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Abstract—Checkpointing is widely deployed in computer
systems to recover from failures due to both hardware and
software errors. However, as faults propagate, checkpoints may
become corrupted by saving erroneous states and make errors
unrecoverable, especially at aggressive checkpoint frequencies. In
this paper, we proposed a technique that automatically analyzes a
given program to guide checkpoint strategies in order to minimize
checkpoint corruptions.

To understand checkpoint corruptions, we first perform a
large-scale fault injection study across ten benchmark applica-
tions. We then classify checkpoint corruptions, and comprehen-
sively characterize the fault propagations leading to these corrup-
tions. Leveraging these findings, we build RECOV, a compiler-
based tool that automatically identifies the program locations that
have lowest density of fault propagation for placing checkpoints,
and combines it with low-overhead protection techniques. Our
experimental results shows that RECOV can eliminate nearly
92% of the checkpoint corruptions with about 5% performance
overhead. RECOV reduces the unavailability of the system by 8.25
times even at very aggressive checkpoint frequencies, showing that
it is effective in practice.

I. INTRODUCTION

Checkpointing is widely deployed in today’s computer sys-
tems to deal with hardware and software errors. To ensure high
availability of critical systems, researchers have investigated
high frequency checkpointing to achieve rapid recovery [9],
[18], [26], [22], [26], [28]. In these high frequency checkpoint-
ing schemes, checkpoints are taken every few milliseconds to
enable faster recovery from failures.

One of the biggest sources of errors in computer systems is
hardware transient faults. As transistor sizes decrease, the rate
of transient faults is projected to increase drastically [4], [8].
Unlike traditional systems that mask hardware faults from soft-
ware through techniques such as Dual Modular Redundancy
(DMR), researchers have predicted that future hardware will
expose many of these faults to the software to maintain energy
consumption thresholds [10], [20].

A hardware fault can cause many kinds of failures, such
as crashes, Silent Data Corruptions (SDCs) and hangs. Of
these categories, crashes are the most frequent [27], [15].
However, past research has substantially ignored crashes as it
was assumed that checkpointing techniques can easily recover
from crash-causing errors. Unfortunately, this is not always the
case, as crash-causing faults can propagate to checkpoints and
corrupt them before causing a crash. This makes the errors
unrecoverable from the checkpoint since the program will
continue to crash upon recovery from a corrupted checkpoint.

In general, the probability of checkpoint corruption in-
creases as checkpoint frequency increases. In high-frequency
checkpointing techniques, checkpoint corruption becomes a
major problem. Unfortunately, prior work has either ignored

the problem completely [18], or has attempted to solve the
problem by keeping two checkpoints [26], [2] (i.e., dual
checkpointing), so that even if one checkpoint is corrupted,
the other checkpoint can be used for recovery. While this
can somewhat decrease checkpoint corruptions, the problems
still remain: (1) Faults may still propagate to both check-
points at high checkpoint frequencies. The interval chosen
between the checkpoints to bypass fault propagations is highly
application-specific, and the information of distribution of fault
propagation is not easily available [15], [26]. (2) Keeping
two checkpoints incurs double the memory overhead, thereby
straining hardware resources and increasing costs [18].

In this paper, we aim to minimize checkpoint corruptions
even while keeping only a single checkpoint, thereby achiev-
ing low memory overhead, and at the same time allowing
high checkpoint frequencies. There are three main insights
underlying our work, namely (1) crash-causing locations in
a program fall into only a few dominant patterns, which
allows us to comprehensively and automatically identify them,
(2) very few crash-causing faults propagate for a long time
and we can identify and selectively protect these long-latency
crash (LLC) locations using our prior work [15], and (3)
there are many natural locations in a program in which very
few crash-causing faults propagate across, so that placing
checkpoints in these locations will minimize the probability
of corruption - we call these locations quiescent states. Our
technique therefore uses a combination of selective protection
of the LLC causing locations, and identification of quiescent
states in the program for checkpoint placement to minimize
the probability of checkpoint corruption while keeping only
a single checkpoint. We implement our technique in a tool
called RECOV that performs static and dynamic analysis of the
program to identify the LLC causing locations and quiescent
states for placing checkpoints. RECOV is implemented in the
LLVM open-source compiler [14] and is completely automated,
requiring no annotations from programmers. To the best of our
knowledge, we are the first to build an automated technique
to minimize checkpoint corruption on an application-specific
basis, without multiple checkpoints even at very aggressive
checkpoint frequencies.

We make the following research contributions in this paper:

• We measure the checkpoint corruptions at different
checkpoint frequencies through a large-scale fault in-
jection experiment. We find that (1) there is a non-
negligible rate of checkpoint corruptions due to fault
propagation at aggressive checkpoint frequencies, and
(2) checkpoint corruptions are highly variable across
applications as they depend on the program’s prop-
erties. Hence there is a need for application-specific
techniques to minimize checkpoint corruption.

• We propose RECOV, a technique that uses static



analysis to identify the program points in which there
is minimal fault propagation (we call them Quiescent
States) for placing checkpoints, and combines this
with low-overhead protection mechanisms to mini-
mize checkpoint corruption rate.

• We implement RECOV in the LLVM compiler, and
evaluate it in terms of its ability to minimize the check-
point corruption rate at different checkpoint frequen-
cies, as well as the performance overhead incurred.

• We evaluate the availability improvement provided
by RECOV, and compare it with the improvement
provided by the dual-checkpoint scheme such as the
one proposed by prior work [26].

We find that RECOV can eliminate 91.8% of the check-
point corruptions in a program even at aggressive checkpoint
frequencies (e.g., 1000 instructions) with only 5.03% over-
head. We further find that at a checkpoint interval of 1,000
instructions, RECOV provides a 8.25 times reduction in the
unavailability (1 - availability) over the original application,
and 6.01 times reduction over the dual-checkpointing scheme.

II. FAULT MODEL AND BACKGROUND

In this section, we first present our fault model and define
the terms used. We then describe checkpoint techniques we
are considering, and finally we explain how checkpoints can
be corrupted by faults.

A. Fault Model

In this paper, we consider hardware transient faults (i.e.,
soft errors) that occur in computational components of pro-
cessors. This includes arithmetic logic unit(ALU), pipeline
stages and flip-flops. We do not consider faults that occur
in memory, register file or cache, as these can be protected
by ECC. Similarly, we do not consider faults in processor’s
control logic as we assume that it is protected. Finally, we
do not consider faults that occur in the instruction’s encoding
as these faults can be detected through error correction codes.
Our fault model is in line with other work in the area [12],
[10], [25]. While we have focused on hardware faults in this
paper, our technique is general and can be easily extended to
software faults.

B. Terms

We use the following terms in our paper.

• Fault occurrence: The event corresponding to the
occurrence of the hardware fault. The fault may or
may not result in an error.

• Fault activation: The event corresponding to the
manifestation of the fault to the software, i.e., the fault
becomes an error and corrupts some portion of the
software state (e.g., register, memory location). The
error may or may not result in a failure.

• Crash: The raising of a hardware trap or exception
due to the error, because the program attempted to
perform an action it should not have (e.g., read outside
its memory segments).

• Crash latency: The number of dynamic instructions
executed by the program from fault activation to crash.
This definition is slightly different from prior work
which has used CPU cycles to measure the crash
latency. The main reason we use dynamic instructions

rather than CPU cycles is that we wish to obtain a
platform independent characterization of fault laten-
cies.

• Checkpoint Corruption: Checkpoint saves erroneous
values in the program. This because the checkpoint is
taken after fault activation and before the fault causes
a crash, and hence captures the erroneous value. In
general, the longer the crash latency of a fault, the
higher the probability it can corrupt a checkpoint
during its propagation.

• Checkpoint Corruption Rate: The probability of a
checkpoint being corrupted due to a randomly occur-
ring fault in the program that ultimately crashes the
program (after corrupting the checkpoint).

C. Checkpointing Techniques

Checkpointing is a commonly deployed recovery method in
computer systems. Checkpointing systems can be categorized
based on, (1) the content saved in checkpoints and, (2) the loca-
tion where checkpoints are taken, and (3) the number of check-
point copies kept. In terms of the content saved, checkpoints
can be categorized into (1) user-level checkpoints, and (2)
system-level checkpoints. User-level checkpoints selectively
save the program’s state that’s necessary for restarting the
program. On the other hand, system-level checkpoints simply
save all the architectural registers and memory data since the
checkpointing system has no knowledge about the programs’
state. In terms of the locations where checkpoints are taken,
there are two categories: (1) application-specific checkpoints,
and (2) application-generic checkpoints. Application-specific
checkpoints are placed at specific locations in the program,
whereas the application-generic checkpoints are usually taken
periodically and do not use any information from the pro-
gram. This makes application-generic checkpoints much more
predictable in terms of recovery latency in case of a failure.
In terms of the number of copies kept, checkpoints can be
categorized into (1) single-checkpointing scheme, and (2) dual-
checkpointing scheme. In single-checkpointing scheme, there
is only one checkpoint copy kept at any time. In contrast,
the dual-checkpointing scheme keeps two checkpoints so that
if one checkpoint copy is corrupted, it can roll back to the
earlier one which may be uncorrupted. However, the dual-
checkpointing scheme incurs high memory overheads [18],
[2], and may not be able to avoid checkpoint corruptions in
many applications [15], [26]. While dual checkpointing can be
generalized to multiple checkpoints, most prior work has not
done so due to the high cost of keeping multiple checkpoints.

In this paper, we consider system-level checkpoints which
save all the visible states of program, and application-specific
checkpoints placed by an automated system to minimize
checkpoint corruptions. Although we consider application-
specific checkpoints, we show that the checkpointing strategy
we propose can take checkpoints periodically, and hence
have the same advantages as application-generic checkpoints.
We consider system-level checkpoints as we do not assume
apriori knowledge of what states are important to the program.
Finally, we consider single-checkpointing scheme so that the
checkpoint system has low memory overhead.

D. Our Earlier Work: CRASHFINDER

One of the main reasons for checkpoint corruption is long
latency crash (LLC) causing faults , or faults that propagate for
a long time before causing crashes. In our earlier work [15], we
proposed an automatic technique, CRASHFINDER, to identify



LLC-causing locations in program. CRASHFINDER first stati-
cally analyzes a program and identifies all possible locations
of faults that can propagate to memory and cause crashes.
These locations are categorized based on their type, into
pointer, index variable and global variable. CRASHFINDER
then systematically samples the identified locations through
fault injections to filter out false-positives which do not cause
long-latency crashes. It achieves a recall of 92.47% with 100%
precision. In other words, CRASHFINDER precisely identifies
92.47% of LLC-causing faults in a program without any false-
positives. It also achieves nine orders of magnitude speed-up
over exhaustive fault-injection based techniques for identifying
these faults. In this paper, we use CRASHFINDER to identify
long-latency causing locations and selectively protect them.

E. Fault Injection

Fault injection is a process to introduce errors into the
system to study the behavior of the system under errors.
It can be done at different level of the system such as at
the gate-level, circuit-level, architecture level and application
level. Prior work [7] has found that there may be significant
differences in the raw rates of faults exposed to the software
layer when fault injections are performed in the hardware.
However, we are interested in faults that are not masked by
the hardware and make their way to the application. Therefore,
we inject faults directly at the application level.

Since we consider transient errors that occur in compu-
tational components, we inject single bit flips in the return
values of the target instruction randomly chosen at runtime. We
consider single bit flips as this is the de-facto fault model for
simulating transient faults in the literature [10], [12]. However,
our technique can be also extended for multi-bit flips. We will
consider such multi-bit flip faults in future work.

F. LLVM Compiler

In this paper, we use the LLVM compiler [14] for perform-
ing the static analysis to determine which program locations
lead to crashes and transforming target programs based on
our proposed technique. Our choice of LLVM is motivated
by three reasons. First, LLVM uses a typed intermediate
representation (IR), in which source-level constructs can be
easily represented. In particular, it preserves the names of
variables and functions, which makes source mapping feasible.
This allows us to perform a fine-grained analysis of which
program locations cause crashes and map it to the source
code. Secondly, LLVM IR is a platform neutral representation
and abstracts out many low level details of the hardware and
assembly language. This greatly aids in portability of our anal-
ysis to different architectures, and simplifies the handling of
the special cases of different assembly language formats. This
also allows us to build a platform independent toolchain which
implements our proposed technique to minimize checkpoint
corruption. Finally, LLVM has been shown to be a good match
for doing fault injection studies [27].

III. INITIAL FAULT INJECTION STUDY

In this section, we perform an initial fault injection study
for charactering checkpoint corruptions. The goal of this study
is to understand how checkpoints can be corrupted due to fault
propagation in order to mitigate the corruptions (explained in
Section IV). We first explain the setup of our fault injection
experiment in Section III-A, and then present the results in
Section III-B. Finally, we examine the typical code patterns
that lead to checkpoint corruptions in programs.

A. Fault Injection Experiment

We perform fault injections using the LLFI fault injector,
which operates on the LLVM IR code [27]. We inject faults as
single bit flips into the destination registers of the program’s
dynamic instructions. Both the target bit and target dynamic
instruction are randomly chosen from the set of all dynamic
instructions executed by the program. The way we inject faults
ensures that faults are activated right away once we corrupt the
target value. We categorize the failure outcomes into Silent
Data Corruptions(SDCs), crashes, hangs and benign in our
experiment. SDCs lead to different program outputs from the
fault free runs, while benign faults are ones that are masked
and have no effect on the program output. Hangs are due to
programs deadlocking or running much longer than normal.
Since hangs are very few, we ignore them in our experiment.
Crashes raise hardware traps or exceptions such as reading
outside legal memory segments. We focus on crashes as these
are what checkpointing techniques target.

Fault Occurrence Crash

Checkpoint

(A)

Fault Occurrence Crash

Checkpoint

(B)

Time Time

Fig. 1: Examples of Uncorrupted Checkpoint and Corrupted
Checkpoint based on Fault Occurrence

To estimate checkpoint corruptions at different checkpoint-
ing frequencies, we simulate the act of taking a checkpoint by
marking program locations corresponding to the checkpoint
frequency (we measure checkpoint frequency in terms of
dynamic LLVM instructions rather than wall clock time to
ensure they are platform neutral). We then inject faults into the
program and check if the fault causes a crash. For the faults
that cause a crash, we inspect the location where the crash
occurred, and determine if the location was beyond the marked
checkpoint. If so, we consider the checkpoint as corrupted, as
we assume system-level checkpointing in which all program
states are written to the checkpoint. The fact that the fault
caused a crash implies that some program state was corrupted
by the fault at the time of the checkpoint, and consequently
the state will be written to the checkpoint and corrupt it.

For example, in Figure 1(A), the checkpoint is taken
before Fault Occurrence, hence the checkpoint is not corrupted
as there is no fault that propagates to it. As a result, the
program can be safely recovered from the Crash. However, in
Figure 1(B), the checkpoint is taken after Fault Occurrence and
before the Crash. This makes the checkpoint corrupted as the
checkpoint captures all program states including the erroneous
values introduced by the fault. Therefore, the program may not
be able to recover from the checkpoint.

Our benchmark applications are chosen from the
SPEC [13], PARBOIL [23], SPLASH-2 [29] and PARSEC [3]
suites. We choose eight arbitrary programs from these suites.
We also choose two more open-source applications that are
widely used in the scientific computing domain, anmely her-
cules and PureMD [1], [24]. The details of the benchmarks
are explained in Section V-A. We inject a total of 3,000 faults
in each application at each checkpoint interval. This yields
an error bar ranging from 0.06% to 0.6% depending on the
application, in estimating the checkpoint corruption rate at
the 95% confidence interval, which is tight enough for our
purposes.



An important consideration is the minimum checkpoint
interval we need to consider for aggressive checkpoints. We
profile the number of CPU clock cycles taken to execute an
LLVM IR instruction using the RDTSC instruction. We divide
the total number of clock cycles executed by the program by
the number of dynamic LLVM IR instructions executed. We
find that on average, an LLVM instruction takes 184 CPU
clock cycles on our x86 machine. Many checkpointing systems
consider checkpoint intervals at the granularity of hundreds of
thousands CPU cycles [22], [18], say 1,000,000 CPU cycles.
This is roughly on the order of tens of thousands of LLVM
instructions on our Intel Xeon machine. Considering increasing
fault rates [4], as well as increasing CPU performance leading
to faster checkpoints, we expect checkpointing systems of the
future will take checkpoints on the order of thousands of
instructions. Therefore, we start with a checkpoint interval of
1000 LLVM IR instructions.

In total, we consider seven different checkpoint intervals
for each application. They are 1,000, 5,000, 10,000, 50,000,
100,000, 500,000 and 1,000,000 dynamic instructions. There-
fore we inject a total of 210,000 faults in our initial fault
injection study (10 benchmarks * 7 checkpoint intervals * 3000
faults).

B. Fault Injection Results
As mentioned earlier, hangs were negligible in our exper-

iment and are not reported. We find that on average, crashes
constitute about 28.28% of the faults, SDCs constitute 4.89%,
and the remaining are benign faults (about 66%). We focus on
crashes in the rest of this paper as we aim to study checkpoint
corruptions due to crash-causing faults.

Figure 2 shows the results of checkpoint corruption rates at
7 different checkpoint intervals for each benchmark. For some
of the benchmarks, the total number of executed instructions is
lower than the checkpoint intervals considered. For example,
the blackscholes program executes only 48,000 instructions in
total, and hence there are no checkpoint corruptions measured
when the checkpoint interval exceeds this number. As shown
in the figure, we make two observations. First, as the check-
point interval decreases (i.e., checkpoint frequency increases),
the checkpoint corruption rate becomes higher (as expected).
This is especially so at very aggressive checkpoint intervals
(1,000 dynamic instructions), where the checkpoint corruptions
vary from 0.19% to 10.17%. Therefore we cannot assume
checkpoint corruptions are negligible at aggressive frequencies.
Secondly, the checkpoint corruption rate is program specific,
meaning it varies from one application to another depending on
the application’s properties. Therefore, we need an application-
specific method to analyze the program and mitigate check-
point corruptions based on the application’s properties.

To better understand the reasons for checkpoint corruption,
we divide the crash-causing faults leading to checkpoint cor-
ruptions into two categories: (1)Long-latency Crashes (LLCs),
and (2)Short-latency Crashes (SLCs). Recall that we define
LLCs as the crashes with latencies of more than 1,000 dynamic
instructions - these crashes are usually caused by faulty values
being written to memory and being used later. On the other
hand, SLCs have latencies of fewer than 1,000 instructions, and
are usually caused by faulty values communicated in registers
alone. Due to the temporal locality of register access, SLCs
usually have crash latencies ranging from one to hundreds of
dynamic instructions.

Figure 3 shows the distribution of the categories of crash-
causing faults that lead to checkpoint corruptions for each
benchmark at 1,000, 100,000 and 1,000,000 dynamic instruc-
tion checkpoint intervals. As seen in the figure, about 83.83%

checkpoint corruptions are due to LLCs on average in the
four checkpoint intervals. However, as the checkpoint interval
decreases, checkpoint corruptions due to SLCs become more
prevalent in some applications. For example, in libquantum,
cutcp, stencil, Hercules and ocean, at a checkpoint interval
of 1,000 instructions, about 50%, 100%, 66.66%, 48.71%
and 68.75% checkpoint corruptions are caused by SLCs re-
spectively. The main reason for this is that there are lots of
memory access (e.g, array operations) inside loops in these
applications - hence faults that occur in these occurrences
cause SLCs and corrupt checkpoints with higher probability.
Therefore, at aggressive checkpointing frequencies, both SLCs
and LLCs become prominent and need to be mitigated in many
applications.

C. Code Patterns Leading to Checkpoint Corruptions

As we mentioned in the previous section, we categorize
checkpoint corruption causing crashes into two categories,
namely, SLCs and LLCs. We illustrate the two categories using
a fragment of simplified C code found in the ocean benchmark
as a running example in Figure 6. We also show its control
flow graph and the assembly code translated from the C code.
The example has two loops in the function jacobcalc2 at line
4 and line 8 respectively (L1 and L2).

Fig. 4: Distribution of Short-latency Crash Patterns

Fig. 5: Running Example from ocean

Intuitively, there are two factors that determine whether a
fault will corrupt a checkpoint: (1)The more often a crash-
causing location is executed, the higher the chance for faulty
values originating in the location to propagate to checkpoints.



Fig. 2: Checkpoint Corruption Rates at Checkpoint Intervals of 1,000, 5,000, 10,000, 50,000, 100,000, 500,000 and 1,000,000
Dynamic Instructions with Error Bar from 0.06% to 0.6%

Fig. 3: Distribution of Crash-causing Faults Leading to Checkpoint Corruptions at Checkpoint Intervals of 1,000, 10,000, 100,000
and 1,000,000 Dynamic Instructions (Empty bars indicates no checkpoint corruption)

(2)The longer a fault propagates, the higher the chance for the
fault to propagate to checkpoints.

SLCs usually occur when a value in a register is used
as an address in a memory operation. These values are com-
municated within registers and lead to crashes before being
stored back to memory. Due to the temporal locality of register
access, SLCs usually have latencies less than few hundreds of
instructions. Although they have shorter crash latencies, some
of the crash-causing locations of SLCs may be on the hot paths
of the program, and therefore have a higher chance to corrupt
checkpoints.

In order to investigate code patterns leading to SLCs, we
randomly choose five applications from the ten benchmarks
in our study. They are hmmer, liquantum, blackscholes, cutcp
and ocean. We manually inspect all the cases of checkpoint
corruptions due to SLCs and find that the locations that lead
to checkpoint corruptions typically occur within loop. This is
because the majority of the program’s dynamic instructions are
executed by loops. Therefore, based on the relative location of
a crash-causing locations, we further categorize SLCs into two
dominant patterns: (1) In-loop Crashes and (2) Across-loop
crashes. The distribution of the patterns are shown in Figure 4.
We find that most (93%) of the checkpoint corruptions due to
SLCs fall into the sub-category of In-loop Crash.

1)In-loop Crashes happen when a fault occurs at a crash-
causing location inside a loop, and the resulting crash occurs in
the same loop iteration. For example, in Figure 6, if we inject a

fault at ID4, the faulty value will be used as a memory address
in the load instruction at ID8, thereby causing a crash at ID8
in the same iteration. Therefore, any checkpoint taken between
ID4 and ID8 will be corrupted.

2)Across-loop Crashes occur when a memory address
value has a fault before entering the loop, and then the value
is used within the loop to access memory. For example, in
Figure 6, t1c at ID2 is defined in bb2 before entering the loop
L2, and it is used in L2 at ID6 and then ID7. This corresponds
to lines 6 and 15 in Figure 5. If we inject a fault at ID2, it
will likely crash at ID7.

We find that In-loop Crashes, especially the ones in the
inner-most loop such as L2, are responsible for 93% of
checkpoint corruptions among SLCs (40 of 43 cases). This
is because inner-most loops generate the majority of dynamic
instructions at runtime. For example, if both L1 and L2 have
the same number of static instructions (say 100 instructions)
and iterate the same amount of times (say 100 iterations), then
99% of the total instructions are from the inner-most loop L2.
On the other hand, Across-loop Crashes are much less frequent
- we observe only 2 such cases among the 43 cases.

LLCs usually occur when a corrupted value is written to
memory, and causes a crash later when the value or some
other affected value is loaded and used in memory address
operations. For example, in Figure 6, if we inject a fault into
t2c at ID1, the faulty value will be saved to memory as a
pointer. Later the pointer will be loaded by ID10 and will
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...

bb5

ID3
ID4
ID5

Fig. 6: Control Flow Graph of the Running Example

likely cause a crash at ID11. This corresponds to lines 6 and
24 in Figure 5. These faults have a longer crash latency as the
faulty value propagates out of registers’ communication and
goes into memory. A more detailed explanation of LLCs and
their causes can be found in our earlier work [15].

IV. APPROACH

In this section, we describe our proposed technique, RE-
COV, to minimize the checkpoint corruption rate of a program.
The main idea is to find locations in program where there
is limited propagation of crash-causing faults for placing
checkpoints - we call such natural locations in program Qui-
escent States. If we can find many such Quiescent States in
the program, we can aggressively take checkpoints with few
checkpoint corruptions.

The main insights to identify Quiescent States are gathered
from Section III, and are recapped here: (1) Inner-most loops
have the most number of crash-causing locations, and hence
In-loop Crashes are the most prevalent.(2) Most crash-causing
locations in inner loops are updated in every iteration before
being used in the loop body. Hence registers holding these
values are rarely live out across loop iterations, and (3) Only
very few faults propagate to the memory and cause LLCs.

From the first two observations, we can conclude that
Quiescent states occur at the ends of loop iterations of inner-
most loops. Therefore, one can bypass SLCs by placing
checkpoints at the ends of inner-most loops. Because inner
loops are often small, they have few instructions in the loop
bodies (as we demonstrate later), and hence even at our most
aggressive checkpointing frequency of 1000 instructions, we

are able to take checkpoints frequently by placing checkpoints
at the end of inner loops. From the third observation, we
can conclude that LLCs are infrequent, and hence can be
prevented by protecting the LLC causing locations at low
overhead. We use our earlier work on CRASHFINDER [15]
to find locations that can cause LLCs, and selectively protect
them by duplicating their backward slices. We show that the
overheads of protecting these locations are low as they are
relatively infrequently executed.

In the rest of this section, we explain our approach to avoid
checkpoint corruptions due to SLCs, then present the heuristics
we use to identify backward slice of LLC-causing locations
and their protection.

A. Identification of Quiescent States
To identify quiescent states, we consider the two categories

of SLCs below:
(1) In-loop Crashes: As we observed, most checkpoint

corruptions due to SLCs fall into this category. We find that
the crash-causing locations of In-loop Crashes usually depend
on the induction variables of the loop. Further, the crash
often occurs in the same iteration as the fault when these are
corrupted. The only exception is the update operation of loop
induction variables, which can propagate faulty values across
iterations, and must be handled separately.

For example, in Figure 6, in the loop L2, bb3 is a dominator
of bb4 (a dominator is a basic block that is always executed
before the block(s) it dominates). In bb3, ID4 defines an
address values based on the induction variable iindex, and this
value is used in ID8, and causes a crash. In every iteration
of the loop L2, as long as t1a is not redefined after ID8,
the crashes at ID8 will likely happen in the same iteration
as the one in which the fault occurs. However, if a fault
occurs on the induction variable iindex at ID3, even though
it is calculated at the beginning of the loop, the faulty value
will propagate to every iteration. Consequently, it either causes
a crash in the subsequent memory access or may aggressively
corrupt some parts of the stack, and cause a LLC. Since the
update operations of induction variables only have a small
number of instructions, we can protect the update operation
of the induction variable, in this case ID3. Therefore, placing
a checkpoint at the end of a loop will bypass most In-loop
Crashes, and these are identified as Quiescent States.

(2) Across-loop Crashes: These cause relatively fewer
SLCs than In-loop crashes. In this case too, we take check-
points at the end of loops. For example, if we inject a fault at
ID2 before entering the loop L2, it will likely cause a crash at
ID7 if bb4 is executed in the first iteration of the loop L2. Then
taking a checkpoint at the end of the loop L2 can bypass the
propagation of the crash. On the other hand, If bb5 is executed
in the first iteration, the erroneous value t1c will not be used
and no crash will occur. In this case, if we take a checkpoint
at the end of the loop L2, the checkpoint will be corrupted. We
choose to ignore this latter case as Across-loop crashes only
constitute a small percentage of checkpoint corruptions, which
makes this case very rare. Therefore, we place checkpoints at
the ends of loop iterations to mitigate many but not all of this
category of SLCs.

In summary, we find that placing checkpoints at the ends
of loop bodies can bypass the majority of the propagations of
SLCs, in both the in-loop and across-loop sub-categories.

B. Protection of LLC causing locations
As mentioned, we use our prior work, CRASHFINDER [15],

to identify the LLC-causing locations. We then duplicate the



backward slice of these LLC-causing locations, and insert a
check comparing the value computed by the duplicated code
and the original value when they are defined. A mismatch
between the values indicates an error in the LLC-causing
location, and triggers a checkpoint rollback.

The target LLC-causing locations fall into three types: (1)
induction variables, (2) address pointer values, and (3) global
variables. We first identify backward slice of each LLC-causing
location and stop at procedural boundaries - this is similar
to what prior work has done [17]. However, only identifying
intra-procedural backward slices may affect coverage of the
protection. We therefore further trace the backward slice via
memory dependencies based on each type as follows:

Induction Variable: There is nothing more to be done in
this case as the majority of induction variables are defined and
used inside a single loop in a function. Thus identifying intra-
procedural backward slice of induction variable achieves high
coverage for the protection.

Pointer Variable Since CRASHFINDER identifies all lo-
cations that store pointer values to memory, the ones that
have memory dependencies have already been included for
protection. Thus, most parts of inter-procedural backward
slices of this type are identified for protection.

Global Variable: For this type, we connect the individual
intra-procedural backward slices that have memory dependen-
cies by identifying their aliasing memory locations. As LLVM
reserves a named address to store the value of global variable
in memory, statically resolving aliases of global variables is
straightforward.

After identifying all the backward slices of the LLC-
causing locations, we duplicate the instructions on the back-
ward slices and compare the values at the end of each static
dependency sequence to detect any deviation. We evaluate the
amount of instructions in the backward slices we compute and
runtime overhead of protecting these instructions in Section V.

C. Work-flow of RECOV

Figure 7 shows the work-flow of RECOV to minimize the
checkpoint corruption rate for a given program. RECOV takes
as input the source code of a program and compiles it to the
LLVM IR form. RECOV first identifies all the loops in the
program through static analysis. Then RECOV finds the last
instructions of all exit nodes of the loops, and outputs the
locations of these instructions as Quiescent States. RECOV
then uses our prior technique CrashFinder to identify the
locations that lead to LLCs. Finally, RECOV transforms the
source code by duplicating the backward slices of the locations
that lead to LLCs, and places checkpoint instructions at the
Quiescent States.

Source Code

Static Analysis CrashFinder

Executable

Protection and 
Checkpoint 
Placement

Fig. 7: Work-flow of RECOV

V. EXPERIMENTAL SETUP

We empirically evaluate RECOV in terms of its accuracy
and effectiveness in minimizing checkpoint corruption rates.
We also measure the performance overheads of RECOV. Our

experiments are all carried out on an Intel Xeon-E5 PC running
Red Hat Linux, with 64 GB RAM.

We first present benchmarks used in V-A, followed by the
research questions in V-B. We then present the methodology
to answer each of the research questions in V-C

A. Benchmarks

As mentioned before, we choose a total of ten bench-
marks from various domains for evaluating RECOV. All the
benchmark applications are compiled and linked into native
executables using LLVM, with standard optimizations enabled
(O2 optimizations). We present the detailed information of the
benchmarks in Table I.

TABLE I: Characteristics of Benchmark Programs used to
evaluate RECOV

Benchmark Benchmark
Suite/Au-
thor

Description

libquantum SPEC A library for the simulation of a quantum com-
puter

blackscholes PARSEC Option pricing with Black-Scholes Partial Differ-
ential Equation (PDE)

hmmer SPEC Uses statistical description of a sequence family’s
consensus to do sensitive database searching

mcf SPEC Solves single-depot vehicle scheduling problems
planning transportation

ocean SPLASH-2 Large-scale ocean movements simulation based on
eddy and boundary currents

sad PARBOIL Sum of absolute differences kernel, used in MPEG
video encoders

cutcp PARBOIL Computes the short-range component of Coulom-
bic potential at each grid point

stencil PARBOIL An iterative Jacobi stencil operation on a regular
3-D grid

Hercules Carnegie
Mellon
University

Finite-element octree-based earthquake simulator
by the Quake Group at Carnegie Mellon Univer-
sity

PuReMD Purdue Uni-
versity

Reactive molecular dynamics simulation program

B. Research Questions

We answer the following research questions(RQs) in our
experiments.

RQ1: How far apart in terms of dynamic instructions are
the Quiescent States identified by RECOV in programs?

RQ2: How much does RECOV reduce the checkpoint
corruption rate by placing checkpoints at Quiescent States and
protecting the LLC-causing locations?

RQ3: What are the performance overheads incurred by
RECOV, at runtime?

RQ4: How much reduction in unavailability does RECOV
provide, and how does it compare to the dual-checkpointing
scheme?

C. Experimental Methodology

We describe our methodology for answering each of the
RQs below.

1) Distance between Quiescent States (RQ1): We identify
all Quiescent States in the program using RECOV, and measure
how many instructions are executed on average in between two
consecutive Quiescent States.

2) Effectiveness of Checkpoint Corruption Minimization
(RQ2): We use fault injection to study the effectiveness of
RECOV in minimizing checkpoint corruptions. As before, we
perform fault injections using the LLFI fault injector [27] as



described in Section III. We inject a total of 3,000 faults at
the checkpoint intervals 1,000, 10,000, 100,000 and 1,000,000
instructions for each benchmark, and measure the checkpoint
corruption rates after deploying RECOV (we only considered 4
of the 7 intervals we considered earlier due to time constraints).
We then compare the minimized checkpoint corruption rates
with the checkpoint corruption rates derived from our initial
fault injection study in Section III, and quantify how much
minimization has been achieved using RECOV.

3) Performance overheads of RECOV (RQ3): We measure
the runtime overhead incurred by RECOV, as it protects all
LLC-causing locations by duplicating their backward slices.

4) Unavailability Reduction (RQ4): We calculate the avail-
ability RECOV provides, and compare it with original avail-
ability (baseline) and the availability of two variations of
the dual-checkpointing scheme (see below) 1. Because the
availabilities are all close to 100% (not surprising as availablity
is typically measured in nines), we choose to calculate the
unavailability i.e., (1 - availability) and measure its reduction
over the baseline for both RECOV and the dual-checkpointing
scheme. We consider four checkpointing schemes including
RECOV described below.

• Single-checkpoint Scheme(baseline) keeps only one
checkpoint at any time and always rolls back to this
checkpoint as it is only available checkpoint. If the
program fails again upon roll-back, the checkpoint
is assumed to be corrupted, and the program restarts
from the beginning. This is the baseline we use for
comparison.

• Dual-checkpoint Scheme A keeps the two latest
checkpoints at any time. Once a failure occurs, it
always rolls back to the earlier checkpoint. If the
program crashes again at the same location, the earlier
checkpoint is assumed to be corrupted (and so is the
later checkpoint, by definition), and hence the program
restarts from the beginning.

• Dual-checkpoint Scheme B also keeps the two latest
checkpoints at any time. If a failure occurs, it attempts
to roll back to the later checkpoint. If the failure occurs
again at the same location, the program assumes that
the later checkpoint is corrupted, and rolls back to
the earlier checkpoint. If the failure occurs again, it
restarts from the beginning.

• RECOV keeps only one checkpoint, to which it rolls
back if a failure occurs. If the checkpoint is corrupted,
the program restarts from the beginning. We assume
that the program is protected using RECOV when this
scheme is deployed.

VI. RESULTS

This section presents the results of our experiments for
evaluating RECOV. Each subsection corresponds to a research
question (RQ).

A. Distribution of Quiescent States (RQ1)

We present the distribution of the distances between Qui-
escent States in Table II for the ten benchmarks. As can be
seen from the table, most applications have Quiescent States

1Although prior work on dual checkpointing has not considered such
aggressive checkpoint frequencies [26], we choose to evaluate the dual-
checkpointing schemes with the same set of checkpoint frequencies as RECOV
for standardizing the comparison.

TABLE II: Distance between Quiescent States (In Dynamic
Instructions)

Benchmark Maximum
Distance

Average Distance

hmmer 229 21
libquantum 99 8
blackscholes 148 100
cutcp 159 16
ocean 281 23
mcf 754 14
sad 306 45
stencil 141 38
Hercules 158 21
PuReMD 256 16
Average 254 31

occurring less than every 50 dynamic instructions on average.
The exception is blackscholes, which has an average distance
of 100 dynamic instructions between Quiescent States, this is
because the application has larger loop bodies. Further, the
majority of applications have a maximum distance between
Quiescent States of under 310 dynamic instructions - the only
exception is mcf whose maximum distance is 754. This is due
to the existence of large amount of code between two loops
in this program. In all benchmarks, the maximum distance
between any two Quiescent States is less than 1,000 dynamic
instructions. Therefore, by placing checkpoints at Quiescent
States, RECOV is able to support even our most aggressive
checkpoint interval of 1000 instructions.

B. Effectiveness of Checkpoint Corruption Minimization
(RQ2)

Figure 8 also shows the minimized checkpoint corruption
rate by using RECOV. As shown, RECOV can completely
eliminate checkpoint corruptions in four programs, namely
libquantum, blackscholes, ocean and stencil even at the most
aggressive checkpointing interval of 1,000 instructions. For
the other programs, although checkpoint corruptions cannot
be entirely eliminated at the 1000 instruction interval, the
checkpoint corruption rates can be respectively reduced by 30
times, 7.7 times, 3.6 times, 31 times, 5.3 times and 4.2 times
over the baseline.

Fig. 9: Breakdown of the Coverage of Checkpoint Corruptions
at Checkpoint Interval of 1,000 Dynamic Instructions

We also show the breakdown of the coverage provided
by RECOV for checkpoint corruptions due to LLCs and SLCs
respectively in Figure 9. We choose to only measure this at
a checkpoint interval of 1,000 dynamic instructions since this
interval had the maximum checkpoint corruptions. As shown in
the figure, on average, RECOV eliminates 87% of the check-
point corruptions due to SLCs, and 96% of the checkpoint
corruptions due to LLCs. This shows that RECOV eliminates a
significant amount of checkpoint corruptions due to both SLCs
and LLCs. For two of the benchmarks, mcf and Hercules,
however, coverages for checkpoint corruptions due to SLCs are
only 60% and 63.16% . This is because registers that cause
SLCs are live out across loop iterations in these programs.
Hence our heuristics for mitigating checkpoint corruptions
due to SLCs do not cover these cases. Having said that, the



Fig. 8: Minimization of Checkpoint Corruption Rate due to RECOV across Benchmarks

TABLE III: Percentage of Instructions Duplicated by RECOV

mcf libq. hmm. black. cutcp ocean sad stenc. herc. pure. Avg.
9.79% 9.24% 6.18% 8.18% 22.21% 4.94% 6.96% 2.45% 26.94% 24.42% 9.44%

heuristics work well on average. In another two benchmarks,
PuReMD and mcf, the coverages for checkpoint corruptions
due to LLCs are only 76.19% and 86.11% respectively. This is
because theCRASHFINDER tool [15], which we use to identify
LLCs, also uses heuristics and hence may miss some LLCs that
propagate to checkpoints and corrupt them.

C. Runtime Overhead of RECOV (RQ3)

Runtime Overhead: We find that the geometric mean of
runtime overheads incurred by RECOV to be 5.03% across
all applications. The overheads for individual application are
shown in Figure 10. Recall that the runtime overhead of
RECOV is due to the protection of the LLC causing locations
by duplicating their backward slices. Because only a very
small amount of instructions are responsible for LLCs [15],
the overheads of protecting them are low. The individual
overheads vary across applications, for example, libquantum
incurs 16.85% runtime overhead whereas stencil only has
1.45% runtime overhead. This is because different applica-
tions have different amount of LLC-causing locations and
instructions on their backward slices [15]. Table III shows the
number instructions duplicated in the backward slice for each
benchmark. On average, RECOV protects 9.44% of dynamic
instructions across the benchmarks.

Note that the performance of duplication is not directly
proportional to the amount of instruction duplicated. The
reason is twofold: (1) duplicating different types of instructions
incurs different overheads, and (2) the differences in lengths
of static dependency sequences in applications affects the
overhead of comparing the values at the ends of the backward
slices.

Fig. 10: Runtime Overhead of LLC Protection

D. Unavailability Reduction Provided by RECOV (RQ4)

The appendix derives the expressions for the availabilities
of the four schemes we consider including RECOV. These are
derived from a probabilistic model seeded with the measured
values of the probabilities of checkpoint corruption and the
checkpoint intervals, for each application (also shown in the
appendix).

Based on these expressions, we calculate the reductions in
unavailability provided by RECOV and the dual checkpointing
schemes in Table IV. Note that for some of the benchmarks, the
total number of executed instructions is lower than the check-
point intervals considered and hence there are no checkpoint
corruptions when the checkpoint interval exceeds this number.
We indicate such rows by ‘-’ in the table. We consider two
variants of the dual checkpointing scheme as explained earlier.
As can be seen from the table, the availabilities of both these
schemes are similar. Therefore, we only consider the dual-
checkpointing scheme ’B’ for our explanation below.

On average, RECOV reduces the unavailability over the
baseline at checkpoint intervals of 1,000, 10,000, 100,000 and
1,000,000 instructions respectively by factors of 8.25, 2.90,
2.14 and 3.03. In comparison, the dual-checkpoint scheme
reduces the unavailability over the baseline by 1.37, 1.05, 1.03
and 1.28 times at the same checkpoint intervals. This is much
lower than the unavailability reduction provided by RECOV.

Note that in some applications the dual-checkpointing
scheme has higher unavailability than the baseline, for ex-



TABLE IV: Unavailability Values of the four schemes

Benchmark C.K.
Interval

Single-checkpoint
(baseline)(%)

Factor of Reduction
Dual-
checkpoint
A

Dual-
checkpoint
B

ReCov

hmmer
1,000 1.4434 1.32 1.32 34.62
10,000 0.9486 1.00 1.00 8.79
100,000 0.8929 1.10 1.10 12.86
1,000,000 0.4019 1.69 1.75 6.53

libquantum
1,000 0.0203 253.45 504.98 802.28
10,000 0.0442 1.23 1.24 174.32
100,000 0.0232 2.90 5.77 9.17
1,000,000 0.0508 0.63 1.26 2.00

blackscholes
1,000 0.2919 0.71 0.97 2.68
10,000 1.2691 0.52 0.97 1.18
100,000 - - - -
1,000,000 - - - -

cutcp
1,000 0.1662 7.69 7.69 8.13
10,000 0.0340 2129.49 4196.86 4503.75
100,000 0.0148 92.58 183.99 195.81
1,000,000 0.0164 10.28 20.43 21.75

ocean
1,000 0.2654 3.22 3.22 13532.89
10,000 0.1994 1.09 1.09 1016.75
100,000 0.1082 0.98 1.00 55.16
1,000,000 0.1441 0.86 1.00 7.35

mcf
1,000 0.5521 1.07 1.07 3.77
10,000 0.2952 1.06 1.06 2.62
100,000 0.2159 1.18 1.18 11.43
1,000,000 0.2608 1.07 1.09 3.11

sad
1,000 0.4718 1.31 1.31 35.30
10,000 0.4480 1.35 1.35 33.11
100,000 0.1017 0.98 1.00 55.44
1,000,000 0.0215 0.50 1.00 1.17

stencil
1,000 0.2963 1.51 1.51 40987.99
10,000 0.0951 3.10 3.10 1315.25
100,000 0.0007 0.50 1.00 1.02
1,000,000 0.0074 0.50 1.00 1.02

hercules
1,000 0.7127 1.62 1.87 5.45
10,000 1.0169 0.63 0.97 2.51
100,000 6.0716 0.54 0.98 1.67
1,000,000 - - - -

puremd
1,000 1.3796 1.23 1.23 6.36
10,000 1.3654 1.05 1.05 5.36
100,000 1.0291 1.19 1.22 4.51
1,000,000 0.7683 0.95 1.24 2.47

Average
1,000 0.5600 1.32 1.37 8.25
10,000 0.5719 0.80 1.05 2.90
100,000 0.9432 0.64 1.03 2.14
1,000,000 0.2476 1.03 1.28 3.03

ample in blackscholes. This is because it incurs longer re-
covery latency as it rolls back to the earlier checkpoint.
In summary, RECOV significantly outperforms the dual-
checkpointing scheme in terms of unavailability reduction for
all applications considered.

VII. RELATED WORK

EDDI [16] and SWIFT [20] are compiler-based techniques
that use full duplication to protect program data. Full du-
plication can achieve high coverage but incurs significant
performance overhead. Feng et al. [10] have attempted to
reduce runtime overhead by only protecting critical instructions
in the program that are unlikely to be detected by other
means. However, these techniques do not consider the impact
of hardware faults on checkpoint corruption, and consequently
overprotect the application, resulting in high overheads.

ReVive [18] and SafetyNet [22] focus on the efficient
implementation of checkpoint systems taking checkpoints at
aggressive frequencies. They provide a hardware and software
co-designed solution to mitigate overheads incurred from tak-
ing checkpoints frequently. Sorin et. al. [21] and Cao et. al. [5]
propose checkpointing algorithms that allow fast recovery in
order to minimize recovery latency from failures. While these
techniques are useful to support aggressive checkpointing and
fast recovery, they do not address the issue of checkpoint
corruptions.

Gu et. al. [11] found through fault injections in the Linux
kernel, that a small amount of faults can propagate for long
time and may need mitigation. Yim et. al. [11] highlighted
the issue that faults that propagate for long may corrupt
checkpoint thereby making the errors unrecoverable. Chandra
et. al. [6] experimentally observed the rates of checkpoint
corruptions due to hardware and software errors at differ-
ent checkpoint frequencies and checkpointing methods. In
very recent work, Ramachandran et. al. [19] coordinate error
detection and checkpoint intervals to mitigate corruption of
external outputs. However, none of the above papers specify
how to identify the faults propagating to checkpoints and
prevent them from corrupting checkpoints. Our prior work [15]
proposed an automatic technique to identify faults causing
LLCs in programs. However, it does not consider mitigation
of checkpoint corruption due to SLCs, nor does it quantify the
mitigation. As we have seen in this paper, SLCs can contribute
to a significant portion of checkpoint corruption at aggressive
checkpoint frequencies.

Wang et. al. [26] proposed a dual-checkpointing technique
to avoid checkpoint corruptions in a virtual machine-based
environment. Aupy et. al [2] analyzed propagation latencies
of faults, and calculate optimal checkpoint interval for re-
covery time according to the distribution of the propagation
latencies. While these techniques can reduce checkpoint cor-
ruptions, both of them are based on the dual-checkpointing
scheme. However, as we have shown in Section VI, the
dual-checkpointing scheme is not as effective as RECOV in
preventing checkpoint corruption and boosting availability.
Further, the dual checkpointing scheme is also more expensive
in terms of memory.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we found that checkpoint corruptions are non-
negligible at aggressive checkpointing frequencies and that
they are highly application-specific, thereby necessitating an
application-specific scheme for minimizing the corruptions.
We comprehensively characterized the patterns of checkpoint
corruptions due to crash-causing faults into SLCs and LLCs.
We find SLCs often happen in the same loop iteration when
the faults occur, and placing checkpoints at the end of loop
bodies significantly reduces checkpoint corruptions due to
SLCs. By protecting LLCs causing locations through fine-
grained protection techniques, and placing checkpoints at the
end of the loop bodies, RECOV eliminates 91.84% checkpoint
corruptions across applications. Further, it reduces the unavail-
ability of the system by 8.25 times even at very aggressive
checkpoint frequencies, and incurs a runtime performance
overhead of only 5%, showing that it is practical. We also
find that the checkpoints placed by RECOV can be sufficiently
close together to support aggressive checkpointing frequencies.

As future work, we plan to explore integrating our tech-
nique with existing checkpointing systems, and also deploying
it on a wider range of high-performance computing (HPC)
applications to measure the overheads.
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X. APPENDIX: AVAILABILITY FORMULA

A. Assumptions

We make three assumptions in calculating the availability.
First, we assume that the time taken to capture a checkpoint
is negligible compared to the checkpoint interval. This is the
case for hardware checkpointing schemes such as ReVive [18],
which leverage hardware support to take fast checkpoints.
For software techniques, checkpoints can be taken by asyn-
chronous processes or threads, and moved out of the critical
path of the program’s execution. We do this for all four
checkpoint schemes, so the comparison and the evaluation is
fair. This assumption is in line with other prior work [26].

Second, we assume that we can always detect whether a
checkpoint has been corrupted by a fault, based on the program
crashing again at the same location after a restart. While it
is possible for checkpoint corruptions to go undetected for a
long time, we assume that the corruption is detected before the
next checkpoint is taken. Thus we assume that it is unlikely
that a fault that had previously caused a crash will remain
undetected for a long time after the program is restarted. Again,
this assumption is made for all schemes.

Finally, we assume that restarting a program from the
beginning is always a possibility even if all the checkpoints
are corrupted (in other words, we assume that the program’s
execution does not have system-wide effects that cannot be
undone, such as sending messages in a distributed system, for
example). The last assumption is necessary for ensuring that
we always can recover the program even if the checkpoint is
corrupted. Without this assumption, even a small probability
of checkpoint corruption (which all four schemes have) will
result in a net steady-state availability of zero.

B. Availability Calculation

We consider the system as available whenever it is doing
useful work i.e., it is not repeating the work it did earlier
due to a failure. Time spent recovering from a checkpoint is
therefore not counted as the system being available (since it
is not doing useful work). The availability of the system can



be calculated via the following formula, where MTTF is mean
time to failure, and MTTR is mean time to recover the program.

Availability = MTTF
(MTTF+MTTR)

TABLE V: Parameters for Calculating MTTR
Name Meaning
C Checkpoint corruption rate for the single-checkpointing scheme
C1 Checkpoint corruption rate for the latest checkpoint, but the earlier

checkpoint is not corrupted in the dual checkpointing scheme
C2 Checkpoint corruption rate for the earlier checkpoint in the dual-

checkpointing scheme
Cr Minimized checkpoint corruption rate for RECOV
M Total number of the dynamic instructions executed by the program
I Checkpoint interval, in terms of dynamic instructions
R Crash rate of the program given that a fault occurs for single- and

dual-checkpoint schemes
Rr Crash rate of the program given that a fault occurs for RECOV
� Fault rate, which to simulate base fault rate of the program, is set to

1/M. Note the actual fault rate in the real world is independent of M,
but to mirror the experiment, we use the fault injection rate as the
fault rate.

We first present the symbols we use to represent the
systems’ parameters in Table V. We calculate the MTTF
as 1/(� ⇤ R) for single- and dual-checkpoint schemes, and
1/(�⇤Rr) for RECOV as we are concerned with crash-causing
faults only. We assume that at most one fault occurs during the
program’s execution, so � is equal to 1

M . Note that RECOV
has different crash rates as the protection eliminates some of
crashes, hence has a different crash rate Rr. We assume that
the fault rate is the same though, as RECOV incurs only about
5% overhead. We consider the MTTR for the four cases below.

1) Single-checkpoint Scheme: When a crash occurs and
the checkpoint is corrupted, it first tries to recover from the
checkpoint. The average work lost is I

2 . If it finds that the
program crashes again at the same location, this indicates
the checkpoint is corrupted, so the program restarts from the
beginning. In this case, the average work lost is M

2 . So the
total work lost when the checkpoint is corrupted is (M2 + I

2 ).
Otherwise, it is I

2 . Therefore, the MTTR for single-checkpoint
scheme is C(M2 + I

2 ) + (1� C) I2 .
2) Dual-checkpoint Scheme A: In this scheme, when a

crash occurs, it first tries to recover from the earlier checkpoint.
The earlier checkpoint was taken 2I instructions ago. The
average lost work is 2I

2 , which is equal to I. If the recovery
fails, the program restarts from the beginning, here the average
lost work is M

2 . So the total lost work in case the checkpoint is
corrupted is (I+M

2 ) Therefore, the MTTR for dual-checkpoint
A scheme is C2(I +

M
2 ) + (1� C2)I .

3) Dual-checkpoint Scheme B: When a crash occurs, the
average work lost is I

2 . The system then tries to recover from
the latest checkpoint. If this fails, the checkpoint is corrupted,
and it attempts to recover from the later checkpoint. The
average work lost in this case is ( I2 + 2I

2 ) = 3I
2 . Finally,

if the earlier checkpoint is corrupted as well, it rolls back
to the beginning of the program, in which case the average
work lost is 3I

2 + M
2 . The expression for MTTR is therefore

C1(
3I
2 ) + C2(

3I
2 + M

2 ) + (1� C1)
I
2

4) RECOV: Since RECOV keeps only one checkpoint,
the availability expression is the same as that of the single-
checkpoint scheme (the parameter values are different though).
The expression is Cr(

M
2 + I

2 ) + (1� Cr)
I
2 .

We present the parameter values of all benchmarks in
Table VII. The data in this table was obtained through mea-
surements of each benchmark program. Note that some of the

values in the table are indicated with a ’-’. These correspond
to cases where the checkpoint intervals considered exceed the
number of instructions executed in the program, and hence
there are no checkpoint corruptions.

C. Corner Cases
We consider two corner cases to check the model, namely

I=M and I=1. They correspond to taking no checkpoint and
taking checkpoints at every instruction. This corresponds to
Scenario 1 and 2 respectively in Table VI. We expect to
see similar results for the MTTR between the two scenarios
in all schemes. This is because if we take a checkpoint
every instruction (I=1), the checkpoint will almost certainly
be corrupted if a fault occurs, hence the program ends up
restarting from the beginning. This is equivalent to taking a
checkpoint after the program completes (I=M).

TABLE VI: MTTR for Checkpoint Schemes when I=1 & I=M
Scheme Scenario 1 (I=1) Scenario 2 (I=M)
Single-checkpoint MTTR= M

2 , if C=0 and I=M MTTR= M+1
2 , if C=1 and I=1

Dual-checkpoint A MTTR= M
2 , if C=0 and I= M

2 MTTR= M+2
2 , if C=1 and I=1

Dual-checkpoint B MTTR= M
2 , if C1=C2=0 and

I=M
MTTR= M+6

2 , if C1=C2=1
and I=1

RECOV MTTR= M
2 , if Cr=0 and I=M MTTR= M+1

2 , if Cr=1 and
I=1

As expected, Scenarios 1 and 2 both yield similar MTTR in
all four schemes. The MTTR values derived are dominated by
M
2 since M is a much larger value than I . So we consider the

resulting MTTRs in Scenario 2 as approximately equal to M
2 .

Thus, the model yields consistent values in the corner cases.

TABLE VII: Values of Parameters for Calculating Availability
I M (In

Mil-
lion)

C(%) C1(%) C2(%) Cr(%) R(%) Rr(%)

hmmer
1,000 1602 10.17 2.49 7.68 0.34
10,000 1602 6.65 0.01 6.64 0.88 28.80 24.53
100,000 1602 6.25 0.56 5.69 0.56
1,000,000 1602 2.74 1.21 1.53 0.44

libquantum
1,000 266 0.19 0.19 0.00 0.00
10,000 266 0.41 0.08 0.33 0.00 21.37 13.50
100,000 266 0.18 0.18 0.00 0.00
1,000,000 266 0.10 0.10 0.00 0.00

blackscholes 1,000 0.048 2.89 0.00 2.89 0.00
10,000 0.048 1.22 0.00 1.22 0.00 11.87 10.67
100,000 - - - - -
1,000,000 - - - - -

cutcp
1,000 5755 3.62 3.15 0.47 0.47
10,000 5755 0.74 0.74 0.00 0.00 9.20 8.70
100,000 5755 0.32 0.32 0.00 0.00
1,000,000 5755 0.34 0.34 0.00 0.00

ocean
1,000 522 2.16 1.49 0.67 0.00
10,000 522 1.62 0.14 1.48 0.00 24.63 20.50
100,000 522 0.86 0.00 0.86 0.00
1,000,000 522 0.98 0.00 0.98 0.00

mcf
1,000 4128 3.47 0.24 3.23 0.95
10,000 4128 1.85 0.11 1.74 0.73 32.00 30.87
100,000 4128 1.35 0.21 1.14 0.12
1,000,000 4128 1.61 0.13 1.48 0.52

sad
1,000 661 3.33 0.79 2.54 0.11
10,000 661 3.16 0.83 2.33 0.11 28.47 24.27
100,000 661 0.70 0.00 0.70 0.00
1,000,000 661 0.00 0.00 0.00 0.00

stencil
1,000 2305 1.75 0.59 1.16 0.00
10,000 2305 0.56 0.38 0.18 0.00 33.97 33.33
100,000 2305 0.00 0.00 0.00 0.00
1,000,000 2305 0.00 0.00 0.00 0.00

hercules
1,000 0.43 2.44 1.26 1.18 0.57
10,000 0.43 1.52 0.00 1.52 0.19 53.77 32.70
100,000 0.43 1.03 0.26 0.77 0.06
1,000,000 - - - - -

puremd
1,000 51 8.60 1.60 7.00 1.61
10,000 51 8.51 0.43 8.08 1.88 32.53 26.97
100,000 51 6.39 1.24 5.15 1.55
1,000,000 51 4.74 1.57 3.17 1.29


