Tolerating Silent Data Corruption (SDC) causing Hardware Faults through Software Techniques

Karthik Pattabiraman
Anna Thomas, Qining Lu, Jiesheng Wei, Bo Fang
University of British Columbia (UBC)

Meeta S. Gupta, Jude A. Rivers, IBM Research

Sudhanva Gurumurthi, AMD Research
My Research

• Building fault-tolerant and secure software systems

• Three areas
 • Software resilience techniques [CASES’14][DSN’13][ISPASS’13]
 • Web applications’ reliability [ICSE’14][ICSE’14][ESEM’13]
 • Smart meter security [HASE’14][WRAITS’12]

• This talk: Software resilience techniques
Motivation: Variations & Errors

• Variation of device times
 • Higher spread of device variations for future generations of technology

• Feature size Vs MTTU
 • Increase in number of bits correlated with decrease in MTTU of the chip

Source (CCC study on cross-layer reliability): www.relxlayer.org (2011)
Hardware Errors: “Solutions”

- **Guard-banding**

 Guard-banding wastes power and performance as gap between average and worst-case widens due to variations.

- **Duplication**

 Hardware duplication (DMR) can result in 2X slowdown and/or energy consumption.
Why Application-level techniques?

- Application Level
- Operating System Level
- Architectural Level
- Device/Circuit Level

Impactful Errors

Overheads
Our Goal

- Detect errors that cause Silent Data Corruption (SDC)
 - Wrong results, Error Propagation etc.

- Error Detection Coverage vs. Performance Overhead
 - Achieve high SDC coverage while incurring low overhead by selectively protecting program instructions/data

- No fault injections in applying to new programs
 - Fault injections take significant time and effort
Outline

- Motivation and Goals
- EDC Causing Error Detection [DSN’13][SELSE’13]
- SDCTune: Protecting programs from SDCs [CASES’14]
- Error Resilience Characterization on GPUs [ISPASS’14]
- Conclusions and Future Work
Soft Computing Applications

- Expected to dominate future workloads [Dubey’07]

Original image (left) versus faulty image from JPEG decoder
Egregious Data Corruptions (EDCs)

- Large or unacceptable deviation in output

EDC image (PSNR 11.37) vs Non-EDC image (PSNR 44.79)
Goal

Detect EDC causing faults

Pre-emptive

Selective

Application Execution

Detector

EDC

Non-EDC

Benign
Fault model

• **Transient hardware faults**
 • Caused by particle strikes, temperature, etc.
 • Assume that program data is corrupted

• **Our Fault Model**
 • Single bit flip, One fault per run
 • Processor registers and execution units
 • Memory and cache protected with ECC
Approach

- Step 1: Separate EDCs from Non-EDCs by fault injections
- Step 2: Heuristics identifying code regions prone to EDC causing faults
- Step 3: Automated algorithm for detector placement
Step 1: Initial Study

- Correlation between data type – fault outcome

Monitor
Control/Pointer
Data

- Instrument code
- Fault Injection

Performed using LLFI [DSN’14]
Data Categorization: Faults

High correlation between Control Non-Pointer and EDC/Non-EDC
Step 2: Heuristics

```c
void conv422to444 (char *src, char *dst, int height, int width, int offset) {
    for(j=0; j < height; j++) {
        for(i=0; i < width; i++) {
            im1 = (i < 1) ? 0 : i - 1
            ...
            dst[im1] = Clip[(21*src[im1])>>8];
        }
        if( j + 1 < offset) {
            src += w;
            dst += width;
        }
    }
}
```
Step 2: Heuristics

Faults affecting branches with large amount of data within branch body, has a higher likelihood of resulting in EDC outcomes

```c
void conv422to444 (char *src, char *dst, int height, int width, int offset) {
    for(j=0; j < height; j++) {
        for(i=0; i < width; i++) {
            im1 = (i < 1) ? 0 : i - 1
            ...
            dst[im1] = Clip[(21*src[im1])>>8];
        }
        if( j + 1 < offset) {
            src += w;
            dst += width;
        }
    }
}
```

- Fault in offset
- Branch Flip

High EDC Likelihood
Step 2: Heuristics

Faults affecting branches with large amount of data within branch body, has a higher likelihood of resulting in EDC outcomes

```c
void conv422to444 (char *src, char *dst, int height, int width, int offset) {
    for(j=0; j < height; j++){
        for(i=0; i < width; i++) {
            im1 = (i < 1) ? 0 : i – 1
            ...
            dst[im1] = Clip[(21*src[im1])>>8];
        }
        if( j + 1 < offset) {
            src += w;
            dst += width; }
    }
}
```

➤ Fault in result of branch

Low EDC Likelihood
Step 3: Algorithm

Automated Detector Placement Algorithm

- Application Source Code
- Performance Overhead
- Execution Profile
- Data Variables or Locations to Protect
Step 3: Algorithm

Application Source Code → Compiler → IR → EDC Ranking Algorithm → Selection Algorithm → Performance Overhead → Execution Profile → Data Variables or Locations to Protect → Backward slice replication
Experimental Setup

- Six Benchmarks from MediaBench, Parsec Suite
 - Fidelity Metric: PSNR, scaled distortion [Misailovic’12]

- Performed fault injections using LLFI [DSN’14]
 - 2000 fault injections, one fault per run (1.3% at 95% CI)
 - Validated with respect to assembly-level injectors for EDCs

- Measured EDC coverage under varying performance overhead bounds of 10, 20 and 25%
Experimental Framework

1. Choose dynamic data instance at random
2. Inject Random Single bit flip
3. Execute Application
4. Compare faulty & fault-free outcome
5. Exception
 - Crash
6. Value Change
 - Fidelity Metric
 - High deviation
 - Low Deviation
7. No Change
 - Benign
8. EDC
 - Non-EDC
Coverage Evaluation

Average EDC Coverage of 82% versus 56% under 10% performance overhead

Higher is better
Coverage Evaluation

Selectivity Detection

Lower is better
Our technique detects most EDC causing errors for a fraction of the cost of full duplication.
Outline

• Motivation and Goals
• EDC Causing Error Detection [DSN’13][SELSE’13]
• SDCTune: Protecting programs from SDCs [CASES’14]
• Error Resilience Characterization on GPUs [ISPASS’14]
• Conclusions and Future Work
SDCTune: Goals

• Earlier work on EDC causing errors showed feasibility of selectively protecting critical data
 • Can we extend this to SDCs in general-purpose applications which are not as error resilient?

• Challenge:
 • Not feasible to identify SDCs based on amount of data affected by the fault as was the case with EDCs
 • Need for comprehensive model for predicting SDCs based on static and dynamic program features
Main Idea

- Start from “Store” and “Cmp” instructions propagate backward through data dependencies. “Store” and “Cmp” are the end of visible data-dependency chain at the compiler levels.

- Predict P(SDC | Store or Cmp)
 - Extract the related features by static/dynamic analysis
 - Quantify the effects by classification and regression
 - Estimate SDC rate of different “Store” and “Cmp” instructions
Approach: Overview

- **Classification**
 - Classify the *stored values* and *comparison values* according to the extracted features (through static analysis)
 - Organize the features as a decision tree with each feature corresponding to a branch

- **Regression**
 - Within a single category, SDC rate may exhibit gradual correlations with several features
 - Use linear regression for the classified groups to estimate the SDC rate within a node of the tree
Approach: Decision Tree

Example: *Linear Regression for a Leaf*

\[P_{SDCI} = -0.12 \times \text{data width} + 0.878 \]
Approach: Instruction Selection

• Select instructions for Protected Set
 • Knapsack problem: value: estimated $P(SDC,I)$, weight: $P(I)$
 • A set of instructions to protect for a given overhead bound
 • Replicate static backward slices of the instructions to protect

• Test coverage on training programs
 • Measure the coverage for different overhead bounds and tune the model
 • Apply the model to a different set of programs to evaluate it
Experimental Methodology

Training phase

SDC rate for each instruction $P(SDC|I)$ from training programs

P(SDC|I) Predictor

Features extracted based on heuristic knowledge from training programs

Testing phase

Optimal selection: estimated $P(SDC|I)P(I)$ vs. $P(I)$

Set $\{\text{Instructions}\}$ for a certain overhead bound $(\Sigma P(I))$

Random Fault Injection Results from testing programs

Actual SDC coverage for testing programs

Features extracted from testing programs

Measure real coverage on testing programs
Estimation of overall SDC rates:

We start with the most SDC prone instructions and iteratively expand the set of instructions until the performance overhead bounds are under a given performance overhead bound, and compare it with the percentages of SDCs detected. We then compare our results with those of full duplication, i.e., when every instruction is duplicated in the program.

5.3 Work Flow and Implementation

Figure 7 shows the workflow for estimating the overall SDC rate of an application, as well as the SDC coverage are compiled and linked into native executables with -O2 optimization. All the applications are shown in Table 5 and Table 6 respectively. All the applications are marked with bold code as check. (c) shows how we move the check out of the loop and save one checker detection technique. We calculate the efficiency of each benchmark with those of full duplication, i.e., when every instruction is duplicated in the program. Similar to the efficiency defined in Section 2.3.

Benchmarks

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Benchmark suite</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>Integer sorting</td>
<td>NAS</td>
</tr>
<tr>
<td>LU</td>
<td>Linear algebra</td>
<td>SPLASH2</td>
</tr>
<tr>
<td>Bzip2</td>
<td>Compression</td>
<td>SPEC</td>
</tr>
<tr>
<td>Swaptions</td>
<td>Price portfolio of swaptions</td>
<td>PARSEC</td>
</tr>
<tr>
<td>Water</td>
<td>Molecular dynamics</td>
<td>SPLASH2</td>
</tr>
<tr>
<td>CG</td>
<td>Conjugate gradient method</td>
<td>NAS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Benchmark suite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lbm</td>
<td>Fluid dynamics</td>
<td>Parboil</td>
</tr>
<tr>
<td>Gzip</td>
<td>Compression</td>
<td>SPEC</td>
</tr>
<tr>
<td>Ocean</td>
<td>Large-scale ocean movements</td>
<td>SPLASH</td>
</tr>
<tr>
<td>Bfs</td>
<td>Breadth-First search</td>
<td>Parboil</td>
</tr>
<tr>
<td>Mcf</td>
<td>Combinatorial optimization</td>
<td>SPEC</td>
</tr>
<tr>
<td>Libquantum</td>
<td>Quantum computing</td>
<td>SPEC</td>
</tr>
</tbody>
</table>
Experiments

• Estimate overall SDC rates using SDCTune and compare with fault injection experiments
 • Measure correlation between predicted and actual

• Measure SDC Coverage of detectors inserted using SDCTune for different overhead bounds
 • Consider 10, 20 and 30% performance overheads

• Compared performance overhead and efficiency with full duplication and hot-path duplication
 • Efficiency = SDC coverage / Performance overhead
Overall SDC Rates: Ranks

<table>
<thead>
<tr>
<th></th>
<th>Training programs</th>
<th>Testing programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank correlation*</td>
<td>0.9714</td>
<td>0.8286</td>
</tr>
<tr>
<td>P-value**</td>
<td>0.00694</td>
<td>0.0125</td>
</tr>
</tbody>
</table>
SDC coverage ranges from 45% to 87% for the training programs as overhead goes from 10 to 30%, while for testing programs it ranges from 39% to 75% for the same overhead.
Full duplication and hot-path duplication (top 10% of paths) have high overheads. For full duplication it ranges from 53.7% to 73.6%, for hot-path duplication it ranges from 43.5 to 57.6%.
Detection efficiency of the detectors normalized to full duplication is 2.87x, 2.34x and 1.84x at the 10%, 20% and 30% overheads.
Outline

• Motivation and Goals
• EDC Causing Error Detection [DSN’13][SELSE’13]
• SDCTune: Protecting programs from SDCs [CASES’14]
• Error Resilience Characterization on GPUs [ISPASS’14]
• Conclusions and Future Work
GPU Error Resilience: Motivation

- GPUs have traditionally been used for error-resilient workloads
 - E.g. Image Processing

- GPUs are used in general-purpose applications, i.e. GPGPU
 - Small errors can lead to completely incorrect outputs

ATATTTTTTCTTGTT
TTTATATCCACAAA
CTCTTTTCGTACTTT
TACACAGTATATCGT
GT

ATATTTTTTCTTGTT
TTTATATCCACAAT
CTCTTTTCGTACTTT
TACACAGTATATCGT
GT

Error

Error
GPU Fault Injection: Challenges

• **Challenge 1: Scale of GPGPU applications**
 • GPGPU applications consist of thousands of threads, and injecting sufficient faults in each thread will be very time consuming

• **Challenge 2: Representativeness**
 • Need to execute application on real GPU to get hardware error detection
 • Need to uniformly sample the execution of the application to emulate randomly occurring faults
Addressing Challenge 1: Scale

- Choose representative threads to inject faults into
- Group threads with similar numbers of instructions into equivalence classes and sample from each class (or from the most popular thread classes)
- Hypothesis: Threads that execute similar numbers of instructions have similar behavior – validated by injection
Addressing Challenge 2: Representativeness

• We use a source-level debugger for CUDA® GPGPU applications called CUDA-gdb
 • Advantage: Directly inject into the GPU hardware
 • Disadvantage: Requires source-code information to set breakpoints for injecting faults

• Our solution: Single-step the program using CUDA-gdb and map dynamic instructions to source code
Fault injection Methodology: GPU-Qin
Experimental Setup

- NVIDIA® Tesla C 2070/2075
- 12 CUDA benchmarks comprising 15 kernels
 - Rodinia, Parboil and Cuda-SDK benchmark suites
- Only consider activated faults – faults read by application
- Outcomes
 - Benign: correct output
 - Crash: hardware exceptions raised by the system
 - Silent Data Corruption (SDC): incorrect output, as obtained by comparing with golden run of the application
 - Hang: did not finish in considerably longer time
SDC Rates vary significantly across benchmarks (from 2 to 40%), which is much higher than in CPU applications (typically between 5 and 15%)
Hypothesis: Algorithmic Categories

<table>
<thead>
<tr>
<th>Resilience Category</th>
<th>Benchmarks</th>
<th>Measured SDC</th>
<th>Dwarf(s) of parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search-based</td>
<td>MergeSort</td>
<td>6%</td>
<td>Backtrack and Branch+Bound</td>
</tr>
<tr>
<td>Bit-wise Operation</td>
<td>HashGPU, AES</td>
<td>25% - 37%</td>
<td>Combinational Logic</td>
</tr>
<tr>
<td>Average-out Effect</td>
<td>Stencil, MONTE</td>
<td>1% - 5%</td>
<td>Structured Grids, Monte Carlo</td>
</tr>
<tr>
<td>Graph Processing</td>
<td>BFS</td>
<td>10%</td>
<td>Graph Traversal</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>Transpose, MAT, MRI-Q, SCAN-block, LBM, SAD</td>
<td>15% - 25%</td>
<td>Dense Linear Algebra, Sparse Linear Algebra, Structured Grids</td>
</tr>
</tbody>
</table>
Implications of our Results

• Wide variation in SDC rates across GPGPU applications, much more than CPU applications
 • Need for application specific fault-tolerance

• Correlation between algorithm and error resilience
 • Can be used to obtain quick estimates without FI
 • Can be used to customize level of protection provided
Outline

• Motivation and Goals
• EDC Causing Error Detection [DSN’13][SELSE’13]
• SDCTune: Protecting programs from SDCs [CASES’14]
• Error Resilience Characterization on GPUs [ISPASS’14]
• Conclusions and Future Work
Conclusion

- Selective protection of instructions in applications for both detecting both EDCs and SDCs
 - Protection configurable based on max performance overhead
 - Can provide high detection coverage for most severe errors

- GPGPU applications have wider variations in SDC rates compared to CPU applications
 - Correlation between algorithmic properties and application error resilience \(\rightarrow\) mapping to dwarves
 - Development of new algorithms for resilient computation

Fault Injectors at http://github.com/DependableSystemsLab
Future Work

• Understanding effect of algorithm on shared memory parallel applications on the CPU
 • Similar correlations as GPGPU apps [FTXS’14]

• Effect of compiler optimizations on the error resilience of applications [AER’13]
 • Identify safe optimizations for given error resilience targets

• Theoretical foundations of programs’ error resilience
 • PVF analysis combined with heuristics-based analysis