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Abstract. Software Fault Injection (SFI) techniques play a pivotal role
in evaluating the dependability properties of a software system. Evaluat-
ing the dependability of software system against multiple fault scenarios
is challenging, due to the combinatorial explosion and the advent of new
fault models. These necessitate SFI tools that are programmable and
easily extensible. This paper proposes FIDL, which stands for fault in-
jection description language, which allows compiler-based fault injection
tools to be extended with new fault models. FIDL is an Aspect-Oriented
Programming language that dynamically weaves the fault models into
the code of the fault injector. We implement FIDL using the LLFI fault
injection framework and measure its overheads. We find that FIDL sig-
nificantly reduces the complexity of fault models by 10x on average, while
incurring 4-18% implementation overhead, which in turn increases the
execution time of the injector by at most 7% across five programs.

1 Introduction

Evaluating the dependability properties of a software system is a major concern
in practice. Software Fault Injection (SFI) techniques assess the effectiveness and
coverage of fault-tolerance mechanisms, and help in investigating the corner cases
[4, 5, 15]. Testers and dependability practitioners need to evaluate the software
system’s dependability against a wide variety of fault scenarios. Therefore, it is
important to make it easy to develop and deploy new fault scenarios [18].

In this paper, we propose FIDL (Fault Injection Description Language)1, a
new language for defining fault scenarios for SFI. The choice of introducing a
specialized language for software fault injection is motivated by three reasons.
First, evaluating the dependability of software system against multiple fault sce-
narios is challenging - the challenge is combinatorial explosion of multiple failure
modes [11] when dealing with different attributes of a fault model (e.g, fault
types, fault locations and time slots). Second, due to the increasing complexity
of software systems, the advent of new types of failure modes (due to residual
software bugs) is inevitable [5]. Previous studies have shown that anticipating
and modeling all types of failure modes a system may face is challenging [11].

1 Pronounced Fiddle as it involves fiddling with the program.



Hence, SFI tools need to have extensibility facilities that enable dependability
practitioners to dynamically model new failure modes, with low effort. Third,
decoupling the languages used for describing fault scenarios from the fault in-
jection process enables SFI tool developers and application testers to assume
distinct roles in their respective domains of expertise.

The main idea in FIDL is to use Aspect Oriented Programming (AOP) to
weave the aspects of different fault models dynamically into the source program
through compiler-based SFI tools. This is challenging because the language needs
to capture the high-level abstractions for describing fault scenarios, while at the
same time being capable of extending the SFI tool to inject the scenarios. Prior
work has presented domain specific languages to drive the fault injection tool
[3,6,11,16,18]. However, these languages provide neither high level abstractions
for managing fault scenarios, nor dynamic extensibility of the associated SFI
tools. To the best of our knowledge, FIDL is the first language to provide high-
level abstractions for writing fault injectors spanning a wide variety of software
faults, for extending compiler-based SFI tools.

Paper contributions: The main contributions of this paper are as follows:

– Proposed a fault injection description language (FIDL) which enables pro-
grammable compiler-based SFI tools.

– Built FIDLFI, a programmable software fault injection framework by adding
FIDL to LLFI, an open-source, compiler-based framework for fault injec-
tions [1, 14].

– Evaluated FIDL and FIDLFI on five programs. We find that FIDL reduces
the complexity of fault models by 10x on average, while incurring 4 to 18%
implementation overhead, which in turn increases the time overhead by at
most 6.7% across programs compared to a native C++ implementation.

2 Background

We developed FIDL as an Aspect-Oriented Programming (AOP) language on the
LLFI fault injection framework. In this section, we first provide a brief overview
of LLFI. We then explain why we are motivated to develop an AOP language
for extending and driving LLFI. Though we demonstrate FIDL in the context
of LLFI, it can be applied to any compiler-based SFI tool.

2.1 LLFI

LLVM is a production, open-source compiler that allows a wide variety of static
program analysis and transformations [13]. LLFI is an open source LLVM-based
fault injection tool that injects faults into the LLVM Intermediate Representa-
tion (IR) level of application source code [21]. LLFI was originally developed for
hardware fault injection. It injects a fault (e.g., bit flip) into a live register at
every run of program in specific locations that are instrumented during compile
time [14]. LLFI also allows user to track the fault propagation path, and map it
back to the application source code.



Since its development, we have extended LLFI to inject different kinds of
software faults in a program in addition to hardware faults [1]. This is the
version of LLFI that we use in this paper for comparison with FIDL.

2.2 Aspect-Oriented Programming (AOP)

Object-Oriented Programming (OOP) is a well-known programming technique
to decompose a system into sets of objects. However, it provides a static model of
a system - thus any changes in the requirements of software system may have a
big impact on development time. Aspect-Oriented Programming (AOP) presents
a solution to the OOP challenge since it enables the developer to adopt the code
that is needed to add secondary requirements such as logging, exception handling
without needing to change the original static model [17]. In the following, we
introduce the standard terminology defined in AOP [17].

– Cross-cutting concerns: are the secondary requirements of a system that
cut across multiple abstracted entities of an OOP. AOP aims to encapsulate
the cross-cutting concerns of a system into aspects and provide a modular
system.

– Advice: is the additional code that is ”joined” to specific points of program
or at specific time.

– Point-cut: specifies the points in the program at which advice needs to be
applied.

– Aspect: the combination of the point-cut and the advice is called an aspect.
AOP allows multiple aspects to be described and unified into the system
automatically.

3 Related work

A wide variety of programmable fault injection tools based on SWIFI (SoftWare
Implemented Fault Injection) techniques have been presented in prior work [3,
6, 11, 11, 12, 16, 18, 23]. In this section, we aim to define where FIDL stands
in relation to them. More particularly, we argue why ”Programmability” is a
necessity for fault injection tools.

Programmability, is defined as the ability of programming the fault injec-
tion mechanism for different test scenarios based on desired metrics of the
tester [6,18]. Programmability has two aspects. The first is a unified description
language that is independent of the language of the SFI tool [3]. This language
is needed to accelerate the process of fault scenario development, and dynami-
cally manage the injection space for a variety of fault types. The second aspect
of programmability is providing high level abstractions in the language. The
abstracted information keeps the fault description language as simple as possi-
ble. By removing the complexity of fault scenario’s developing phases, high level
abstraction enhances the usability of the tool [3, 9, 11,16].

There have been a number of languages for fault injection. FAIL* is a fault
injection framework supported by a domain specific language that drives the



fault load distributions for Grid middleware [18]. FIG is supported by a domain
specific language that manages the errors injected to application/shared library
boundary [3]. Orchestra and Genesis2 use scripts to describe how to inject fail-
ures into TCL layers and service level respectively [6, 12]. LFI is supported by
a XML-based language for introducing faults into the libraries [16]. EDFI is
a LLVM-based tool supporting a hybrid (dynamic and static) fault model de-
scription in a user-controlled way through command line inputs [8]. However,
the aforementioned languages do not provide high level abstractions, and hence
developing a new fault model (or scenario) is non-trivial. PREFAIL proposes a
programmable tool to write policies (a set of multiple-failure combinations) for
testing cloud applications [11]. Although its supporting language provides high
level abstractions, the abstracted modules only manage the failure locations, and
do not provide any means to describe new failure types.

4 System overview

In this paper, we present FIDLFI: a programmable fault injection framework,
which improves upon the previous work in both extensibility and high level
abstraction. FIDLFI enables programmability of compiler-based SFI tools, and
consists of two components: a SFI engine to manage fault injection, and FIDL
as SFI driver to manage fault scenarios. It enables testers to generate aggregate
fault models in a systematic way, and examine the behavior of the Application
Under Test (AUT) after introducing the fault models.

We built the FIDL language to be independent from the language used in the
fault injector, which is C++. This enables decoupling the SFI engine and FIDL.
Figure 1 indicates the FIDLFI architecture, and the way both pieces interact
with each other. The tester describes a fault scenario (new failure mode or a set
of multiple failure modes’ combinations) in FIDL script, and feeds it into the
FIDL core, where it is compiled into a fault model in the C/C++ language. The
generated code is automatically integrated into the SFI engine’s source code. It
enables the SFI engine to test AUT using the generated fault model.

In the rest of this section, we first explain how we design aspects in FIDL
to specify the fault model, and then, present the algorithm to weave the models
into the fault injector.

Fig. 1: FIDLFI architecture



4.1 FIDL Structure

FIDL represents the fault models in a granular fashion. We reflected the granu-
larity in the fault model by designing it in the form of distinguishable modules,
in which the associated attributes are described. The main attributes of a fault
model includes fault type (what to inject), and fault location (where/when to
inject) that forms the basis of the model.

A FIDL script is formed of four core entities; Trigger, Trigger*, Target and
Action, each of which represents a specific task toward fault model design. Once
a FIDL script is executed, the FIDL algorithm creates two separate modules
(fault trigger and fault injector). Trigger, Trigger* and Target are entities which
are representative for responding to the where to inject question in fault model
design. For simplicity, we call all three entities as Triggers. Triggers provide
the required information for FIDL algorithm to generate fault trigger module.
Triggers are like programmable monitors scattered all over the application in
desired places to which FIDL can bind a request to perform a set of Actions.
An Action entity represents what to be injected in targeted locations, and is
translated to fault injector module by the FIDL algorithm.

We use the terms instruction and register to describe the entities, as this
is what LLVM uses for its intermediate representation (IR) [13]. The FIDL
language can be adapted for other compiler infrastructures which use different
terms.

Trigger identifies the IR instructions of interest which have previously been
defined based on the tester’s primary metrics or static analysis results.

Trigger: <instruction name >

Trigger* selects a special subset of identified instructions based on the
tester’s secondary metrics. This entity enables the tester to filter the injection
space to more specific locations. Trigger* is an optional feature that is used when
the tester needs to narrow down the Trigger-defined instructions based on spe-
cific test purposes, e.g, if she aims to trigger the instructions which are located
in tainted paths.

Trigger*: <specific instruction indexes>

Target identifies the desired register(s) in IR level (variable or function ar-
gument in the source code level).

Target: < function name :: register type >

Register type can be specified as one of the following options;

dst/RetVal/src (arg number)

in which dst and src stand for destination and source registers of selected in-
struction respectively, and RetVal refers to the return value of the correspond-
ing instruction. For example fread:: src 2 means entry into 3rd source register



of fread instruction, and similarly src 0 means entry into 1st source register of
every Trigger-defined instruction.

Action defines what kind of mutation is to be done according to the expected
faulty behavior or test objectives.

Action: Corrupt/Freeze/Delay/SetValue/ Perturb

Corrupt is defined as bit flipping the Data/Address variables.Delay and
Freeze are defined as creating an artificial delay and creating an artificial loop
respectively, and Perturb describes an erroneous behavior. If Action is specified
as Perturb, it has to be followed by the name of a built-in injector of the SFI
tool or a custom injector written in the C++ language.

Action : Perturb :: built-in/custom injector

4.2 Aspect Design

We design aspects (advice and point-cut) using FIDL scripts. FIDL scripts are
very short, simple, and use abstract entities defined in the previous section.
This allows testers to avoid dealing with the internal details of the SFI tool or
the underlying compiler (LLVM in our case), and substitutes the complex fault
model design process with a simple scripting process. As indicated in Fig 2, FIDL
core weaves the defined aspects into LLFI source code by compiling aspects into
fault triggers and fault injectors, and automatically integrating them into LLFI.

Fig. 2: (a) Aspect-oriented software development [7], (b)FIDL as an AOP-based
language.

Algorithm 1 describes how FIDL designs aspects, and how it weaves the
aspects into LLFI source code. For the instructions that belong to both Trigger
and Trigger* sets (line 1), algorithm 1 looks for the register(s) that are defined
in Target (line 2). Every pair of instruction and corresponding register provides
the required information for building PointCut (line 3). FIDL takes the Action
description to build Advice (line 4), that is paired with PointCut to form a FIDL
aspect (line 5). Now, algorithm 1 walks through the AUT’s code, and looks for
the pairs of instruction and register(s) that match to those of PointCut (line 8).
Then, it generates the fault trigger and fault injector’s code in C++ (line 9, 10).
Fault trigger is a LLVM pass that instruments the locations of code identified
by PointCut during compile time, and fault injector is a C++ class that binds
the Advice to the locations pointed to by PointCut during run time.



Algorithm 1 FIDL weaver description

1: for all insti ∈ (Trigger ∩ Trigger∗) do
2: for all regj ∈ Target do
3: PointCut[i, j]← [insti, regj ]
4: Advice← Action
5: Aspect← [Advice, PointCut[i, j]]

6: Iterate all basic blocks of AUT
7: for all [instm, regn] ∈ AUT do
8: for all [instm, regn] =PointCut[i, j] do
9: FaultTriggerk ← PointCut[i, j]

10: Generate FaultInjector from Advice

5 Evaluation metrics

We propose three metrics for capturing the efficiency of our programmable fault
injection framework, (1)complexity, (2)time overhead, and (3)implementation
overhead. We apply these metrics to the SFI campaign that utilizes different
fault models across multiple AUTs. For each metric, we compare the corre-
sponding values in FIDL with the original fault injectors implemented in the
LLFI framework (in C++ code). Before we explain the above metrics, we de-
scribe the possible outcomes of the fault injection experiment across AUTs as
follows:

– Crash: Application is aborted due to an exception.
– Hang : Application fails to respond to a heartbeat.
– SDC (Silent Data Corruption): Outcome of application is different from

the fault-free execution result (we assume that the fault-free execution is
deterministic, and hence any differences are due to the fault).

– Benign: None of the above outcomes (observable results) with respect to
either fault masking or non-triggering faults.

Complexity is defined as the effort needed to set up the injection campaign
for a particular failure mode. Complexity is measured as time or man hours
of uninterrupted work in developing a fault model. Because this is difficult to
measure, we calculate instead, the number of source Lines Of Code (LOC) asso-
ciated with a developed fault model [22]. We have used the above definition for
measuring of both OFM’s and FFM’s complexities. OFM (Original Fault Model)
is the fault model which is primarily developed as part of the LLFI framework
in C++ language. FFM (FIDL-generated Fault Model) is the fault model which
is translated from FIDL script to C++ code by the FIDL compiler (our tool).

Time overhead is the extra execution time needed to perform fault-free (pro-
filing) and faulty (fault injection) runs respectively compared to the execution



time of AUT within our framework. To precisely measure the average time over-
head of each SFI campaign, we only include those runs whose impact are SDCs,
as the times taken by Crashes and Hangs depend on the exception handling
overheads and the timeout detection mechanisms respectively, both of which are
outside the purview of fault injections. We also exclude the benign results in
time overhead calculations, because we do not want to measure time when the
fault is masked as these do not add any overhead.

Implementation overhead is the number of LOC introduced by the trans-
lation of the FIDL scripts into C++ code. The core of FIDL includes a FIDL
compiler written in Python, and three general template files to translate FIDL
scripts to respective fault trigger and fault injector modules. FIDL core’s is less
than 1000 (Lines of Code) LOC. However, FIDL uses general templates to gen-
erate fault models’ source code, which introduces additional space overhead. To
measure this overhead, for every given fault model, we compared the original
LOC of OFMs and those of FIDL-generated ones.

6 Evaluation

6.1 Experimental setup

Fault models: Using FIDL, we implemented over 40 different fault models
that had originally been implemented in LLFI as C++ code 2. However, due to
time constraints, we choose five fault models for our evaluation, namely Buffer
overflow, Memory leak, Data corruption, Wrong API and G-heartbleed (Details
in Table 1). We limited the number of applied fault models to 5, as for a given
fault model, we need to perform a total of 20,000 runs (two types of campaigns
(2*2000 runs) with and without FIDL, across 5 benchmarks) for obtaining sta-
tistically significant results, which takes a significant amount of time.

Table 1: Sample fault model description
Fault model Description

Buffer overflow The amount of data written in a local buffer exceeds the amount
of memory allocated for it, and overwrites adjacent memory.

Data corruption The data is corrupted before or after processing

Memory leak The allocated memory on the heap is not released though its not
used further in the program.

Wrong API Common mistakes in handling the program APIs responsibility for
performing certain tasks such as reading/writing files.

G-heartbleed A generalized model of the Heartbleed vulnerability, that is a type of
buffer over-read bug happening in memcpy(), where the buffer size
is maliciously enlarged and leads to information leakage [20]

2 Available at: https://github.com/DependableSystemsLab/LLFI



Target injection: We selected five benchmarks from three benchmark suites,
SPEC [10], Parboil [19], and Parsec [2]. We also selected the Nullhttpd web
server to represent server applications. Table 2 indicates the characteristics of
benchmark programs. The Src-LOC and IR-LOC columns refer to the number
of lines of benchmark code in C and LLVM IR format respectively. In each
benchmark, we inject 2000 faults for each fault model - we have verified that
this is sufficient to get tight error bars at the 95% confidence intervals.

Table 2: Characteristics of benchmark programs
Benchmark Suite Description Src-LOC IR-LOC

mcf SPEC Solves vehicle scheduling problems planning 1960 5054
transportation

sad Parboil Sum of absolute differences kernel, used in 1243 3700
MPEG video encoder

cutcp Parboil Computes the short range components of 1645 4200
Coulombic potential at grid points

blackscholes Parsec Option pricing with Black-Scholes Partial 1198 3560
Differential Equations

null httpd Nulllogic A multi-threaded web server for Linux and 2067 6930
Windows

Research Questions: We address three questions in our evaluation.
RQ1: How much does FIDL reduce the complexity of fault models?
RQ2: How much time overhead is imposed by FIDL?
RQ3: How much implementation overhead is imposed by FIDL?

6.2 Experimental Results

Figure 4 shows the aggregate percentage of SDCs, crashes and benign fault
injections (FI) observed across benchmarks for each of the fault models. We find
that there is significant variation in the results depending on the fault model.

Complexity (RQ1): For each of the fault models, we quantitatively mea-
sure how much FIDL reduces the complexity of fault model development in our
framework. Table 3 compares LOC of original fault models primarily developed
in the C++ language, and fault models described in FIDL scripts. As can be
seen, the LOC of FIDL scripts is much smaller than OFM ones, e.g, 10 LOC
of FIDL script against 112 LOC of C++ code for developing G-heartbleed fault
model. Thus, FIDL considerably reduces the fault model complexity by 10X, or
one order of magnitude, on average, across fault models.

Time overhead (RQ2): Our first goal of time overhead evaluation is mea-
suring how much LLFI slows down AUTs’ execution by itself, even without FIDL.
Given an OFM, we measured the average execution time for both profiling and
fault injection steps, and computed the respective time overheads (TP and TF ).



Table 3: Comparing the complexity of FIDL scripts with original and FIDL-
generated fault models

Fault model OFM (LOC) FFM (LOC) FIDL script (LOC)

Buffer overflow 68 96 9

Memory leak 68 71 11

Data corruption 61 64 8

Wrong API 109 111 11

G-Heartbleed 81 112 10

We analyzed the results to figure out how time overhead varies for each fault
model across benchmarks. We find that both TP and TF increase when the
number of candidate locations for injecting the related fault increases, especially
when the candidate location is inside a loop. For example, the number of mem-
ory de-allocation instances(free() calls) within cutcp and mcf benchmarks are
18 and 4 respectively, and as can be seen in Fig 3(c), the associated TF and TP
varies between 161-196% and 59-115% for these benchmarks. In this figure, the
maximum and minimum time overhead are related to the sad and blackscholes
with respective maximum and minimum number of free() calls.

Secondly, we aim to analyze how FIDL influences the time overhead. To do so,
we repeated our experiments using FIDL-generated fault models, and measured
the associated time overhead across benchmarks. As shown in Fig 3, the time
overhead either shows a small increase or does not change at all. We also find that
there is a positive correlation between the increased amount of time overhead
and the additional LOC that FFMs introduce. For example, the G-heartbleed
fault model imposes the maximum increase in time overhead (6.7%), and its
implementation overhead has the highest value (21 LOC).

Implementation overhead (RQ3): We measured FIDL-generated failure
modes (FFM ) to calculate the respective implementation overhead in terms of
the additional LOC (Table 3). We find that the implementation overhead for the
selected fault models varies between 3-18 percent. As mentioned earlier, we find
that the associated time overhead for the respective fault model with maximum
implementation overhead is 6.7% , which is negligible.

7 Summary

In this paper, we proposed FIDL (fault injection description language) that
enables the programmability of compiler-based Software Fault Injection (SFI)
tools. FIDL uses Aspect-Oriented Programming (AOP) to dynamically weave
new fault models into the SFI tool’s source code, thus extending it. We compared
the FIDL fault models with hand-written ones (in C++) across five applications
and five fault models. Our results show that FIDL significantly reduces the
complexity of fault models by about 10x, while incurring 4-18% implementation
overhead, which in turn increases the execution time of the injector by atmost
7% across five different programs, thus pointing to its practicality.



Fig. 3: Comparing Time overhead (%) of selected fault model across benchmarks;
(a)buffer overflow , (b) data corruption , (c) memory leak , (d) G-heartbleed,
(e) Wrong API.

Fig. 4: Distribution(%) of aggregate impact types of sample fault models over
5 programs; (a) data corruption , (b) buffer overflow , (c) memory leak , (d)
Wrong API , (e) G-heartbleed.
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