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Motivation: Transient Errors 
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Transient hardware errors (aka. Soft errors) increase as feature 
sizes shrink 

Particle strikes, 
temperature, etc.,  

Transient hardware 
faults  

Source: Feng et. al., ASPLOS’2010  



Motivation: Application-level Techniques 

Impactful Errors 
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Only a fraction of  
the errors at the 
circuit level 
impacts  the 
application 

More economical to deploy techniques at application 

Device/Circuit Level 

Architectural Level   

Operating System Level 

Application Level 



Motivation: Silent Data Corruption (SDC) 
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Application Execution 

Fault occurs 

Error activated 

Error Masked 
Benign 

Crash/
Hang 

SDC 

Program 

Finished 

Silent Data Corruption (SDC): Our focus in this paper 

Example: 
Bfs 

Correct output Wrong output 

Results lost: 



Our Goals 

•  Detect Silent Data Corruption (SDC) 

•  High Coverage with Low Overhead 

•  Configurable protection overhead 
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Selectively protect highly SDC-prone variables in program 



Traditional approaches Vs. Our approach 
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…
 

Fault injection 

…
 

SDC 

SDC 

Protect/duplicate 
the instructions 
that lead to SDCs 

Few lead to 
SDCs 

Thousands of  
runs of  the 
application 

•  Time consuming (runs application thousands of  times) 
•  Need  to manually choose variables to protect 

Traditional 

Static and dynamic  
program analysis 

Program code 

Performance overhead budget 

Selected 
variables 

Protect/duplicate 
Selected variables 

•  Time saving (dynamic analysis only runs the application once) 
•  Automatically choose variables to protect subject to performance  

Ours 



Fault model 

•  Single bit flip fault 

•  One fault per run 

•  Errors in registers and execution units 

•  Program data that is visible at architectural level 

7 



8 

• Motivation and Goal 
• Approach 
• Evaluation and Results 
• Conclusion 



Overall Approach 

! Step 1: Perform fault injections to understand SDC 
characteristics of  code constructs 

! Step 2: Heuristics identifying code regions prone to 
SDC causing faults 

! Step 3: SDCTune model building and protection  
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Initial 
Study 

(Step 1) 

Heuristics 
(Step 2) 

SDCTune 
(Step 3) 

 
Initial 
Study 

 

Heuristic
s SDCTune 



Initial study: Goals 

•  Initial fault injection experiments 
•  The goal is to understand the reasons for SDC failures 
•  Used to formulate heuristics for selective protection 

•  Manually inspect why SDC occurs 
•  Highly executed instructions cover most SDCs 
•  Not all highly executed instructions should be protected 
•  Find common patterns used for developing heuristics 
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Heuristic
s SDCTune 



Initial Study: Method 
•  Performed using LLFI, high level fault injector validated 

for SDC-causing errors [DSN’14] 

11 

Start 
Fault injection 

instruction/
register selector 

Instrument IR code 
of  the program with 

function calls 

Profiling 
executable 

Fault injection 
executable 

Custom fault 
injector 

Inject
? 

Next 
instruction 

Compile time 

Runtime 

Yes  No 
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Initial study: Findings 

•  SDC proneness of instruction depends on: 
•  The fault propagation in its data dependency chain 
•  The SDC proneness of the end point of that chain 

•  End points of data dependency chain: 
•  Store operations 
•  Comparison operations 
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Need heuristics for fault propagation, 
store operations, comparison operations 

 
Initial 
Study 

 

Heuristic
s SDCTune 



Heuristics:  
Fault propagation 
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HP1: The SDC proneness of an instruction will decrease if its 
result is used in either fault masking or crash prone instructions 

Corrupted bits 

Fault 
occurs 

Corrupted variable 

Trunc operation 

Result variable Fault 
masked 

Correct output 
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Heuristics:  
Store operations 
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HS1: Addr NoCmp stored values have low SDC proneness in general 
HS2: Addr Cmp stored values have higher SDC proneness than Addr 
NoCmp <More heuristics in paper> 

 
Initial 
Study 

 

Heuristic
s SDCTune 



Heuristics: 
Comparison operations 
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HC1: Nested loop depths affect the SDC proneness of loops’ 
comparison operations. 

SDC proneness of  “nHeap>1” higher than 

“weight[tmp]<weight[heap[zz>>1]]
” 

<More heuristics in paper> 

 
Initial 
Study 

 

Heuristic
s SDCTune 



SDCTune: 
 Build model 

•  Classification 
•  Different types of usage are usually independent of each other 
•  Classify the stored values and comparison values according to the 

heuristic features we observed before 

•  Regression 
•  With same type of usages, SDC rate may show gradually correlations to 

several features 
•  Use linear regression for the classified groups. 
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52 features in total used in the model  

 
Initial 
Study 

 

Heuristic
s SDCTune 



SDCTune:  
Example model 
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Example: tree structure for Store 

 
Initial 
Study 

 

Heuristic
s SDCTune 



SDCTune: Selection 
Algorithm 
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Compiler SDCTune 
Selection 

Algorithm 
IR  

 Application  
Source Code 

Performance Overhead 

Data Variables or Locations to Protect 

Representative inputs 

Backward slice replication 
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SDCTune:  
Optimizations 
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Adding the instructions to the 
protection set to save checkers 

Move checker out of  loop body 

 
Initial 
Study 

 

Heuristic
s SDCTune 
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Evaluation: Work Flow 
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Features 
extracted based 

on heuristic 
knowledge from 

training 
programs 

SDC rate for 
each instruction 
P(SDC|I) from 

training 
programs 

Training 
(Regression) 

P(SDC|I) 
Predictor 

Optimal 
selection: est. 
P(SDC|I)P(|)  

vs.  
P(I) 

Set{Instructions
} for a certain 

overhead bound 
(∑P(I)) 

Random Fault 
Injection Results 

from testing 
programs 

Actual SDC 
coverage for 

testing programs 

Features 
extracted from 

testing programs 

Training phase 

Testing and using phase 

Measure real 
coverage on 

testing 
programs 



Evaluation: Work Flow 
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Features 
extracted based 

on heuristic 
knowledge from 
training programs 

SDC rate for 
each instruction 
P(SDC|I) from 

training programs 

Training 
(Regression) 

P(SDC|I) 
Predictor 

Optimal 
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Random Fault 
Injection Results 
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programs 
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testing programs 
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Evaluation: Benchmarks 
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Training programs Testing programs 

Program Description 
Benchmark 

suite 

IS 
Integer 
sorting NAS 

LU 
Linear 
algebra SPLASH2 

Bzip2 Compression SPEC 

Swaptions 
Price 

portfolio of  
swaptions 

PARSEC 

Water 
Molecular 
dynamics SPLASH2 

CG 
Conjugate 
gradient NAS 

Program Description 
Benchmark 

suite 

Lbm 
Fluid 

dynamics Parboil 

Gzip Compression SPEC 

Ocean 
Large-scale 

ocean 
movements 

SPLASH2 

Bfs 
Breadth-First 

search Parboil 

Mcf  
Combinatoria
l optimization SPEC 

Libquantu
m 

Quantum 
computing SPEC 



Evaluation: Experiments 

•  Estimate overall SDC rates using SDCTune and 
compare with fault injection experiments  
•  Measure correlation between predicted and actual 

•  Measure SDC Coverage of detectors inserted using 
SDCTune for different overhead bounds 
•  Consider 10, 20 and 30% performance overheads 

•  Compared performance overhead and efficiency with 
full duplication and hot-path duplication 
•  Efficiency = SDC coverage / Performance overhead 
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Results: Overall SDC Rates 
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Training programs Testing programs 

Rank correlation* 0.9714 0.8286 

P-value** 0.00694 0.0125 
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Results: SDC Coverage 
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Training programs: Testing programs: 

Overhead Coverage 

10% 44.8% 

20% 78.6% 

30% 86.8% 

Overhead Coverage 

10% 39% 

20% 63.7% 

30% 74.9% 



Results: Full Duplication 
Overheads 
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Full duplication and hot-path duplication (top 10% of  paths) 
have high overheads. For full duplication it ranges from 53.7% 
to 73.6%, for hot-path duplication it ranges from 43.5 to 57.6%. 



Results: Detection Ef�ciency 
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Normalized Detection Efficiency 10% overhead 20% overhead 30% overhead 

Training programs 2.38 2.09 1.54 

Testing programs 2.87 2.34 1.84 
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Conclusion and Future Work 

•  Configurable protection techniques for SDC failures are 
required as transient fault rates increase 

•  We find heuristics to estimate SDC proneness for 
program variables based on static and dynamic features 

•  SDCTune model to guide configurable SDC protection 
•  Accurate at predicting relative SDC rates of  applications 
•  Much better detection efficiency compared to full duplication 

•  Future work  
•  Improving the model’s accuracy using auto-tuning  
•  Using symptom based detectors for protection 
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http://blogs.ubc.ca/karthik/ 


