
ip = phi [I, entry], [i,, BB]
factO = phi [I, entry], [fact,, BB]
cond = sle iy, n,

br cond, label BB, label Return

Return:
print fact, }

LLFI Framework: Operation

int main() {
entry:
n, = atoi (argv[l]);

int main() {
int fact, i, n;
n = atoi (argv[l]);
fact = [;

for(i=1;i<=n; it+)
fact = fact * i;

print fact;

}

br BBI

BB:

fact, = mul fact,, i,
Replace all uses of
i, =add iy, | original with return val

br BBI

BBI:
ip = phi [I, entry], [i,, BB]
factO = phi [, entry], [filO, BB]

cond =sle iy, n,
br cond, label BB, label Return

Return:
print fact, }

