SDCTune: A Model for Predicting the SDC Proneness of an Application for Configurable Protection



Qining Lu, **Karthik Pattabiraman** University of British Columbia (UBC)

IBM Research Jude Rivers, Meeta Gupta IBM Research T.J. Watson

### Motivation: Transient Errors



Source: Feng et. al., ASPLOS'2010

**Transient hardware errors** (aka. Soft errors) *increase* as **feature** sizes *shrink* 

### Motivation: Application-level Techniques









### Fault model

• Single bit flip fault

• One fault per run

• Errors in registers and execution units

• Program data that is visible at architectural level

## Motivation and Goal

- Approach
- Evaluation and Results
- Conclusion



## Initial study: Goals

### • Initial fault injection experiments

• The goal is to understand the reasons for SDC failures

Heuristic > SDCTune

Initial Study

• Used to formulate heuristics for selective protection

### Manually inspect why SDC occurs

- *Highly executed instructions cover most SDCs*
- Not all highly executed instructions should be protected
- Find common patterns used for developing heuristics



### Initial study: Findings

➤ Heuristic ➤ SDCTune

Initial Study

- SDC proneness of instruction depends on:
  - The fault propagation in its data dependency chain
  - The SDC proneness of the end point of that chain

- End points of data dependency chain:
  - Store operations
  - Comparison operations

#### Need heuristics for fault propagation, store operations, comparison operations



### Heuristics: Store operations

→ Heuristic → SDCTune

Initial Study

| Category        | Description                                                                                   | Major<br>related<br>features<br>Data width<br>Data width<br>and control<br>flow<br>deviation |  |
|-----------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Addr<br>NoCmp   | The stored value is used in<br>calculating memory addresses<br>but not comparison results     |                                                                                              |  |
| Addr<br>Cmp     | The stored value is used in<br>calculating both memory<br>addresses and comparison<br>results |                                                                                              |  |
| Cmp<br>NoAddr   | The stored value is used in<br>calculating comparison results<br>but not memory addresses     | Resilient or<br>Unresilient<br>comparison                                                    |  |
| NoCmp<br>NoAddr | The stored value is neither used<br>in memory address calculation<br>nor comparison results   | Used in<br>output or not                                                                     |  |

HS1: Addr NoCmp stored values have low SDC proneness in general

HS2: Addr Cmp stored values have higher SDC proneness than Addr NoCmp </br><More heuristics in paper>

#### Heuristic > SDCTune Initial ⋝ Study Heuristics: **Comparison** operations HC1: Nested loop depths affect the SDC proneness of loops' comparison operations. void BZ2\_hbMakeCodeLengths (...){ while(nHeap>1){ //outer loop 2 SDC proneness of "*nHeap>1*" higher than 3 while(weight[tmp]<weight[ 4 "weight[tmp]<weight[heap[zz>>1]] heap[zz>>1]]){ ,, // inner loop 5 Heap[zz]=heap[zz>>1]; 6 zz>>1; 8 <More heuristics in paper> 10 15

### SDCTune: Build model

➤ Heuristic
> SDCTune

Initial Study

- Classification
  - Different types of usage are usually independent of each other
  - Classify the stored values and comparison values according to the heuristic features we observed before
- Regression
  - With same type of usages, SDC rate may show gradually correlations to several features

#### 52 features in total used in the model







Adding the instructions to the protection set to save checkers

Move checker out of loop body

## Motivation and Goal

- Approach
- Evaluation and Results
- Conclusion





# Evaluation: Benchmarks

| Training programs |                           | Testing programs   |                |                                |                    |  |
|-------------------|---------------------------|--------------------|----------------|--------------------------------|--------------------|--|
| Program           | Description               | Benchmark<br>suite | Program        | Description                    | Benchmark<br>suite |  |
| IS                | Integer<br>sorting        | NAS                | Lbm            | Fluid<br>dynamics              | Parboil            |  |
| LU                | Linear<br>algebra SPLA    | SPLASH2            | Gzip           | Compression                    | SPEC               |  |
|                   |                           |                    |                | Large-scale                    |                    |  |
| Bzip2             | Compression               | SPEC               | Ocean          | ocean                          | SPLASH2            |  |
|                   | Price                     |                    |                | movements                      |                    |  |
| Swaptions         | portfolio of<br>swaptions | PARSEC             | Bfs            | Breadth-First<br>search        | Parboil            |  |
| Water             | Molecular<br>dynamics     | SPLASH2            | Mcf            | Combinatoria<br>1 optimization | SPEC               |  |
| CG                | Conjugate<br>gradient     | NAS                | Libquantu<br>m | Quantum<br>computing           | SPEC               |  |
|                   |                           |                    |                |                                |                    |  |

# Evaluation: Experiments

- Estimate overall SDC rates using SDCTune and compare with fault injection experiments
  - Measure correlation between predicted and actual
- Measure SDC Coverage of detectors inserted using SDCTune for different overhead bounds

• Consider 10, 20 and 30% performance overheads

• Compared performance overhead and efficiency with full duplication and hot-path duplication

• Efficiency = SDC coverage / Performance overhead

### Results: Overall SDC Rates





# Results: Full Duplication Overheads



Full duplication and hot-path duplication (top 10% of paths) have high overheads. For full duplication it ranges from 53.7% to 73.6%, for hot-path duplication it ranges from 43.5 to 57.6%.

### Results: Detection Efficiency



## Motivation and Goal

- Approach
- Evaluation and Results
- Conclusion

### Conclusion and Future Work

- Configurable protection techniques for SDC failures are required as transient fault rates increase
- We find heuristics to estimate SDC proneness for program variables **based on static and dynamic features**
- SDCTune model to guide configurable SDC protection
  - Accurate at predicting relative SDC rates of applications
  - Much better detection efficiency compared to full duplication
- Future work
  - Improving the model's accuracy using auto-tuning
  - Using symptom based detectors for protection

#### http://blogs.ubc.ca/karthik/