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Abstract— Silent data corruptions (SDCs) are one of the most
critical issues in modern HPC systems, as they are “silent”
by definition and raise no warnings to users and application
developers that a calculation has been corrupted. A significant
amount of effort has been made to characterize, detect, and
tolerate SDCs. However, current approaches do not share the
same understanding of SDC, hence it is not only difficult to
evaluate their effectiveness, but also to compare with each other.
This position paper argues that SDCs should be discussed at
each layer of the system and are confined within the goal of
the approach. We provide a preliminary result to differentiate
data corruptions across system layers, and show that application-
specific correctness checks can tolerate about 50% of the errors
that appear in the application output.
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I. INTRODUCTION

Hardware faults are one of the major issues future HPC

systems face [1], [2], and are estimated to become an even

more pressing issue at exascale [3]. Silent data corruptions

(SDCs) are considered as one of the most serious outcome

types of hardware faults for HPC systems and applications.

For example, the computational results of an application can

be corrupted due to hardware faults and returned to the

users without any notification. Given the application domains

massive supercomputers are used for (climate, energy, national

security, scientific discovery, etc.) and the real-world impli-

cations of making decisions based on corrupted outputs, it is

easy to see how dealing with correctness is challenging. While

most HPC applications use checkpoint/restart to recover from

detectable failures, this technique cannot cover undetectable,

silent corruptions (SDC). Protecting a system and/or an ap-

plication from SDCs requires additional techniques which

incur overheads in the hardware (such as higher voltages,

2A portion of work was performed at the Ultrascale Systems Research
Center (USRC) at Los Alamos National Laboratory, supported by the U.S.
Department of Energy contract DE-FC02-06ER25750. The publication has
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additional die area used for redundancy), in the software (such

as algorithm-based fault tolerance and invariant checking), or

as a combination of both.

There is a long list of studies exploring solutions to mitigate

the impact of hardware faults and focusing on SDCs. It is

typical for these studies to balance between effectiveness

(detection and coverage) and the overhead incurred. This is

particularly demonstrated in the scope of software-based fault

tolerance approaches such as [4]–[16]. However, although

these studies all use “SDC” to refer to silent deviations from

the data’s correctness, several categories can be observed in

terms of different levels of correctness. For example:

1) An SDC is classified as whether the application output

is different from the golden run [4], [7]–[9], [11]. A

“golden run” is a previously known to be correct execu-

tion of the application with a set of output information

that are checked for bit-for-bit equality (Class I).

2) An SDC is classified as whether the application out-

put does not pass an application-specific correctness

check [6], [10], [12], [17] (Class II).

3) An SDC is classified as whether the application state

(i.e., not the final output) violates program-level prop-

erties such as a numerical threshold or an invariant

check [5], [13]–[16] (Class III).

Importantly, approaches that focus on different program data

may result in wildly different estimation of their occurrence

(thus leading to different risk estimated). Additionally, since

SDCs are being classified in different ways, it is not obvi-

ous that how one can directly compare approaches that use

different classifications. For example, if a simple application-

specific correctness check only considers the correctness of

a floating-point result up to 3 digits after the decimal point,

then it would be more tolerant than a general method that

performs binary comparison on the program outputs. This can

also impact the evaluation of an application’s error detection

efficiency. For example, both SDCTune [6] and SWIFT [9]
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use heuristic-based instruction-level duplication and program

analysis to detect errors (i.e. data corruptions), but the former

evaluates SDC detection coverage using an application-level

specific correctness check, if one is provided (Class II), while

the latter simply checks if the output differs from the golden

run (Class I). This leads to a gap in SDC detection coverage.

Therefore, in this paper, we confine ourselves to discussing

silent data corruptions from architectural states (i.e. memory)

that directly expose program data to the application specific

layer. We provide a classification of prior studies in the context

of the whole system stack. We believe that the classification

can help researchers from different backgrounds (i.e working

at different layers of the system stack) be aware of the

boundary of each layer and reason about the error resilience

characteristics of systems/programs given the SDCs that occur

at a specific layer, which can eventually enable cross-layer

fault tolerance analysis when protecting the system from

SDCs.

II. SURVEY: RELATED WORK AND CLASSIFICATION

Figure 1 shows a simplified version of components in a

typical computer system that includes the memory system,

the operating system and the executed applications. While

the microarchitectural layers certainly have corruptions that

do not propagate to higher levels of the system, in this work,

we only consider the faults that transfer from this layer into

the memory layer. The shrinking size of the squares along

the data path in the computing system implies the inherent

fault masking from lower layers to the top, which relates to

the application-specific correctness verification. In this section,

we discuss some studies that provide important insights about

the fault tolerance characterization and mechanisms for each

layer along the data path.

memory 

operating system

applications

H/W S/W 
boundary

system call

data path

Fig. 1: A software view of the data path in the computing

system. The operating system layer is marked with a dotted

line because techniques that have operating system support

are outside the scope of this paper. Memory is the interface

between the architectural states and applications.

Memory layer Checking memory states for data corruption

is an effective way to see if a hardware fault escapes from

microarchitectural masking and affects the program execution.

Recently, Ashraf et al. [18] proposed a fault propagation

model to track transient hardware faults within a process and

across MPI processes until they reach the memory units. Their

model computes both the potentially-corrupted value when the

memory gets affected by a fault and its pristine value, and

compares them when the value gets stored in the memory.

Another study performed by Wang et al. [19] compares all

the architectural state (memory, PC and register) between

the reference simulation and a fault-injected simulation of a

program to determine the effects of a fault that flips a program

branch.

System call A system call is the channel for applications to

communicate with the underlying operating system, and also

for the operating system to pass information to the application.

Therefore, monitoring system calls can be a direct approach

to check if a fault propagates to program-visible states from

the memory layer. Shye et al. [20] propose a software-centric

technique that replicates processes of a program to perform

fault detection and recovery. In particular, it emulates the

system calls on redundant processes, and compares the output

and parameters of emulated system calls as one of the fault

detection mechanisms. This process level redundancy (PLR)

technique demonstrates the effectiveness of the fault tolerance

approach on the system call level to provide an accurate

conservative error detection mechanism.

Application layer - output Scientific applications report

their final computational results in I/O devices and/or in

files. To check if a hardware fault affects the output of an

application, many studies such as [4], [8], [11], [21], [22] use

binary comparison of outputs between the fault-free run and

faulty runs as a common practice. That is, any difference in

bits of two outputs is considered as a deviation from the correct

output.

Application layer - application-specific correctness check
Another approach is where applications define an “unaccept-

able result” in a way that the final output or even intermediate

states/outputs do not pass some pre-defined checkers. These

checkers, depending on the application, can be numerical

thresholds, physical properties or rules derived from algorithm-

invariants. A typical and common example of such acceptance

test is for generic floating-point calculations where fault mask-

ing can occur for certain bit positions and operations [23]. For

example, High Performance Linpack (HPL) solves a linear

system of order n using LU decomposition [24] and tests

the correctness of the result by checking the residual of the

linear system as a norm-wise backward error based on [25].

Such residual calculation potentially may not easily distinguish

transient errors from round-off errors that occur in floating

point computation. A more application-specific example of

the correctness check is the Livermore Unstructured Lagrange

Explicit Shock Hydro( LULESH) [26] which represents a

typical numerical algorithm and data motion in many scientific

applications. LULESH defines three metrics and their correct-

ness requirements [26]: a) the number of iterations should be

exactly the same as expected, b) the final origin energy after

the simulation should be correct to at least 6 digits, and c) the

three measures of symmetry should all be 10−8 or smaller in
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double precision floating point.

In summary, hardware faults can affect different layers in

the system, but whether or not they affect the system as a

whole depends on what and how the impact is made on each

system layer by the fault. It is possible to observe mismatches

during fault tolerance characterization across layers because

of the different fault masking characteristics. Understanding

this effect is significantly important for HPC systems and

applications. For example, error detection mechanisms that

detect erroneous states of a program can use the understanding

of such cross-layer fault masking to improve the overall

efficiency by checking if a detected error is actually going

to lead to an application unacceptable result. Similarly, check-

point/recovery schemes based on anomaly data monitoring can

also determine if a roll-back is needed by predicting the final

outcome of an intermediate data corruption.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we perform a preliminary study to inves-

tigate how much data corruption changes across layers. Our

hypothesis is that the amount of hardware faults that propagate

from the memory layer to the application layer in the system

is likely to reduce across the layers. To test our hypothesis

and study how many errors are masked at each layer of

the system, we conduct fault injection experiments on three

HPC applications which are part of the DOE (Department of

Energy) mini-apps, namely HPL, LULESH and CLAMR [27].

For cross-layer analysis, we compare the final states of the

memory layer and the application layer between a fault-

injected run and the fault-free run to check if any difference

is caused by fault injection1.

First, we provide detailed information about the fault injec-

tion experiments, and then we discuss the results.

Fault model: We model faults that affect the architectural

states of a program such as register files and memories. In

particular, we randomly select one instruction during execution

of a program and inject a single-bit flip fault into the destina-

tion register of that instruction, or the register that stores the

memory address. We only consider faults that are read by the

program as activated faults - this is similar to prior work.

Outcome: We categorize the final outcome of a program

after fault injection into benign (correct/acceptable results),

crash, hang and SDC (in this paper, we consider data corrup-

tions that cause the application to fail the application specific

correncess check). In addition, we also measured how many

times the injected faults cause data corruptions in the program

output. Table I defines the output and the application-specific

check used in this paper for each application. To determine if

a program output is corrupted, we use binary comparison as

discussed earlier.

Experimental setup: We run all applications in sequential

mode with a fault injection tool called PINFI [28], which is

based on the Intel dynamic instrumentation tool PIN [29].

1We combine the output of the write() system calls and the stdout to form
the program output

For each benchmark, 3,000 activated fault injection runs

are conducted to gain a statistical significant estimation (we

calculated error bars at the 95% confidence interval).
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Fig. 2: The fault injection results on three HPC mini-apps.

Hangs are less than 1% across all three benchmarks.

Figure 2 shows the fault injection results for three HPC

applications. Crashes and benigns are the most dominant types

of outcomes, and hangs constitute the smallest category, which

are less than 1% across all benchmarks. In terms of SDCs,

which we define as outcomes that do not pass the application-

specific correctness check, CLAMR has the lowest SDC rate

among the three (4.5%). On the other hand, in HPL nearly

33% of fault injection runs lead to SDCs. The reason for

such a huge difference is likely that HPL implements LU

decomposition which is a direct solver, while the other two

are based on iterative behaviors which have the tendency to

mask transient errors algorithmically.
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Fig. 3: The percentages of data corruptions across system

layers for three HPC applications. The 95% confidence in-

terval is shown for the estimation in each level. Cases where

corruptions are in output (defined in Table I) is categorized

into ‘Output’, and cases where the program results do not

pass the application-specific correctness check are categorized

into ‘App-specific’.

Figure 3 shows that the portions of faults causing data
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TABLE I: Application output and application-specific correctness check for each application.

Applications Output Application-specific correctness check

LULESH
Number of iterations
Final origin energy
Measures of symmetry

Number of iterations: exactly the same
Final origin energy: correct to at least 6 digits
Measures of symmetry: smaller than 10−8

HPL Solution vector x Residual check on x

CLAMR
Number of cell units
Mass change per iteration

Threshold for the mass change per iterationa

a https : //github.com/losalamos/CLAMR/blob/master/clamr cpuonly.cpp : 443

corruptions for each layer of the three mini-apps. We do not

consider the cases where faults lead to crashes as they are

essentially system level detection. Overall, there is a significant

amount of fault masking between memory level and output

level, and a relatively smaller amount of fault masking between

output and the application-level checks (i.e., SDCs), depending

on the application. For example, in LULESH 63% of fault

injection runs (out of 3,000) lead to non-crash outcomes, and

62% out of 3,000 (i.e. 99% of non-crash runs) cause mem-

ory corruptions, 30% out of 3,000 cause output difference,

and 17% out of 3,000 actually lead to unacceptable results

(i.e., SDCs). For all three applications, the average difference

between the memory corruption rate and the SDC rate is

46%, which means that 46% of 3,000 runs a fault that causes

memory corruptions would not impact the final correctness of

these applications. In addition, the average difference between

output corruption rate and the SDC rate is about 12%. This

indicates that in average around 50% of output corruptions

do not lead to SDCs for three mini-apps. For many studies

that use the program output to represent the correctness of

programs [5], [7]–[9], [11], [20], this gap may essentially

affect the effectiveness of their techniques, as if application-

specific correctness checks are employed.

Using relatively simple experiments and tools on proxy-

apps, we have shown that differing rates of “SDC” can be ob-

tained depending on the level at which the SDC is considered.

It is important that discussions of this topic are precise, and are

clear at what layer the SDC is being considered, as there are

a number of different strategies for tolerating data corruption.

Without this clarity, it is difficult to reason about the insights

of vulnerabilities to “SDC” provided by such techniques.

IV. CONCLUSION

In this paper we argue that fault tolerance and resilience

characterization techniques need to classify SDCs with respect

to the level of the system stack where the measurements were

conducted. Cross-layer analysis is important, and more em-

phasis needs to be placed on this aspect to effectively evaluate

the impact of SDC on systems. We discuss several important

studies which look at these different ways of classifying SDC.

Using three sample HPC workloads, we demonstrate the the

determination of how tolerant (or not) the applications are

depends largely on where the detection is done. Evaluating

SDC rates by observing applications running in production can

be useful but using application specific correctness checking

as a metric can make it complex to determine the SDC rates

seen at lower layers of the system due to the masking effects.

We hope that this position paper is useful to both practitioners

and researchers to emphasize the importance of clarity in this

area.

As future work, we want to expand the scope of the

applications considered, as well as the application-specific

checks. Our ultimate goal is to provide a detailed character-

ization of different applications and their correctness checks

to understand how much the SDC rate varies based on these

factors, and develop efficient fault tolerance techniques for

these applications.
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