SDCTune: A Model for Predicting
the SDC Proneness of an
Application for Configurable

Protection

Qining Lu, Karthik Pattabiraman
University of British Columbia (UBC)

Jude Rivers, Meeta Gupta
IBM Research T.J. Watson

Motivation: Transient Errors

One failure per . .
~~sivperans ~ge 1 Particle strikes,
~ | temperature, etc.,

=
<
(=]
~
=
M
S—
3
3]
(-4
[
o

-
w
&

Q
v

32 16
Technology Node (nm) [Shivakumar'02]

Source: Feng et. al., ASPLOS’2010

Transient hardware errors (aka. Soft errors) increase as feature

sizes shrink
2

Motivation: Application-level Techniques

Only a fraction of
the errors at the

circuit level
Oper: impacts the
application

Appli Level

Impactful Errors

More economical to deploy techniques at application

Motivation: Silent Data Corruption (SDC)

Application Execution

‘ Error activated ﬂ

Program

Finished

Error Masked

Fault occurs

Silent Data Corruption (SDC): Our focus in this paper

44829 24827 2 W C 44344 44842 530
Exam le' 44830 44020 :J rOIlg Olltpllt Orrect Output 44845 44843 S39
y 48831 44829 52 A4BA6 14844 A2
44832 4483) 519 AdSAllicis Sl
Bﬁ§ ASR1N 44531 529 & 44848 43846 S0
44834 44832 547 44340 44847 525
44835 44833 527 44350 44848 525
44836 :::3 :’4 44351 44849 526
44837 44835 53 44852 44850 524
44838 44835 532 44353 44851 525
44839 44850 <25 44354 44852 S04
B s 2t Results lost: i L
A4B42 44840 S26 44357 44855 458
AR 4aB4 N us?u 44856 459
44844 14842 530 44359 44857 460
44845 44843 539 ::zg ::gﬁ 2{:
AERA0 44044 A2 -
44847 44845 511 44362 44880 525
44848 44363 44851 519

Our Goals

* Detect Silent Data Corruption (SDC)

« High Coverage with Low Overhead

* Configurable protection overhead

Selectively protect highly SDC-prone variables in program

Traditional approaches Vs. Our approach

Traditional | Fault injection Few lead to
> > S*:S

Thous?n}clis of my ——y : SER Protect/duplicate
runs of the ~ 7 -~ : —> the instructions
application : ’ ; ? 7 SD that lead to SDCs

* Time consuming (runs application thousands of times)
* Need to manually choose variables to protect

Ours

Program code =

Static and dynamic S Selected — Protect/ duplicate
program analysis variables Selected variables

Performance overhead budget

* Time saving (dynamic analysis only runs the application once)
« Automatically choose variables to protect subject to performance

Fault model

Single bit flip fault

One fault per run

Errors in registers and execution units

Program data that is visible at architectural level

7

e Motivation and Goal
* Approach

 Evaluation and Results
 Conclusion

Initial Heuristic
Study > ; ? SDCTune

Overall Approach

» Step 1: Perform fault injections to understand SDC
characteristics of code constructs

» Step 2: Heuristics 1dentifying code regions prone to
SDC causing faults

» Step 3: SDCTune model building and protection

Initial
Study
(Step 1)

Heuristics SDCTune
(Step 2) (Step 3)

Initial Heuristic
Study > ; ? SDCTune

Initial study: Goals

* Initial fault injection experiments
* The goal is to understand the reasons for SDC failures

* Used to formulate heuristics for selective protection

* Manually inspect why SDC occurs
* Highly executed instructions cover most SDCs
* Not all highly executed instructions should be protected

« Find common patterns used for developing heuristics

Initial Study: Method

* Performed using LLFI, high level fault injector validated
for SDC-causing errors [DSN’14]

Initial
Study

] Heuristi ||
> euzlsmc > SDCTune

Compile time

Fault injection
instruction/
register selector

EXCEC

Fault injection

table

-
-
-
-

Instrument IR code
of the program with
function calls

-
-
-
-

Profiling
executable

Runtime

Initial Heuristic
Study > ; ? SDCTune

Initial study: Findings

* SDC proneness of instruction depends on:
* The fault propagation in its data dependency chain
e The SDC proneness of the end point of that chain

* End points of data dependency chain:
* Store operations
* Comparison operations

Need heuristics for fault propagation,
store operations, comparison operations

Initial Heuristic
Study > s > SDCTune

Heuristics:
Fault propagation

HP1: The SDC proneness of an instruction will decrease if its
result is used in either fault masking or crash prone instructions

Fault S 2
occurs

Corrupted bits ~ Corrupted variable

Trunc operation

Result variable
>

£

Correct output

13

Initial Heuristic
Study > s 2 SDCTune

Heuristics:
Store operations

Major
Category Description rrel:tg
eatu

Addr The stored value is used in ¢
NoCm calculating memory addresses Data width
P but pot comparison results

The stored value is used in Data width
Addr calculating both memory and control
Cmp addresses and comparison flow
results deviation

C The stored value is used in ~Resilient or
N ,ng; calculating comparison results Unresiliem
& but not memory addresses comparison
NoCmp The stored value is neither used Used in

NoAddr | ™ '"':x"'"m"' "d"'-cm“ ‘m“i‘u‘;{:‘m output or not

HS1: Addr NoCmp stored values have low SDC proneness in general

HS2: Addr Cmp stored values have higher SDC proneness than Addr

NoCmp <More heuristics in paper>
14

Initial Heuristic
Study > s 2 SDCTune

Heuristics:
Comparison operations

HC1: Nested loop depths affect the SDC proneness of loops’
comparison operations.

' void BZ2_hbMakeCodeLengths

Y
while(nHeap>1){ //outer loop

2
3
4

- , , SDC proneness of “nHeap>1" higher tha
while(weight[tmp]<weight| e .
heap[zz>>1]])| weight[tmp]<weight[heap[7z>>1]

// inner loop
Heap|zz|=heap[zz>>1]:
zz>>1;

<More heuristics in paper>

Initial Heuristic
Study > . 2 SDCTune

SDCTune:
Build model

* Classification
- Different types of usage are usually independent of each other

* Classify the stored values and comparison values according to the
heuristic features we observed before

 Regression

© With same type of usages, SDC rate may show gradually correlations to
several features

52 features in total used in the model

Initial Heuristic
Study > ; 2 SDCTune

SDCTune:
Example model

Example: free structure for Store

| All stored values
Addr NoCmp Cmp NoAddr || NoCmp NoAddr

pe

ResCmpNoAddr | | UnwesCmp

B

Global ResCmp Non-Global Accumulative Non-Accumulative
NoAddr || ResCmp NoAddr | | UnresCmp NoAddr || UnresCmp NoAddr

Initial Heuristic
Study > . 2 SDCTune

SDCTune: Selection
Algorithm

Application

Sourcic ode Performance Overhead

Representative inputs

Algorithm

= !
IR ' =
Compiler == SDCTune Selection | |
o
S

Data Variables or Locations to Protect

!

Backward slice replication

Initial Heuristic
Study > ; 2 SDCTune

SDCTune:
Optimizations

Loop hﬁ?vec:f:rerout
body of loop body

checker

checker

checker

(<)
()
D
(©)
()
(&)
Coor)

Loop
exit

(a) Data dependency of (b) Basic detector in- (¢) concatenate dupli-
detector-free code strumented cated instructions

Adding the instructions to the Move checker out of loop body
protection set to save checkers

* Motivation and Goal
* Approach

 Evaluation and Results
 Conclusion

Evaluation: Work Flow

SDC rate for
each instruction
P(SDC|I) from

Optimal
selection: est.
P(SDC'!DP(]|)

VS.

o

Training
t Measure real

COov c
Features % OQ/
extracted based tes lllg

Features
extracted from programs

testing programs

on heuristic
knowledge from

Evaluation: Work Flow

SDC rate for Optimal
each instruction selection: est.
P(SDC|I) from P(SDC|DP(])
training programs VS

‘ P(D)

Training - P(SDC|I) S Random Fault
(Regression) ~ Predictor Injection Results
3 from testing
programs

Features
extracted based Features Actual SDC
on heuristic extracted from coverage for

knowledge from testing programs testing programs
training programs

Evaluation: Benchmarks

Training programs Testing programs
Program Description Bencl}mark Program Description Bencl}mark
suite suite
IS Integer NAS Lbm Flmd. Parboil
sorting dynamics
LU Linear SPLASH? Gzip Compression SPEC
algebra
Large-scale
Bzip2 Compression SPEC Ocean ocean SPLASH2
Price movements
Swaptions portfolio of PARSEC Breadth-First ,
swaptions Bfs search Parboil
Molecular Combinatori
Water : SPLASH?2 ombinatoria
dynamics Mef 1 optimization SPEC
CG Conjggate NAS Libquantu Quantum SPEC
gradient m computing

Evaluation: Experiments

Estimate overall SDC rates using SDCTune and
compare with fault injection experiments

* Measure correlation between predicted and actual

Measure SDC Coverage of detectors inserted using
SDCTune for different overhead bounds

* Consider 10, 20 and 30% performance overheads

Compared performance overhead and efficiency with
full duplication and hot-path duplication

- Efficiency = SDC coverage / Performance overhead

24

Results: Overall SDC Rates
| Trainingprograms | Testing programs

Rank correlation® 0.9714 0.8286
P-value** 0.00694 0.0125

0

¢ Training
programs

N

(=}

(=]
e

[\

g4
e

7]

L

e
=

(\&

B Tesing
program

-

I 1

0 6 7
Rank of overall SDC rates by fault injection experiment

7]
2
<
i
)
A
7
=)
<
5
>
o
Qe
S
<
e

25

3§

38

=~
oL
I
-
-
S 50% -
840%-
30%
2 20%
10%
0% -

Results: SDC Coverage

Training programs

Training programs:

Overhead Coverage

10%
20%
30%

44.8%
78.6%
86.8%

Testing programs

Testing programs:

_ Overhead
| bounds

| m10%
{ m20%

| DHot-path

Overhead Coverage

10% 39%
20% 63.7%
30% 74.9%

Results: Full Duplication
Overheads

Training programs

Full duplication and hot-path duplication (top 10% of paths)
have high overheads. For full duplication it ranges from 53.7%
to 73.6%, for hot-path duplication it ranges from 43.5 to 57.6%.

Testing programs

= Full
duplication

W Hot-path
duplication

&
<
(9 o

-
=
b

=
=
o
-
)
@
o
=
=
£
=

S
-
o)

=

[
'Y
%

?’o

Results: Detection Efficiency

Training programs Testing programs

w
wn

Overhead
bounds

e
e uvn

B 10%

w

W 20%
@ 30%

= :
- N

0 Hot-path

o
wn

o

-
v
=
$
>
-]
d
[
2
g
< 2.5
(=]
|
=
=
-
(=]
7

&

Normalized Detection Efficiency | 10% overhead 20% overhead | 30% overhead

Training programs 2.38 2.09 1.54
Testing programs 2.87 2.34 1.84

e Motivation and Goal
* Approach

 Evaluation and Results
 Conclusion

Conclusion and Future Work

Configurable protection techniques for SDC failures are
required as transient fault rates increase

We find heuristics to estimate SDC proneness for
program variables based on static and dynamic features

SDCTune model to guide configurable SDC protection
» Accurate at predicting relative SDC rates of applications
* Much better detection efficiency compared to full duplication

Future work

» Improving the model’s accuracy using auto-tuning
+ Using symptom based detectors for protection

http://blogs.ubc.ca/karthik/

30

