Failure Prediction of Jobs in Compute Clouds: A Google Cluster Case Study

Xin Chen, and Karthik Pattabiraman

University of British Columbia (UBC)

Charng-da Lu, Unaffiliated

Compute Clouds

Infrastructure as a Service

Compute Clouds

Data & Storage Clouds

- Access to computational resources.
- Increasing cloud adoption in the scientific community.

Application Failures

Application failures

```
Application application_1392853856445_0900 failed 2 times due to AM Container for appattempt_1392853856445_0900_000002 exited with exitCode: 143 due to: (Current usage: 337.6 MB of 1 GB physical memory used; 2.2 GB of 2.1 GB virtual memory
```

Problems

- Higher failure rate in cloud clusters
- Isolations of resources not guaranteed
- Resources and power wasted in failures

Studies on Failures

System Failures

No specialized published application failure study on a generic production cloud with heterogeneous workloads.

Goal

Enhance the reliability of running applications and managing failures in the future cloud.

- Research Question:
 - What are good predictors for application failures in a large scale compute cloud system?

Traditional Virtual Machines for Applications

- Running the entire operating system.
- Non-negligible provisioning time.
- Difficult to isolate application failures.

New Lightweight Models

Operating system-level virtualization

Support

Google Cloud Platform Live

Containers

- Easy to monitor applications when regarded as processes.
- Isolations of application failures

Server

- A few MB for extra libs.
- A few seconds for provisioning.
- Separate applications in containers.
- Extra reliability from OS failures.

Google Clusters: Failures

- Job failures, task failures, and node failures
- Other attributes and usage of jobs, tasks and nodes

^{*}Reiss et al. Heterogeneity and dynamicity of clouds at scale: Google trace analysis. SoCC 12'

Challenges

- Features are difficult to be extracted.
- As the scale and heterogeneity increase in the cloud, simple methods have problems. *

^{*}Salfner et al. "A survey of online failure prediction methods," ACM Comput. 2010.

Modeling Time Series

- Classifying failures and non-failures
 - Hidden (semi) Markov Models *

- Dependencies on prior data
- Transitions between the hidden states

^{*}Salfner et al. "A survey of online failure prediction methods," ACM Comput. 2010.

Objectives

- Build a specialized predictor for application failures.
 - Based on the characterization study (ISSRE 14')
 - Possibility to predict early
- No inferences of root causes (hidden by Google)
- Early prediction to reduce resource consumption and potentially improve scheduling.

Prediction Framework for Performance Data

Overview of the Prediction Approach

Job Level Prediction

Usage data

- > mean CPU rate, maximum CPU rate
- canonical memory usage, assigned memory usage, unmapped page cache, total page cache, maximum memory usage
- disk I/O time, local disk space usage, maximum disk I/O time
- > cycles per instruction, memory accesses per instruction

Finer Categorization of Jobs

- ▶ Job length: short (< 10mins), medium (10 mins 1h), long (> 1h)
- Job priority: Batch, free (low batch priority) and production
- Task number: single task VS multi-task

Targets the top 4 categories (96%)

Evaluation

- Data Selected
 - Failed jobs and finished job
 - The 4 categories for resource usage
 - Predict at the quarter, half and the end
- Calculate the metrics and resource savings
- Runtime overhead
 - ▶ Training: 17.08 hours
 - ▶ Test: 9.52 minutes
 - ▶ Equivalent: 1 second to process around 37.8 minutes of the job data after high compression.

Task Level Results

Evaluation metrics

- Accuracy
- Sensitivity (true positive rate or recall)
- ▶ Specificity (1 false positive rate)

Predict if a task is successfully finished

Batch jobs

Job Level Results

- Predict a job failure
- Different classifiers (thresholds) generate
 - conservative predictor: Low TPR/FPR
 - aggressive predictor: High TPR/FPR

conservative predictor

FPR less than 10%, and TPR more than 40%.

aggressive predictor

around 72% of TPR and 56% of FPR

An Example Method in Failure Management

Restart/kill the jobs that may finally fail (allowed by users)

- Predict early to save resources
 - overall improvement = resource saved by stopping failed jobs resource wasted by stopping finished jobs
 - relative savings= overall improvement/resource(failed jobs)+resource(finished jobs)

Resource Savings in Early Prediction

Examples

- Prediction times: quarter and half
- Usage: CPU, memory, and task hour

multi-task batch long

multi-task batch medium

multi-task free long

Overall savings: 6% - 10% for the **conservative** predictors at the half time

Conclusion

Failure prediction

- Based on failure characterization and machine learning methods.
- A true positive rate of more than 86% and a false positive rate around 20% at the task level.
- ▶ 6% 10% of resource savings for batch jobs.

Future work

- To improve the accuracy in the prediction algorithms.
- ▶ To extend to a wider range of cloud systems.

Backup slides

Threats to Validity

Internal threats

- We can not prove that the method is necessary the best.
 - Select the features that enlarge the differences between jobs.
 - Compare the results using multiple machine learning algorithms.
 - Use deep RNN to generate more and better features.
- ▶ Failed and finished tasks may have similar properties and resource usage measures inside a job.
- Need techniques such as predicting the job completion times.

External threats

The study limited to the Google clusters.

Approximations of Predictor Designs

Tradeoffs

- Conservation predictor (low true positives/false positives)
- Aggressive predictor (high true positives/false positives)

User Based Optimization

Training model:

Higher priority on prior jobs from the same users

- Around 7% to 10.7% for this predictor at the half times in batch jobs
- An additional 11% of increase in the true positive rate at the job level

Hadoop Case

Q & A

Why TPR/FPR standards?

- Our setting is more likely to be credit card fraud detection.
- Different from failure repositories such as software bug reports (already biased to evaluate the classification).

How to speedup the prediction?

select less examples in the training (not for increasing accuracy, but improving the time!)

Our Method VS Google

