
SDCTune: A Model for Predicting
the SDC Proneness of an
Application for Con�gurable
Protection

Qining Lu, Karthik Pattabiraman
University of British Columbia (UBC)

Jude Rivers, Meeta Gupta
IBM Research T.J. Watson

1

Motivation: Transient Errors

2

Transient hardware errors (aka. Soft errors) increase as feature
sizes shrink

Particle strikes,
temperature, etc.,

Transient hardware
faults

Source: Feng et. al., ASPLOS’2010

Motivation: Application-level Techniques

Impactful Errors

3

Only a fraction of
the errors at the
circuit level
impacts the
application

More economical to deploy techniques at application

Device/Circuit Level

Architectural Level

Operating System Level

Application Level

Motivation: Silent Data Corruption (SDC)

4

Application Execution

Fault occurs

Error activated

Error Masked
Benign

Crash/
Hang

SDC

Program

Finished

Silent Data Corruption (SDC): Our focus in this paper

Example:
Bfs

Correct output Wrong output

Results lost:

Our Goals

•  Detect Silent Data Corruption (SDC)

•  High Coverage with Low Overhead

•  Configurable protection overhead

5

Selectively protect highly SDC-prone variables in program

Traditional approaches Vs. Our approach

6

…

Fault injection

…

SDC

SDC

Protect/duplicate
the instructions
that lead to SDCs

Few lead to
SDCs

Thousands of
runs of the
application

•  Time consuming (runs application thousands of times)
•  Need to manually choose variables to protect

Traditional

Static and dynamic
program analysis

Program code

Performance overhead budget

Selected
variables

Protect/duplicate
Selected variables

•  Time saving (dynamic analysis only runs the application once)
•  Automatically choose variables to protect subject to performance

Ours

Fault model

•  Single bit flip fault

•  One fault per run

•  Errors in registers and execution units

•  Program data that is visible at architectural level

7

8

• Motivation and Goal
• Approach
• Evaluation and Results
• Conclusion

Overall Approach

! Step 1: Perform fault injections to understand SDC
characteristics of code constructs

! Step 2: Heuristics identifying code regions prone to
SDC causing faults

! Step 3: SDCTune model building and protection

9

Initial
Study

(Step 1)

Heuristics
(Step 2)

SDCTune
(Step 3)

Initial
Study

Heuristic
s SDCTune

Initial study: Goals

•  Initial fault injection experiments
•  The goal is to understand the reasons for SDC failures
•  Used to formulate heuristics for selective protection

•  Manually inspect why SDC occurs
•  Highly executed instructions cover most SDCs
•  Not all highly executed instructions should be protected
•  Find common patterns used for developing heuristics

10

Initial
Study

Heuristic
s SDCTune

Initial Study: Method
•  Performed using LLFI, high level fault injector validated

for SDC-causing errors [DSN’14]

11

Start
Fault injection

instruction/
register selector

Instrument IR code
of the program with

function calls

Profiling
executable

Fault injection
executable

Custom fault
injector

Inject
?

Next
instruction

Compile time

Runtime

Yes No

Initial
Study

Heuristic
s SDCTune

Initial study: Findings

•  SDC proneness of instruction depends on:
•  The fault propagation in its data dependency chain
•  The SDC proneness of the end point of that chain

•  End points of data dependency chain:
•  Store operations
•  Comparison operations

12

Need heuristics for fault propagation,
store operations, comparison operations

Initial
Study

Heuristic
s SDCTune

Heuristics:
Fault propagation

13

HP1: The SDC proneness of an instruction will decrease if its
result is used in either fault masking or crash prone instructions

Corrupted bits

Fault
occurs

Corrupted variable

Trunc operation

Result variable Fault
masked

Correct output

Initial
Study

Heuristic
s SDCTune

Heuristics:
Store operations

14

HS1: Addr NoCmp stored values have low SDC proneness in general
HS2: Addr Cmp stored values have higher SDC proneness than Addr
NoCmp <More heuristics in paper>

Initial
Study

Heuristic
s SDCTune

Heuristics:
Comparison operations

15

HC1: Nested loop depths affect the SDC proneness of loops’
comparison operations.

SDC proneness of “nHeap>1” higher than

“weight[tmp]<weight[heap[zz>>1]]
”

<More heuristics in paper>

Initial
Study

Heuristic
s SDCTune

SDCTune:
 Build model

•  Classification
•  Different types of usage are usually independent of each other
•  Classify the stored values and comparison values according to the

heuristic features we observed before

•  Regression
•  With same type of usages, SDC rate may show gradually correlations to

several features
•  Use linear regression for the classified groups.

16

52 features in total used in the model

Initial
Study

Heuristic
s SDCTune

SDCTune:
Example model

17

Example: tree structure for Store

Initial
Study

Heuristic
s SDCTune

SDCTune: Selection
Algorithm

18

Compiler SDCTune
Selection

Algorithm
IR

 Application
Source Code

Performance Overhead

Data Variables or Locations to Protect

Representative inputs

Backward slice replication

Initial
Study

Heuristic
s SDCTune

SDCTune:
Optimizations

19

Adding the instructions to the
protection set to save checkers

Move checker out of loop body

Initial
Study

Heuristic
s SDCTune

20

• Motivation and Goal
• Approach
• Evaluation and Results
• Conclusion

Evaluation: Work Flow

21

Features
extracted based

on heuristic
knowledge from

training
programs

SDC rate for
each instruction
P(SDC|I) from

training
programs

Training
(Regression)

P(SDC|I)
Predictor

Optimal
selection: est.
P(SDC|I)P(|)

vs.
P(I)

Set{Instructions
} for a certain

overhead bound
(∑P(I))

Random Fault
Injection Results

from testing
programs

Actual SDC
coverage for

testing programs

Features
extracted from

testing programs

Training phase

Testing and using phase

Measure real
coverage on

testing
programs

Evaluation: Work Flow

22

Features
extracted based

on heuristic
knowledge from
training programs

SDC rate for
each instruction
P(SDC|I) from

training programs

Training
(Regression)

P(SDC|I)
Predictor

Optimal
selection: est.
P(SDC|I)P(|)

vs.
P(I)

Set{Instructions
} for a certain

overhead bound
(∑P(I))

Random Fault
Injection Results

from testing
programs

Actual SDC
coverage for

testing programs

Features
extracted from
testing programs

Evaluation: Benchmarks

23

Training programs Testing programs

Program Description
Benchmark

suite

IS
Integer
sorting NAS

LU
Linear
algebra SPLASH2

Bzip2 Compression SPEC

Swaptions
Price

portfolio of
swaptions

PARSEC

Water
Molecular
dynamics SPLASH2

CG
Conjugate
gradient NAS

Program Description
Benchmark

suite

Lbm
Fluid

dynamics Parboil

Gzip Compression SPEC

Ocean
Large-scale

ocean
movements

SPLASH2

Bfs
Breadth-First

search Parboil

Mcf
Combinatoria
l optimization SPEC

Libquantu
m

Quantum
computing SPEC

Evaluation: Experiments

•  Estimate overall SDC rates using SDCTune and
compare with fault injection experiments
•  Measure correlation between predicted and actual

•  Measure SDC Coverage of detectors inserted using
SDCTune for different overhead bounds
•  Consider 10, 20 and 30% performance overheads

•  Compared performance overhead and efficiency with
full duplication and hot-path duplication
•  Efficiency = SDC coverage / Performance overhead

24

Results: Overall SDC Rates

25

Training programs Testing programs

Rank correlation* 0.9714 0.8286

P-value** 0.00694 0.0125

0

2

4

6

8

0 1 2 3 4 5 6 7

R
an

k
of

 o
ve

ra
ll

 S
D

C
 r

at
es

by

 e
st

im
at

io
n�

Rank of overall SDC rates by fault injection experiment�

Training
programs

Tesing
program

Results: SDC Coverage

26

Training programs: Testing programs:

Overhead Coverage

10% 44.8%

20% 78.6%

30% 86.8%

Overhead Coverage

10% 39%

20% 63.7%

30% 74.9%

Results: Full Duplication
Overheads

27

Full duplication and hot-path duplication (top 10% of paths)
have high overheads. For full duplication it ranges from 53.7%
to 73.6%, for hot-path duplication it ranges from 43.5 to 57.6%.

Results: Detection Ef�ciency

28

Normalized Detection Efficiency 10% overhead 20% overhead 30% overhead

Training programs 2.38 2.09 1.54

Testing programs 2.87 2.34 1.84

29

• Motivation and Goal
• Approach
• Evaluation and Results
• Conclusion

Conclusion and Future Work

•  Configurable protection techniques for SDC failures are
required as transient fault rates increase

•  We find heuristics to estimate SDC proneness for
program variables based on static and dynamic features

•  SDCTune model to guide configurable SDC protection
•  Accurate at predicting relative SDC rates of applications
•  Much better detection efficiency compared to full duplication

•  Future work
•  Improving the model’s accuracy using auto-tuning
•  Using symptom based detectors for protection

30

http://blogs.ubc.ca/karthik/

