
Detecting Inconsistencies in JavaScript
MVC Applications

Frolin S. Ocariza, Jr. Karthik Pattabiraman Ali Mesbah
University of British Columbia

Vancouver, BC, Canada
{frolino, karthikp, amesbah}@ece.ubc.ca

Abstract—Higher demands for more reliable and maintain-
able JavaScript-based web applications have led to the recent
development of MVC (Model-View-Controller) frameworks. One
of the main advantages of using these frameworks is that they
abstract out DOM API method calls, which are one of the leading
causes of web application faults, due to their often complicated
interaction patterns. However, MVC frameworks are susceptible
to inconsistencies between the identifiers and types of variables
and functions used throughout the application. In response to
this problem, we introduce a formal consistency model for
web applications made using MVC frameworks. We propose
an approach – called AUREBESH – that automatically detects
inconsistencies in such applications. We evaluate AUREBESH by
conducting a fault injection experiment and by running it on real
applications. Our results show that AUREBESH is accurate, with
an overall recall of 96.1% and a precision of 100%. It is also
useful in detecting bugs, allowing us to find 15 real-world bugs
in applications built on AngularJS, a popular MVC framework.

I. INTRODUCTION

With the usage of client-side JavaScript in web applications
becoming more and more ubiquitous, there is increasing de-
mand to write JavaScript code that is reliable and maintainable.
In an empirical study [1], we analyzed over 300 bug reports
to learn what specific characteristics JavaScript faults possess
(i.e., their root cause, impact, and propagation). We found
that the majority of reported JavaScript faults are DOM-
related, meaning the error leading to the fault propagates
into the parameter value of a DOM API method call.1 Such
faults often result from a developer’s incomplete or erroneous
understanding of the relationship between the JavaScript code
and the DOM, leading to inconsistent interactions between
these two entities, thereby causing failures.

Partly in response to these issues, JavaScript libraries known
as MVC frameworks have recently been developed. MVC
frameworks such as AngularJS [2], BackboneJS [3], and Em-
ber.js [4] use the well-known Model-View-Controller (MVC)
pattern to simplify JavaScript development in a way that
abstracts out DOM method calls. This is accomplished by
giving programmers the ability to define model objects, which
are then directly embedded in the HTML code (typically via
a double curly brace notation) such that any changes in these
objects’ values will automatically be reflected in the DOM,

1DOM stands for Document Object Model, which is a data structure used to
represent the hierarchy of HTML elements in the webpage and their properties.

and vice versa – a process known as “two-way data binding”.
The frameworks thus eliminate the need for web programmers
to explicitly set up DOM interactions in JavaScript.

Unfortunately, despite the apparent advantages, MVC
frameworks are still susceptible to consistency issues akin to
DOM-JavaScript interactions [5]. In particular, these frame-
works rely on the use of identifiers to represent model objects
and controller methods; definitions and uses of these identifiers
are expected to be consistent across associated models, views,
and controllers. Moreover, due to JavaScript’s loose typing,
which is retained in these MVC frameworks, the programmer
must ensure that the values assigned to model objects and re-
turned by controller methods are consistent with their expected
types, depending on how they are used. Since model objects
and controller methods are primarily used to represent major
functionalities of the web application, any inconsistencies
between these identifiers and types can potentially lead to a
significant loss in functionality; hence, avoiding these incon-
sistencies is crucial. In addition, these inconsistencies are often
difficult to detect, because (1) multiple model-view-controller
groupings exist in the application, and (2) no exceptions are
thrown or warnings provided in the event of an inconsistency.

To tackle this problem, we introduce an approach to au-
tomatically detect inconsistencies between identifiers in web
applications developed using JavaScript MVC frameworks.
Our design conducts static analysis to separate the three main
components (model, view, and controller) in these applica-
tions; find the identifiers defined or used in these components;
infer the types associated with these identifiers; and compare
the collected identifiers and type information to determine any
inconsistencies. We implement our approach in a tool called
AUREBESH, which finds inconsistencies in AngularJS [2]
applications, the most popular [6] JavaScript MVC framework
used in practice.

Since MVC frameworks for JavaScript are fairly new, few
papers have explored their characteristics. For the most part,
prior work in this area does not include observations on the
properties of existing MVC frameworks, but rather, proposes
new MVC frameworks fitted towards a specific goal [7], [8],
[9]. Other papers analyse existing JavaScript MVC frame-
works, with particular focus on their maintainability [10],
[11]. To the best of our knowledge, our paper is the first
to identify the consistency issues in JavaScript applications

using MVC frameworks,2 and the first to propose a design for
automatically detecting inconsistencies in such applications.

We list the following as our main contributions:
• We identify consistency issues pertinent to identifiers and

types that are present in JavaScript MVC applications.
These consistency issues point to potential problems
within the application;

• We devise a general formal model for MVC applications.
This model helps us reason about the way variables and
functions are used and defined throughout the application,
which, in turn, allows us to more clearly define what con-
stitutes an inconsistency among them in the application;

• We introduce an automatic approach to detect identifier
and type inconsistencies in MVC applications. This ap-
proach uses static analysis, and only requires the appli-
cation’s client-side source code;

• We implement our design in an open-source tool called
AUREBESH, which works for AngularJS applications; and

• We perform a systematic fault injection experiment on
AUREBESH to test its accuracy, and we subject AU-
REBESH to real-world applications to assess its ability
to find real bugs. We find that AUREBESH is accurate
(96.1% recall and 100% precision), and can find bugs in
real MVC applications (15 bugs in 22 applications, five
of which were acknowledged by the developers).

II. RUNNING EXAMPLE

The traditional application of MVC in web applications is to
provide a clear separation between the application data and the
HTML output that represents them on the server side. Recent
JavaScript MVC frameworks represent the next logical step,
i.e., applying the MVC model to the client-side to separate
JavaScript (i.e., data and controls) from the DOM (i.e., the
output).

Some popular MVC frameworks include AngularJS, Back-
boneJS, and Ember.js. Of these, AngularJS is the most widely
used [6], with four times as many third-party modules and
GitHub contributors, and over 20 times as many Chrome
extension users, compared to the closest competitor, Back-
boneJS. Interest in AngularJS has also increased significantly
since 2012, with around 50,000 questions in StackOverflow
and 75,000 related YouTube videos. This is more than the
corresponding items for the other two frameworks combined.
For these reasons, we focus on AngularJS in this work.

We introduce the running example that we will be us-
ing throughout the paper. This example is inspired by real-
world bugs encountered by developers of AngularJS applica-
tions [12], [13]. The application – which we will refer to as
MovieSearch – initially takes the user to the “Search” page
(Figure 1), where the user can input the name of a user, via
the input element. Clicking on the “List User’s Favourite
Movies” button leads to the “Results” page (Figure 2), which
displays the list of movies that corresponds to the user name

2For simplicity, we will refer to such applications as MVC applications or
JavaScript MVC applications.

1 <input type="text" ng-model="userName" placeholder="Type←↩
Username" />

2 <button ng-click="searchUser()">
3 List User's Favourite Movies
4 </button>

Fig. 1. HTML code of the “Search” view (search.html)

1 <h3 ng-if="userData.display">
2 {{userData.intro}}
3 </h3>
4
5 <li ng-repeat="movie in userData">
6 {{movie.name}}
7
8
9 <div id="movieCount">

10 <ng-pluralize count="userData.count" when="movieForms"←↩
></ng-pluralize>

11 </div>
12

13 <button ng-click="alertUserName()">
14 Which User?
15 </button>

Fig. 2. HTML code of the “Results” view (results.html)

that has been input, as well as the number of movies in the
list. In addition, clicking on the “Which User?” button in the
“Results” page would display the current user name in an alert
box; for example, if the user name is “CountSolo”, the alert
would display the message, “The user is CountSolo”.

The code for this application contains two views – one
corresponding to the “Search” page (Figure 1) and the other
corresponding to the “Results” page (Figure 2) – implemented
in HTML. It also contains two models and two controllers
implemented in JavaScript, shown in Figure 3.

An MVC application consists of model variables, controller
functions, and groupings. Figure 5 shows how model variables
and controller functions are defined and used, in relation to
the models, views, and controllers. It also shows how these
models, views, and controllers form groupings.

Model Variables. Model variables refer to the objects where
the model data is stored, and are represented by identifiers
defined within the scope of a particular model. These model
variables are defined in models, and are used (either polled
or updated) by associated views and controllers. For instance,
the Search model in the running example defines one model
variable, namely userName (Figure 3, line 4); further, the
associated controller (SearchCtrl) and view (search.html) use
this same variable in Figure 3, line 8, and Figure 1, line 1,
respectively. Similarly, the Results model (Figure 3, lines 17-
26) contains two model variables: userData and movieForms;
these are used by the associated view (results.html) in various
lines in Figure 2.

Controller Functions. Controller functions, as the name sug-
gests, are functions defined in the controller. These controller
functions are used in the view by attaching the function as
an event handler to a view element. As an example, the
SearchCtrl controller in Figure 3, lines 7-12 defines one
controller function – searchUser() – which is subsequently
used in the corresponding view (search.html) by setting it as

1 var searchApp = angular.module('searchApp', ['ngRoute'])←↩
;

2 searchApp.controller('SearchCtrl', function($scope , ←↩
$location) {

3 //MODEL - Search
4 $scope.userName = "";
5

6 //CONTROLLER - SearchCtrl
7 $scope.searchUser = function() {
8 var id = getUserId($scope.userName);
9 if (id >= 0) {

10 $location.path('/results/' + id);
11 }
12 }
13 });
14

15 searchApp.controller('ResultsCtrl', function($scope , ←↩
$routeParams) {

16 //MODEL - Results
17 $scope.userData = {
18 movieList: getList($routeParams.userId),
19 intro: "Welcome User #" + $routeParams.userId ,
20 display: true,
21 count: "two"
22 };
23 $scope.movieForms = {
24 one: '{} movie',
25 other: '{} movies'
26 };
27

28 //CONTROLLER - ResultsCtrl
29 $scope.alertUserName = function() {
30 alert("The user is " + $scope.userName);
31 };
32 });

Fig. 3. JavaScript code of the models and controllers

1 searchApp.config(function($routeProvider) {
2 $routeProvider
3 .when('/', {
4 controller: 'SearchCtrl',
5 templateUrl: 'search.html'
6 })
7 .when('/results/:userId', {
8 controller: 'ResultsCtrl',
9 templateUrl: 'results.html'

10 })
11 .otherwise({
12 redirectTo: '/'
13 });
14 });

Fig. 4. JavaScript code of the routes

the event handler of a button (Figure 1, line 2). Also, the
ResultsCtrl controller in Figure 3, lines 29-31 defines the
controller function alertUserName(), which is used in the
corresponding view (results.html) in Figure 2, line 13.

Groupings. Due to the dynamic property of web applications,
an MVC application can consist of multiple models, views,
and controllers; hence, the programmer must specify which
of these models, views, and controllers are associated with
each other. Current MVC frameworks allow the programmer
to specify these (model, view, controller) groupings by embed-
ding the name of the model and controller in the view. These
groupings can also be specified using routers, as in the case of
the running example (Figure 4), which links the Search model
and SearchCtrl controller with the search.html view (lines 3-
6), and the Results model and ResultsCtrl controller with
the results.html view (lines 7-10).

Model Variables Controller Functions

m2

Models

v2

Views

c2

Controllers

m1 v1 c1

v3

Fig. 5. Block diagram of the def-use and grouping model for MVC framework
identifiers. Solid arrows indicate a “defines” relation, while dashed arrows
indicate a “uses” relation. Models, views, and controllers connected with the
same line types form a grouping.

III. CONSISTENCY ISSUES

We now describe two types of consistency issues observed
in MVC applications, namely identifier consistency and type
consistency. We focus on these issues in this paper.

Identifier Consistency. Model variables and controller func-
tions are represented by identifiers in MVC applications. These
identifiers are written both in the JavaScript code, when they
are defined or used in the model or controller, and in the
HTML code, when they are used in the view. To ensure
correct operation, (1) model variable identifiers used in the
controller or view must be defined in the model, and (2)
controller function identifiers used in the view must be defined
in the controller. While this seems straightforward to enforce
at first sight, the following factors complicate the process of
maintaining this consistency.

• An identifier is repeatedly used in both the HTML code
and the JavaScript code. Even though DOM interactions
are abstracted out by MVC frameworks, this repeated
usage of identifiers across separate languages makes
the application susceptible to identifier inconsistencies.
Further, the common practice of implementing models,
views, and controllers in separate files – sometimes main-
tained by separate programmers in collaborative projects
– increases the chances of such inconsistencies.

• An application typically contains multiple models, views
and controllers grouped together. Hence, the programmer
must ensure the consistency not just of one (model, view,
controller) grouping, but of several groupings. Also, these
groupings must be set up correctly, e.g., via the routers,
or else an inconsistency may occur.

For instance, the MovieSearch application contains two
identifier inconsistencies. First, the ResultsCtrl controller
uses the model variable identifier userName in Figure 3, line
30, but this identifier is not defined in the Results model (it
is only defined in the Search model, which is not grouped
with ResultsCtrl); this causes the alert box to display “The
user is undefined” after clicking on the “Which User?” button.
Second, since the li element in the results.html view loops
over the userData model variable (Figure 2, lines 5-7) instead
of userData.movieList, the reference to movie.name in

Figure 2, line 6 will be undefined with respect to the Results
model; this causes blank bullet points to be displayed.
Type Consistency. In many cases, the programmer will also
need to ensure that the value that is assigned to a model
variable – or the value returned by a controller function – has a
type consistent with that variable or function’s use in the view.
For example, in AngularJS, the ng-if attribute in the view
must be assigned a Boolean value; a type inconsistency occurs
if a model variable that contains a non-Boolean value or a
controller function that returns a non-Boolean value is attached
to the attribute. Ensuring this consistency is complicated by
the fact that JavaScript is a loosely typed language.

MovieSearch contains one such type inconsistency. In Fig-
ure 2, line 10, the userData.count model variable is attached
to the count attribute, which expects to be assigned a value
of type Number; however, userData.count is assigned a
String in the corresponding Results model (Figure 3, line
21). This leads to the disappearance of the message that
shows the number of movies, inside the div element with
ID movieCount in Figure 2.

IV. FORMAL MODEL OF MVC APPLICATIONS

We propose a more formal, abstract model for MVC-based
web applications to clearly delineate all the consistency prop-
erties of such applications. This model also helps us describe
our approach for automatically detecting inconsistencies.
Definition 1 (MVC Application). An MVC application is a
tuple <M ,V ,C ,Ω,Γ,ωM ,ωV ,ωC ,γC ,γV ,φ> where M is the
set of models; V is the set of views; C is the set of controllers;
Ω is the set of model variables; and Γ is the set of controller
functions. Additionally, we define the following functions.
• ωM : M → 2Ω indicates what model variables are defined

in a model;
• ωV : V → 2Ω indicates what model variables are used in

a view;
• ωC : C → 2Ω indicates what model variables are used in

a controller;
• γC : C → 2Γ indicates what controller functions are de-

fined in a controller;
• γV : V → 2Γ indicates what controller functions are used

in a view;
• φ : M ×V ×C →{true, f alse} indicates the model-view-

controller groupings.
Further, a model variable in Ω and a controller function in

Γ are represented by a tuple <id, ty>, where id refers to the
identifier, and ty refers to the type (for controller functions,
this pertains to the return type). The function I() projects the
id portion of these model variables and controller functions
onto a set.

An MVC web application is consistent if and only if for
every element (m,v,c) ∈ M ×V × C such that φ(m,v,c) =
true, the following properties hold:
Property 1. The view and controller only use model variables
that are defined in the model:

(∀µ)(µ.id ∈ I(ωC (c))∪ I(ωV (v)) =⇒ µ.id ∈ I(ωM (m)))

Property 2. The view only uses controller functions that are
defined in the controller:

(∀κ)(κ.id ∈ I(γV (v)) =⇒ κ.id ∈ I(γC (c)))

Property 3. The expected types of corresponding model
variables in the view match the assigned types in the model
or controller:

(∀µ,ρ)(µ.id ∈ I(ωV (v))∧ρ.id ∈ I(ωM (m))∪ I(ωC (c))

∧ µ.id = ρ.id =⇒ µ.ty = ρ.ty)

Property 4. The expected and returned types of corresponding
controller functions match in the view and controller.

(∀κ,τ)(κ.id ∈ I(γV (v))∧ τ.id ∈ I(γC (c))∧κ.id = τ.id

=⇒ κ.ty = τ.ty)

V. APPROACH

To alleviate the consistency issues described, we propose a
static analysis approach for automatically detecting identifier
and type inconsistencies in MVC applications. We opt for
a static instead of a dynamic approach for several reasons.
First, static analysis is more lightweight than dynamic analysis,
in that the application does not need to execute in order to
detect the inconsistencies; this is especially useful during the
development phase, where quick relay of information about
the code, such as error messages, is preferred.

Second, dynamic analysis requires user input – i.e., a
sequence of user events – and it is not always clear how
to choose these inputs. A dynamic approach may be suitable
for tools that target specific bugs – such as the JavaScript
fault localization [14] and repair [15] tools we have previously
developed – since the steps to reproduce the bug are known;
in contrast, our detector is not targeting a specific bug known
to exist in the program, but rather, looking for these bugs,
without prior knowledge of how to reproduce them. This is
the same reason an inconsistency detector is preferred over
a mechanism that simply displays an error message when an
inconsistency is encountered during execution.

There are also several challenges in designing the above
detector, namely,
• C1: Model variables are often defined as nested objects

(e.g., see Figure 3, lines 17-22), and the variables defined
inside these objects, along with their types, also need to
be recorded, thereby complicating the static analysis;

• C2: Sometimes, aliases are used in the HTML code to
represent model variables defined in the JavaScript code
(e.g., the movie variable in Figure 2, line 5 is an alias
for userData.movieList, userData.intro, etc.). The
design needs to be capable of handling these aliases;

• C3: Since MVC applications can contain multiple mod-
els, views, and controllers, the design needs to infer all the
possible groupings to be checked; a simple comparison
of all identifiers and types collected does not suffice.

Finally, our approach assumes that the code does not contain
any instances of eval. This assumption is reasonable, as

DOMExtractor ASTExtractorHTML
Code

JavaScript
Code

FindControllersFindViews FindModels

FindInconsistencies

ControllersModelsViews

Inconsistencies

DOM AST

Fig. 6. Block diagram of our approach.

JavaScript MVC frameworks encourage programmers to write
in a more declarative style; thus, features used in “vanilla”
JavaScript such as eval are rarely seen in MVC applications.

A. Overview

The goal of our automatic inconsistency detector is to
find all instances that violate Properties 1–4 in Section IV.
The block diagram in Figure 6 shows an overview of our
approach. As the figure depicts, the approach expects two
inputs, namely the HTML (template) and the JavaScript code.
The DOMExtractor converts the HTML template into its DOM
representation, which is used to simplify analysis of the HTML
elements and attributes. Similarly, the ASTExtractor converts
the JavaScript code into its AST representation.

The modules FindModels, FindViews, and FindControllers
statically analyze the DOM and the AST to populate the sets
M , V , and C , respectively. In our approach, we chose to
represent a model m∈M as a tuple of the form <name,ast>,
where name is a unique identifier for the model and ast is
the subtree of the complete AST extracted earlier, containing
only the nodes and edges pertinent to the model; for example,
the value of ast for the Results model in Figure 3 would
be the AST representing lines 17-26. Similarly, a view v ∈
V and a controller c ∈ C are represented by <name,dom>
and <name,ast>, respectively. Section V-B describes in more
detail how the above sets are populated.

Once M , V , and C are all populated, these sets, along with
the complete DOM and AST, are input into the FindInconsis-
tencies module (see Algorithm 1). The output of this algorithm
is a list of inconsistencies Q. It starts by initializing the sets
φ, as well as the “identifier inclusion functions” ωM , ωV ,
ωC , γC , and γV with the contents of M , V , and C (lines 1-7);
here, all the models, views, and controllers initially map to the
empty set, since the model variables and controller functions
are still not known. These mappings are updated as identifiers
are discovered by the findIdentifiers() function, described in
Section V-C. Likewise, the mappings in φ are updated, in
line 9, by the findMVCGroupings() function (Section V-D).
Lines 10-27 are responsible for detecting the identifier and
type mismatches, and are described in detail in Section V-E.

B. Finding the Models, Views and Controllers

The FindModels, FindViews, and FindControllers modules
in Figure 6 populate M , V , and C , respectively, by locating
the corresponding structures or blocks in the HTML and
JavaScript code. For example, in AngularJS, models and

Algorithm 1: FindInconsistencies
Input: M : The set of models
Input: V : The set of views
Input: C : The set of controllers
Input: DOM: The complete DOM
Input: AST: The complete AST
Output: Q: List of inconsistencies

1 Q ← /0;
2 φ←{((m,v,c), f alse) | m ∈M ∧ v ∈ V ∧ c ∈ C};
3 ωM ←{(m, /0) | m ∈M };
4 ωV ←{(v, /0) | v ∈ V };
5 ωC ←{(c, /0) | c ∈ C};
6 γC ←{(c, /0) | c ∈ C};
7 γV ←{(v, /0) | v ∈ V };
8 f indIdenti f iers(M ,V ,C ,ωM ,ωV ,ωC ,γC ,γV);
9 φ← f indMVCGroupings(M ,V ,C ,DOM,AST);

10 foreach (m,v,c) ∈ {(m,v,c) | φ(m,v,c) = true} do
11 foreach mv ∈ ωV (v)∪ωC (c) do
12 if mv.id /∈ I(ωM (m)) then
13 Q← Q∪{idMismatch(mv)};
14 end
15 else if !matchingType(mv,ωM (m)) then
16 Q← Q∪{typeMismatch(mv)};
17 end
18 end
19 foreach c f ∈ γV (v) do
20 if c f .id /∈ I(γC (c)) then
21 Q← Q∪{idMismatch(c f)};
22 end
23 else if !matchingType(c f ,γC (c)) then
24 Q← Q∪{typeMismatch(c f)};
25 end
26 end
27 end

Add α to ωM(m)

α is null?

α = findNextModelVariable(m)

Fetch model m from
M

Done updating
ωM(m)

Yes

No

Fig. 7. Portion of findIdentifiers that updates ωM for every model. The other
“identifier inclusion functions” are updated in a similar way.

controllers are added as the body of the function passed to
the .controller() method as a parameter (see Figure 3).
Hence, in this case, locating the models and controllers
involves finding the subtrees in the AST that are rooted
at a CallExpression for the method .controller(), and
parsing the body of the function parameter. Similarly, views
are normally saved as separate HTML files, so in most cases,
finding them is tantamount to identifying these separate files.

C. Inferring Identifiers

The goal of the findIdentifiers module, which is invoked
in Algorithm 1, line 8, is to find the model variables and
controller functions that are defined or used in every model,
view, and controller that were found earlier (see Section V-B),
thereby updating the mappings in the “identifier inclusion
functions”. Figure 7 illustrates how findIdentifiers looks for
model variables defined in every model. A similar algorithm
is used to find the model variables and controller functions
used or defined in other entities.

The functions findNextModelVariable and findNextCon-
trollerFunction analyze the DOM and the AST according to
the syntactic styles imposed by the MVC framework being
used. In AngularJS, model variables are defined as a property
of the $scope variable in an assignment expression (see
Figure 3, lines 4, 17, and 23); controller functions are defined
similarly, albeit the right side of the expression is a Function
object (e.g., Figure 3, lines 7 and 29). Finding identifiers used
in views, however, is trickier – although identifiers appear as
attribute values of DOM elements in many cases, they also
typically appear in double curly brace notation as part of a text
element (e.g., Figure 2, lines 2 and 6); hence, text elements
in the view’s DOM are also parsed since these may contain
references to identifiers.

Type Inference. To find the type assigned to a model variable
in the model or controller, our approach looks at the right-
hand side of the assignment expression and infers the assigned
type based on the AST node (e.g., if the right-hand side
is a StringLiteral node, the inferred type is String). If
the expression is too complicated and the assigned type
cannot be inferred, the type is recorded as unknown for that
identifier, so our type inference algorithm is conservative.
The simplification we made for type inference requires the
assigned expression to be a literal.3 Although this may seem
to be a significant limitation, note that simple assignments are
commonplace in MVC applications, perhaps because MVC
frameworks are designed such that applications can be pro-
grammed in a “declarative” way [16]; hence, we believe
our simplification is justified (we further validate this claim
empirically in Section VII). Note that type inference works
similarly for controller functions, except that the return value
expressions are parsed instead of assignments.

To infer the expected type of a model variable or controller
function used in a view, our approach examines the attribute to
which the identifier is assigned and determines if this attribute
expects values belonging to a specific type. For instance,
the count attribute in AngularJS expects a Number, so this
is recorded as the expected type for userData.count in
Figure 2, line 10. If the identifier has no expected types, its
type is simply recorded as ⊥, which matches all types.

There are two special cases that our algorithm must handle,
namely, nested objects and aliases.

Nested Objects. To address challenge C1 (see beginning
of Section V), we also model nested objects such as the
userData and movieForms variables in Figure 3. Our ap-
proach represents nested objects as a tree. Each node in the tree
represents an identifier, with an assigned type. The trees for
the userData and movieForms variables are joined together
in one root as they both belong to the same model. This is
shown in Figure 8.

Analogously, if a model variable in the view uses the dot
notation, then it is represented as a sequence of identifiers. For

3Our design performs some “smart parsing”, e.g., it can detect concatena-
tions of strings, but we omit their description due to space limitations.

root

Object
userData

Object
movieForms

unknown
movieList

String
intro

Boolean
display

String
count

String
one

String
other

Fig. 8. Tree representing the model variables in the Results model of
MovieSearch, including all the nested objects. The identifiers are shown at
the top of each node, while the types are shown at the bottom.

example, userData.count in Figure 2, line 10 is represented
as root → userData → count, with expected type Number.

Aliases. An example of the use of aliases (challenge C2)
is the ng-repeat directive in AngularJS, which replicates
the associated HTML element in the DOM for each element
of some specified collection. This directive is assigned a
string value of the form “<alias> in <collection>”, where
<collection> is an array or an object, and <alias> is an
identifier that represents each member of the array (or each
property of the object) in each replication of the HTML
element in the DOM.

Figure 2, line 5 shows an example, in which the col-
lection is the userData object and the alias is movie.
Therefore, the alias movie refers to every property of
userData, namely userData.movieList, userData.intro,
userData.display, and userData.count. Subsequently, the
reference to movie.name in Figure 2, line 6, translates to
each of these four identifiers, followed by “.name”. These
four sequences are therefore included as model variables in
the results.html view – i.e., they are all added in the list that
maps to the results.html view when updating ωV .

D. Discovering MVC Groupings

At this point, the model variables and controller functions
have been discovered, and have been mapped to their as-
sociated models, views, and controllers. Our approach must
now find all model-view-controller combinations that can
potentially appear in the application, to address challenge C3.
More formally, our approach must find all (m,v,c)∈M xV xC
such that φ(m,v,c) = true, thereby updating φ in the process.

This procedure is carried out by the findMVCGroupings()
function; as seen in Algorithm 1, line 9, this function takes
M , V , and C as inputs, along with the complete AST and
DOM. The reason the full AST and DOM are needed is that
findMVCGroupings() will look for information in the DOM
that explicitly maps a specific model or controller to a view
via an HTML attribute, as well as routing information in the
AST that does the same. This information, coupled with the
name part of each model, view, and controller, allows our
approach to determine all the valid groupings.

Take, for example, the router for MovieSearch in Figure 4.
The first route (lines 3-7) groups the Results model, the
ResultsCtrl controller, and the results.html view. Thus,

φ is updated so that the model, view, and controller objects
with these respective identifiers together map to true. In other
words, if m.name = Results, v.name = results.html and
c.name = ResultsCtrl, then the design sets φ(m,v,c) = true.
This process is repeated for all other groupings discovered.

E. Detecting Inconsistencies

The final step in our approach is to compare the model
variables and controller functions within the same grouping
and detect any potential inconsistencies The pseudocode for
this procedure is shown in Algorithm 1, lines 10-27.

The algorithm begins by looking for inconsistencies related
to model variables (lines 11-18). Line 11 loops through every
model variable used in either the view or the controller. For
all such model variables mv, the id is checked to see if it also
exists among the model variables defined in the corresponding
model (line 12). If not, this means that Property 1 is violated
and there is an identifier inconsistency, so this inconsistency is
included in Q. However, if the id does exist in the model, the
matching model variable in the model is compared with mv
to see if they have the same type. If the types do not match,
then Property 3 is violated and there is a type inconsistency;
this inconsistency is then included in Q. The algorithm for
finding inconsistencies in controller functions (lines 19-26) is
similar. Note that model variables with unknown types are
assumed to match all types. The remaining question, then,
is, how are the identifier and type comparisons made? For
controller functions, the answer is straightforward – identifiers
are compared based on a string comparison, and types are
compared based on the assigned and returned types that were
previously inferred in Section V-C.

Model variables are, however, more challenging because of
the possibility of nested objects. In this case, the sequence
representation of mv is used to traverse the tree representing
the model variables defined in the corresponding model. Take,
for instance, the sequence root → userName, which is used
in the ResultsCtrl controller, as per Figure 3, line 30. If
this sequence is used to traverse the tree representing the
model variables defined in Results (see Figure 8) starting
from the root, our design will discover that the given sequence
does not exist in the tree, and therefore, there is an identifier
inconsistency. In addition, the sequence root→ userData→
count is used in the results.html view, as per Figure 2, line
10, and has an expected type of Number since it is assigned to
the count attribute in ng-pluralize. If this sequence is used
to traverse the same tree, the traversal will be successful, since
the sequence exists in the tree. However, note that the expected
type of the terminating node in the traversal (count) is String,
which does not match the expected type of Number. Thus,
a type inconsistency is recorded for this sequence. Finally, if
root → userData → intro → name – which is one of the
sequences the movie.name alias translated to as described in
Section V-C – is used to traverse the tree, the traversal will
fail, since the sequence does not exist in the tree. As a result,
another identifier inconsistency will be recorded. In summary,

TABLE I
REAL BUGS FOUND. THE “FAULT TYPE” COLUMN REFERS TO THE FAULT

TYPE NUMBER, AS PER TABLE II.
Application Fault

Type
Error Message Severity

Cafe Townsend 2 Undefined model variable
employee.id

3

2 Undefined model variable
employee.id

3

Cryptography 3 Undefined model variable
lastWordCount

1

Dematerializer 3 Undefined model variable editing 3
eTuneBook 5 Undefined controller function

doneTuneSetEditing
3

7 Inconsistent type for
currentFilter

3

Flat Todo 4 Undefined model variable
showTaskPanel

5

4 Undefined model variable
showStatusFilter

5

GQB 7 Inconsistent type for
download.aggregated

3

Hackynote 3 Undefined model variable
theme.current.css

4

3 Undefined model variable
transition.current.css

4

Reddit Reader 3 Undefined model variable post 2
Story Navigator 1 Undefined model variable

ui.columns.status
3

beLocal 3 Undefined model variable
likeDisabled

3

Linksupp 3 Undefined model variable
startEating

2

our design is able to detect all the three inconsistencies in the
MovieSearch running example.

VI. IMPLEMENTATION

We implemented our approach in a tool called AUREBESH.
It is built on top of the Ace Editor, which is the editor used for
the Cloud9 IDE [17]. We have embedded Ace Editor as part
of a web application that can be accessed in our website [18].
AUREBESH is implemented entirely using JavaScript, and
currently supports MVC applications written with AngularJS.

To invoke the detector, we added a “Find Inconsistencies”
button to the IDE, which the user must click. For every
inconsistency found by the detector, an error message is
highlighted on the line of code containing the inconsistency
in the IDE. The user can then click on these error messages
to get more details about the inconsistencies.

VII. EVALUATION

To assess the efficacy and real-world relevance of our
approach, we address the following research questions:
RQ1 (Real Bugs): Can AUREBESH help developers to find

bugs in real-world MVC applications?
RQ2 (Accuracy): What is the accuracy of AUREBESH in

detecting identifier and type inconsistencies in MVC
applications?

RQ3 (Performance): How quickly can AUREBESH perform
the inconsistency detection analysis?

A. Subject Systems

In total, we consider 20 open-source AngularJS applications
for our experiments, listed in Table III. These applications
were chosen from a list of MVC applications from AngularJS’

GitHub page [19]; in particular, only the applications whose
source code is available and unobfuscated are considered,
since AUREBESH, in its current state, is incapable of working
with obfuscated code. This is not a fundamental limitation
though as AUREBESH is meant for developers to use before
obfuscating their code. As shown in Table III, the applications
cover a variety of sizes and application types.

B. Methodology

Real Bugs. To answer RQ1, we run AUREBESH on the
20 subject systems. For this experiment, we also ran our
tool on two additional AngularJS applications developed by
students for a software engineering course at the University of
Victoria [20], namely beLocal and Linksupp. We analyze every
error message reported by AUREBESH for these applications to
see if it corresponds to a real bug. We report any true positives
(i.e., error messages that correspond to real bugs) and false
positives (i.e., spurious error messages) that we find.

Accuracy. To measure the accuracy (RQ2), we conduct a
fault injection study on the subject systems. An injection is
performed on an application by introducing a mutation to a
line of code from one of its source files (either the HTML
or JavaScript code), running AUREBESH on this mutated
version of the application, and then recording if AUREBESH
detects the inconsistency introduced by the mutation. If the
inconsistency is detected, the result of the injection is marked
as “successful”; otherwise, the injection is marked as “failed”.

In this experiment, we consider ten types of mutations, as
seen in Table II. The “expected behaviour” for a mutation
describes the correct error message that AUREBESH is ex-
pected to display when running AUREBESH on an application
with this mutation applied. Each of these mutation types
corresponds to a violation of one of the four properties listed
in Section IV; hence, the results for a mutation type give an
indication of how well AUREBESH detects violations of the
corresponding property.

For each application, we perform 20 injections per mu-
tation type, which amounts to a total of 200 injections per
application. However, note that a mutation type may not be
applicable for certain applications (e.g., not all controllers use
model variables, in which case mutation type #2 will not
be applicable); this explains why several applications have
fewer than 200 injections (see Table III). The specific location
mutated in the code is chosen uniformly at random from
among the lines of code applicable to the current mutation
type. For each injection, we record the number of successful
detections, the number of failed detections, and the number
of spurious error messages introduced by the mutation; this
allows us to report both the recall (the number of successful
detections over the total number of injections) and precision
(the number of successful detections over the total number of
error messages displayed) of AUREBESH.

Performance. We measure performance by running AU-
REBESH on each subject system, recording the analysis com-
pletion time and averaging over multiple trials.

TABLE II
TYPES OF FAULTS INJECTED. MV REFERS TO “MODEL VARIABLE”, AND

CF REFERS TO “CONTROLLER FUNCTION”.
Type Description Expected Property
Behaviour Tested
1 Modify the name of a MV used in line N

of a view
Detect undefined
MV in line N

1

2 Modify the name of a MV used in line N
of a controller

Detect undefined
MV in line N

1

3 For a particular MV used in line N of a
view, delete the definition of that MV in
a corresponding model

Detect undefined
MV in line N

1

4 For a particular MV used in line N of a
controller, delete the definition of that MV
in a corresponding model

Detect undefined
MV in line N

1

5 Modify the name of a CF used in line N
of a view

Detect undefined
CF in line N

2

6 For a particular CF used in line N of a
view, delete the definition of that CF in a
corresponding controller

Detect undefined
CF in line N

2

7 For a particular MV used in the view
that expects a certain type T1, modify
the definition of that MV in line N of a
corresponding model so that the type is
changed to T2

Detect type mis-
match in line N
(T1 expected but
type is T2)

3

8 For a particular MV used in the view that
expects a certain type T1 and defined in
line N of a corresponding model, modify
the expected type to T2 by mutating the
ng attribute name

Detect type mis-
match in line N
(T2 expected but
type is T1)

3

9 For a particular CF used in the view that
expects a certain type T1, modify the
return value of that CF in line N of the
controller to a value of type T2

Detect type mis-
match in line N
(T1 expected but
type is T2)

4

10 For a particular CF used in the view that
expects a certain type T1 and returns a
value in line N of a corresponding con-
troller, modify the expected type to T2 by
mutating the ng attribute name

Detect type mis-
match in line N
(T2 expected but
type is T1)

4

C. Results

Real Bugs. After running AUREBESH on the original, unal-
tered versions of the subject systems, AUREBESH displayed a
total of 15 error messages in 11 applications. We reported these
error messages to the developers, and five of them (the error
messages from Story Navigator, beLocal, Linksupp, and two
from Hackynote) were acknowledged as real issues and fixed.
The other applications, unfortunately, are no longer maintained
by the developers, so our bug reports for those applications
remain unacknowledged. Nonetheless, we analyzed the 15
error messages and found that they are all true positives i.e.,
they all correspond to real-world bugs.

Of the 15 bugs, we found 13 identifier inconsistencies and
2 type inconsistencies; as shown in Table I, each of the bugs
our tool found maps to one of the fault types in Table II. Note
that the two error messages in Cafe Townsend, while identical,
correspond to two different bugs. With regards to why these
faults were committed, we identified the following patterns:

• Identifier defined elsewhere (7 cases): There are several
cases where assignments representing the model variable
definitions are placed not in the model itself, but inside
controller functions. This applies, for example, to the
model variable lastWordCount in Cryptography;

• Incorrect identifier (5 cases): In some cases, the incon-
sistencies arise because the programmer has typed incor-
rect identifiers. For instance, in Hackynote, the identifier

TABLE III
FAULT INJECTION RESULTS. THE SIZE PERTAINS TO THE COMBINED LINES OF HTML AND JAVASCRIPT CODE, NOT INCLUDING LIBRARIES.

Application Application Category Size (LOC) Successful Detections Failed Detections Total Injections Recall (%) Precision (%)
Angular Tunes Music Player 185 40 0 40 100.00 100.00
Balance Projector Finance Tracker 511 140 20 160 87.50 100.00
Cafe Townsend Employee Tracker 452 160 0 160 100.00 100.00
CodeLab RSS Reader 602 79 1 80 98.75 100.00
Cryptography Encoder 523 120 0 120 100.00 100.00
Dematerializer Blogging 379 186 14 200 93.00 100.00
Dustr Template Compiler 493 80 0 80 100.00 100.00
eTuneBook Music Manager 5042 177 23 200 88.50 100.00
Flat Todo Todo Organizer 255 107 13 120 89.17 100.00
GitHub Contributors Search 459 142 18 160 88.75 100.00
GQB Graph Traversal 1170 194 6 200 97.00 100.00
Hackynote Slide Maker 236 120 0 120 100.00 100.00
Kodigon Encoder 948 120 0 120 100.00 100.00
Memory Game Puzzle 181 40 0 40 100.00 100.00
Pubnub Chat 134 120 0 120 100.00 100.00
Reddit Reader Reader 255 120 0 120 100.00 100.00
Shortkeys Shortcut Maker 407 120 0 120 100.00 100.00
Sliding Puzzle Puzzle 608 40 0 40 100.00 100.00
Story Navigator Test Case Tracker 415 117 3 120 97.50 100.00
TwitterSearch Search 357 199 1 200 99.50 100.00

OVERALL 2421 99 2520 96.07 100.00

given for a property in the nested object theme.current
is src, but the identifier expected by the view is css;

• Boolean assigned a string (2 cases): The two type in-
consistencies involved the programmer assigning a string
to a model variable that expects a boolean value. For
instance, in GQB, the download.aggregated variable
was erroneously assigned the string value “true” instead
of the boolean value true;

• Identifier name not updated (1 case): This occurs
in eTuneBook. Upon inspection, it turned out that the
undefined controller function doneTuneSetEditing in
eTuneBook was defined in previous versions of the ap-
plication, but was replaced with another function with a
different name; the reference to the old name remained
in the view. This is an example of a regression bug.

Table I also shows the severity of the bugs, based on our
qualitative assessment of these bugs; here, we use Bugzilla’s
ranking scheme, where 1 represents the lowest and 5 represents
the highest severity. Although some of the bugs are cosmetic
(e.g., the bug in Cryptography simply causes one of the labels
to display as “One of possible –word permutations...”, with
the number next to “–word” missing), many of the bugs have
considerable impact on the application. For example, the first
bug in Flat Todo renders the “plus” button – which adds todos
in the list – useless. A similar effect takes place in eTuneBook,
where the missing controller function makes one of the buttons
inoperable, thereby preventing the user from exiting edit mode.
Also, the two bugs in Hackynote prevented the user from
removing the theme and transition present in the slides.

Lastly, AUREBESH displayed only one false positive, in
the Linksupp application. The reason is that the application
uses the $rootScope variable to define model variables to be
within the scope of all models. Our tool assumes that every
model variable used in a view is defined only via the $scope
variable, leading to the false positive. Nonetheless, the low
number of false positives indicates that the error messages

displayed by our tool are trustworthy, minimizing the effort
required to filter out any spurious messages.

Accuracy. Table III shows the per-application results for the
fault injection experiment. As the table shows, AUREBESH is
very accurate, yielding an overall recall of 96.1%, and attains a
perfect recall for eleven of the twenty applications. In addition,
AUREBESH did not output any spurious messages during any
of the injections; hence, AUREBESH was able to attain an
overall precision of 100% in this experiment.

To understand what is causing the failed detections, we
divide the results in terms of the properties (Section IV) being
violated by the mutation types. As seen in Table IV, Properties
1, 3 and 4 have imperfect recalls. We analyzed the 27 failed
detections for Property 1, which represents the consistency of
model variable identifiers, and found that they all result from
the usage of “filters” in conjunction with model variables in
views. These filters are used in AngularJS to customize the
appearance of model variables’ values when displayed by the
view; AUREBESH currently does not recognize these filters
and ignores them when parsing, leading to the failed detection.
Note that this limitation is implementation specific, and can
be overcome by extending the parser.

We also analyzed the 72 failed detections for Properties 3
and 4, both of which represent the consistency of types. We
found that these are caused by our assumption that the values
assigned by model variables or returned by controller functions
are either literals or simple expressions, and thus have types
that are easy to infer. More specifically, in these 72 cases,
the values assigned or returned are either complex expres-
sions or retrieved from an external database. This prevented
AUREBESH from inferring the types; since AUREBESH is
conservative, it does not report the type inconsistency. Overall,
these cases constitute 14% of the cases where type inference
was needed. Note that in the remaining 448 cases (86% of the
cases), the values were literals or simple expressions, which
indicates that our assumption is valid in the majority of cases.

TABLE IV
FAULT INJECTION RESULTS PER PROPERTY.

Property Successful Failed Total Recall
Detections Detections Injections (%)

1 1293 27 1320 98.0
2 560 0 560 100.0
3 268 52 320 83.8
4 180 20 200 90.0

Performance. For each subject system, AUREBESH was able
to perform the analysis in an average time of 121 milliseconds,
with a worst-case of 849 milliseconds for the largest applica-
tion, eTuneBook. This indicates that performance is not an
issue with our tool.

VIII. DISCUSSION

1) Limitations: The implementation of our approach for
AngularJS has a few limitations. First, as explained in Sec-
tion VII-C, AUREBESH currently disregards the presence
of filters in views in AngularJS. Also, as mentioned in
Section VII-C, our tool currently disregards the use of the
$rootScope variable, which can lead to false positives.

With respect to the approach itself, a limitation is in our
type inference algorithm, which assumes simple assignments
and return values. Our results suggest that this assumption
is reasonable; however, we also found that a considerable
number (around 14%) of pertinent assignments and return
values involve complex expressions or external database ac-
cesses, so a more advanced type inference algorithm is needed.
Lastly, AUREBESH does not consider inheritance in MVC
applications, where models are made descendants of other
models to allow model variables to be inherited. Again, we
have not encountered this in practice, but it can occur.

Another limitation of AUREBESH is that it works only
on applications written using AngularJS. While AngularJS is
the most popular client-side MVC framework, our problem
formulation (Section III), formal model (Section IV) and
algorithm (Section V) are all fairly generic and can be applied
to other MVC frameworks with minimal modifications.

2) Threats to Validity: One internal validity threat regards
the mutation types used in our fault injection experiment,
and how representative they are of both our inconsistency
model and real-world bugs. To address this issue, we selected
the mutation types such that they all map to the consistency
properties presented in Section IV. In addition, each of the 15
real-world bugs that we found in one of our experiments maps
to a mutation type, as described in Section VII-C, giving an
indication of the mutation types’ representativeness.

As with any experiment that considers a limited number
of subject systems, the generalizability of our results may be
called into question, which is an external threat to validity.
Unfortunately, since AngularJS is a fairly new framework,
applications using this framework are quite scarce. Fortunately,
the AngularJS GitHub page provides a list of web applications
using that framework; to mitigate the external threat, we chose
applications of different types and sizes from this list.

Finally, the source code of all the subject systems we con-
sidered in our experiments are all available online; further, we

kept our own records of the source code of these systems that
AUREBESH analyzed. Our tool AUREBESH, is also publicly
available. Hence, our experiments are reproducible.

IX. RELATED WORK

MVC has been applied to various domains, and one
of its earliest uses can be traced back to Xerox PARC’s
Smalltalk [21]. The pattern has also been applied to the server-
side of web applications [22], where the model and controller
are implemented on the server and the view is represented
by the HTML output on the client. Since the application of
MVC to client-side web application programming is a fairly
recent development, there are only a few papers addressing
this topic. Much of the research in this area has focused on
the application of the MVC model to JavaScript development,
tailored towards specific application types [7], [8], [9]. Studies
on JavaScript MVC frameworks’ properties have been limited
to an analysis of their maintainability [10], [11]. Unlike our
present work, these studies do not consider the presence of
consistency issues in JavaScript MVC applications, nor do they
propose an approach for analyzing MVC application code.

Several papers have analyzed the characteristics of common
JavaScript frameworks, such as jQuery [23], [24], [25], [26].
Richards et al. [27] and Ratanaworabhan et al. [28] analyze
the effect that different frameworks have on the dynamic
behaviour of JavaScript in web applications. Feldthaus and
Møller [29] look at TypeScript interfaces, and propose a
tool that checks for the correctness of these interfaces. In
prior work, we also briefly explored the relationship between
JavaScript frameworks and JavaScript faults that occur in
production websites [30]. Our current work differs from these
studies in that they consider non-MVC frameworks, which
have different usage patterns compared to MVC frameworks.

Finally, considerable work has been done on the application
of MVC on the server-side [31], [32], [33], [34], where frame-
works such as Spring MVC and JSF are used. Wojciechowski
et al. [35] compared different MVC-based design patterns on
the server-side, and analyzed the frameworks’ characteristics,
such as their susceptibility to file upload issues. In contrast, our
work is concerned with the client-side of web applications.

X. CONCLUSION AND FUTURE WORK

In this paper, we presented an automated technique and
tool AUREBESH, which statically analyzes applications written
using AngularJS, a popular JAVASCRIPT MVC framework,
to detect inconsistencies in the code. Our evaluation of AU-
REBESH indicates that it is accurate, with an overall recall of
96.1% and a precision of 100%. We also find that it is useful
in finding bugs in MVC applications – in total, we found 15
real-world bugs in 22 AngularJS web applications.

ACKNOWLEDGMENT

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC), and
a research gift from Intel Corporation. We thank Arie van
Deursen for his invaluable feedback on our work.

REFERENCES

[1] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An empirical
study of client-side JavaScript bugs,” in Proceedings of the Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE Computer Society, 2013, pp. 55–64.

[2] “AngularJS,” http://www.angularjs.org.
[3] “BackboneJS,” http://www.backbonejs.org.
[4] “EmberJS,” http://www.emberjs.com.
[5] E. Koshelko, “Why you should not use An-

gularJS,” 2015, https://medium.com/@mnemon1ck/
why-you-should-not-use-angularjs-1df5ddf6fc99.

[6] U. Shaked, “AngularJS vs. BackboneJS vs. EmberJS,” 2014, http://www.
airpair.com/js/javascript-framework-comparison.

[7] B. Taraghi and M. Ebner, “A simple MVC framework for widget
development,” in Proceedings of the International Workshop on Mashup
Personal Learning Environments (MUPPLE). CEUR-WS, 2010, pp.
38–45.

[8] Y. Hongping, S. Jiangping, and Z. Xiaorui, “The update version devel-
opment of “wiki message linking” system-integrated Ajax with MVC
model,” in Proceedings of the International Forum on Computer Science-
Technology and Applications (IFCSTA). IEEE Computer Society, 2009,
pp. 209–212.

[9] J. Fujima, “Building a meme media platform with a JavaScript MVC
framework and HTML5,” Webble Technology, pp. 79–89, 2013.

[10] K. Kambona, E. G. Boix, and W. De Meuter, “An evaluation of
reactive programming and promises for structuring collaborative web
applications,” in Proceedings of the Workshop on Dynamic Languages
and Applications (DYLA). ACM, 2013, pp. 15–23.

[11] V. Balasubramanee, C. Wimalasena, R. Singh, and M. Pierce, “Twitter
bootstrap and AngularJS: Frontend frameworks to expedite science
gateway development,” in Proceedings of the International Conference
on Cluster Computing (CLUSTER). IEEE Computer Society, 2013,
p. 1.

[12] “Scope variable not accessible (undefined) -
AngularJS,” 2014, http://www.jjask.com/554996/
scope-variable-not-accessible-undefined-angularjs.

[13] C. Robinson, “AngularJS: If you don’t have a dot, you’re
doing it wrong!” 2013, http://zcourts.com/2013/05/31/
angularjs-if-you-dont-have-a-dot-youre-doing-it-wrong/.

[14] F. Ocariza, K. Pattabiraman, and A. Mesbah, “AutoFLox: an automatic
fault localizer for client-side JavaScript,” in Proceedings of the Inter-
national Conference on Software Testing, Verification and Validation
(ICST). IEEE Computer Society, 2012, pp. 31–40.

[15] F. Ocariza, K. Pattabiraman, and A. Mesbah, “Vejovis: suggesting fixes
for JavaScript faults,” in Proceedings of the International Conference
on Software Engineering (ICSE). ACM, 2014, pp. 837–847.

[16] “What is AngularJS?” https://docs.angularjs.org/guide/introduction.
[17] “Ace,” http://ace.c9.io/.
[18] “Aurebesh,” http://ece.ubc.ca/∼frolino/projects/aurebesh/.
[19] “Built with AngularJS,” https://github.com/angular/builtwith.angularjs.

org/blob/master/projects/projects.json.
[20] “CSC485B: Startup Programming,” https://github.com/alexeyza/

startup-programming.
[21] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view

controller user interface paradigm in Smalltalk-80,” Journal of Object
Oriented Program (JOOP), vol. 1, no. 3, pp. 26–49, 1988.

[22] A. Leff and J. T. Rayfield, “Web-application development using the
model/view/controller design pattern,” in Proceedings of the Interna-
tional Enterprise Distributed Object Computing Conference (EDOC).
IEEE Computer Society, 2001, pp. 118–127.

[23] A. Gizas, S. Christodoulou, and T. Papatheodorou, “Comparative eval-
uation of javascript frameworks,” in Proceedings of the International
Conference Companion on World Wide Web (WWW Companion). ACM,
2012, pp. 513–514.

[24] Y. Liao, Z. Zhang, and Y. Yang, “Web applications based on AJAX
technology and its framework,” in Proceedings of the International
Conference on Communications and Information Processing (ICCIP).
Springer, 2012, pp. 320–326.

[25] D. Graziotin and P. Abrahamsson, “Making sense out of a jungle of
JavaScript frameworks,” Product-Focused Software Process Improve-
ment (PROFES), pp. 334–337, 2013.

[26] V. Y. Rosales-Morales, G. Alor-Hernández, and U. Juárez-Martı́nez, “An
overview of multimedia support into JavaScript-based frameworks for
developing rias,” in Proceedings of the International Conference on
Electrical Communications and Computers (CONIELECOMP). IEEE
Computer Society, 2011, pp. 66–70.

[27] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of
the dynamic behavior of JavaScript programs,” in Proceedings of the
International Conference on Programming Language Design and Im-
plementation (PLDI). ACM, 2010, pp. 1–12.

[28] P. Ratanaworabhan, B. Livshits, D. Simmons, and B. Zorn, “JSMe-
ter: Measuring JavaScript behavior in the wild,” in Proceedings of
the USENIX Conference on Web Application Development (WebApps).
ACM, 2010, pp. 1–12.

[29] A. Feldthaus and A. Møller, “Checking correctness of TypeScript
interfaces for JavaScript libraries,” in Proceedings of the International
Conference on Object Oriented Programming, Systems, Language and
Applications (OOPSLA). ACM, 2014.

[30] F. Ocariza, K. Pattabiraman, and B. Zorn, “JavaScript errors in the wild:
an empirical study,” in Proceedings of the International Symposium on
Software Reliability Engineering (ISSRE). IEEE Computer Society,
2011, pp. 100–109.

[31] J. L. Singleton and G. T. Leavens, “Verily: a web framework for creating
more reasonable web applications,” in Companion Proceedings of the
International Conference on Software Engineering (ICSE). ACM, 2014,
pp. 560–563.

[32] S. Hallé, T. Ettema, C. Bunch, and T. Bultan, “Eliminating navigation
errors in web applications via model checking and runtime enforcement
of navigation state machines,” in Proceedings of the International
Conference on Automated Software Engineering (ASE). ACM, 2010,
pp. 235–244.

[33] J. Nijjar and T. Bultan, “Bounded verification of Ruby on Rails data
models,” in Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA). ACM, 2011, pp. 67–77.

[34] R. Morales-Chaparro, M. Linaje, J. Preciado, and F. Sánchez-Figueroa,
“MVC web design patterns and rich internet applications,” Proceedings
of the Jornadas de Ingenierıa del Software y Bases de Datos, pp. 39–46,
2007.

[35] J. Wojciechowski, B. Sakowicz, K. Dura, and A. Napieralski, “MVC
model, struts framework and file upload issues in web applications
based on J2EE platform,” in Proceedings of the International Conference
on Modern Problems of Radio Engineering, Telecommunications and
Computer Science (TCSET). IEEE Computer Society, 2004, pp. 342–
345.

