
IOT: Formal Security Analysis of Smart Embedded
Systems

Farid Molazem Tabrizi and Karthik Pattabiraman

University of British Columbia

Vancouver, BC, Canada

{faridm, karthikp}@ece.ubc.ca

ABSTRACT
Smart embedded systems are core components of Internet of
Things (IoT). Many vulnerabilities and attacks have been
discovered against di↵erent classes of IoT devices. There-
fore, developing a systematic mechanism to analyze the se-
curity of smart embedded systems will help developers dis-
cover new attacks, and improve the design and implemen-
tation of the system. In this paper, we formally model the
functionalitiy of smart meters, as an example of a widely
used smart embedded device, using rewriting logic. We also
define a formal set of actions for attackers. Our formal model
enables us to automatically analyze the system, and using
model-checking, find all the sequences of attacker actions
that transition the system to any undesirable state. We
evaluate the analysis results of our model on a real smart
meter, and find that a sizeable set of the attacks found by
the model can be applied to the smart meter, using only
inexpensive, commodity o↵-the-shelf hardware.

Keywords
IoT, security analysis, formal model, Smart Meters

1. INTRODUCTION
The Internet of Things (IoT) is a collection of network-

enabled physical objects that are embedded with sensors and
software, and collect and exchange data [41]. Implanted
medical devices, modern cars, and smart grids are examples
of widely-used IoT systems. They are equipped with net-
worked embedded devices that carry out critical tasks, and
hence, are targets for malicious users.

Problem: There are many vulnerabilities and attacks
that have been discovered against IoT devices such as smart
meters, modern cars, and medical devices [11, 32, 20, 61,
30, 27, 25, 19]. However, most of these attacks were discov-
ered in an ad-hoc or opportunistic manner, and may hence
not be comprehensive. Therefore, developing a systematic
mechanism to analyze the security of IoT devices will help

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c� 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

developers discover the attacks, improve the design or im-
plementation of the system, and find e�cient ways to build
security mechanisms to detect the attacks.

Existing solutions: Prior work for analysis of attacks
against software systems falls into three classes: 1) attack
trees [52, 36], 2) attack patterns [21, 22], and 3) attack
graphs [54, 26, 12, 50]. These techniques may be used with
known attacks and vulnerabilities. With these techniques,
the security analyst builds a model of specific attacks, and
analyzes the steps required to apply them. Thus, they re-
quire knowledge of the attacks that can be mounted. How-
ever, for modern embedded devices such as smart meters,
there is no exhaustive database of attack vectors available,
and creating such a database is di�cult as new threats con-
tinue to be discovered against them. Also, as new IoT de-
vices emerge, security analysis techniques that do not re-
quire knowledge of known attacks become necessary.

Our approach: To demonstrate our approach, we picked
smart meters as a testbed. Smart meters are key compo-
nents of the smart grid. They are installed at homes/busi-
nesses, calculate electricity consumption, and communicate
with the utility server. It is estimated that by the end of
2016, the worldwide revenue of smart grids will exceed $12
billion [24]. The large scale deployment of smart meters and
the criticality of their operations, make smart meters and
their security an important concern [28, 48, 62, 37].

In this paper, we develop a three step approach for secu-
rity of smart meters. In the first step, we build a formal
model of smart meters, capturing its main functions. In the
second step, we also formally define a primitive set of actions
for attackers. This set may include the attacker dropping
packets, replaying messages, etc. Note that these actions
are not standalone attacks, but rather the capabilities of
the attacker that are building blocks of attacks. In the third
step, we perform automated search (using model checking)
to find out whether it is possible for the attacker to apply a
sequence of the primitive actions, and transition the system
into an unsafe state. An unsafe state is any state for which a
user-defined security invariant does not hold. For example,
in a smart meter, a state where consumption data is lesser
than zero is unsafe as it may result in incorrect billing.

The search of the formal model guarantees that, within
the state space of the model, all possible scenarios or at-
tacks that may cause the system to transition to an unsafe
state are discovered. Therefore, in contrast to existing tech-
niques, we do not need to have prior knowledge of attacks
against the system to evaluate its security. To the best of
our knowledge, we are the first to systematically analyze the

security of a real-world IoT device using formal techniques,
without requiring prior knowledge of the attacks.

Challenge: Existing papers on formal security analysis
target systems with well-defined properties (such as commu-
nication protocols) [34, 16, 40], or specific implementations
of an application [47]. These systems have standard prop-
erties (e.g., in the form of RFCs), which can be formally
defined. Many IoT devices do not have such standard im-
plementations that we can translate to a formal model. For
these systems, we have to find an appropriate abstraction
level that is applicable to di↵erent implementations. This is
challenging as a very low-level model results in state space
explosion [60], while a very high-level model cannot be eas-
ily mapped to a specific implementation. For example, in
a smart meter, di↵erent sensor channels measure their own
consumption data. This data, which is communicated be-
tween the components of the meter, may be formally mod-
eled as a stream of bits. Any change to this data may be
modeled as flipping one or more bits. This model can rep-
resent all the changes an attacker may potentially make.
However, for a 32 bit data stream, the search space of the
model will exceed 4 billion states.

To address the above challenge, we examined the design
documents of smart meters, the type of access the adver-
saries have to the device, and attacks against smart meters
presented in prior work [44]. We observed that these at-
tacks are the results of specific accesses that the adversary
has to the device. For example, changing the order of the
meter’s operations, or controlling the availability of network
connection. These let the adversary exploit loopholes in the
design-level architecture of the smart meter. We take advan-
tage of this observation and identify the components that are
targeted by the adversary and are generally present in vari-
ous models of smart meters, and formally model them. For
example, the communication interface between the sensors
and gateway board in a smart meter is an important com-
ponent. An adversary may drop or replay messages passing
through this interface. Given this action, modeling the data
as a sequence of tuples (indicating sensor channel and con-
sumption data, as opposed to raw bit-streams) enables us
to significantly reduce the search space and still model the
attacker operations. This allows us to analyze the smart me-
ter in a reasonable amount of time and find attacks against
real smart meters (see sec.5).

Contributions of the paper: We make the following
contributions:

• We build a formal model of a smart meter in Rewrit-
ing logic, using the abstract model of a smart meter
presented in Molazem et al.[44], which represents the
generic operations of a smart meter. We consider the
use cases and specifications developed for smart me-
ters by the corresponding utility providers [2, 17, 18].
Hence, our formal model does not depend on a specific
implementation of the smart meter.

• We develop a formal model of capabilities of the at-
tacker for a generic smart meter also in Rewriting logic.
The attacker may use a sequence of these capabilities
to mount sophisticated attacks on a smart meter.

• We use model-checking on the two models to automat-
ically find sequences of actions that may take the sys-
tem into an unsafe state. These sequences correspond
to the attacks found against the smart meter.

• Using o↵-the-shelf, inexpensive equipment, we experi-
mentally validate the attacks found on an open source
smart meter: SEGMeter [55]. We find that the attacks
found by the model checker represent both design-level
and implementation-level bugs in the smart meter that
cause it to lose data and get stuck in an infinite loop.
The attacks were found by the model checker within a
couple of hours on a regular desktop computer.

2. RELATED WORK
Below we discuss 1) technologies that may be used to pro-

vide security for smart meters and, 2) techniques for per-
forming automated security analysis, and their limitations.

2.1 Techniques for building security mecha-
nisms

Hardware-based techniques: Hardware based ap-
proaches provide security through special hardware mod-
ules, such as a Trusted Platform Module (TPM) [51]. For
embedded systems, pushing the security down to the hard-
ware level has three disadvantages. First, TPMs incur high
cost. Using them in millions of embedded systems makes
their use an expensive proposition [5]. Second, hardware
based solutions are di�cult to update. Finally, the memory
and power limitations of embedded systems make the use of
TMP-based techniques challenging [28].

Intrusion detection systems (IDS): Berthier et. al.
[8] formulate a set of guidelines to build IDSes for AMI, and
in follow-up work, propose an network-based IDS [9] satis-
fying the guidelines. Their IDS monitors the communication
links and detects abnormality in the tra�c according to a
previously built model. Network-based IDSes however, can-
not fully secure embedded systems, as they may have false
negatives that allow attackers to bypass the security mech-
anism by exploiting software vulnerabilities. Mohan et. al.
[43] propose a host-based IDS running on a Hypervisor, for
embedded systems equipped with multicore processors. This
IDS runs on a dedicated core, and monitors the controller
of the system, which is running on the other cores. How-
ever, their approach may only be applied to devices that
are equipped with multicore processor and a Timing Trace
Module (TTM), a special hardware module for obtaining
accurate timing information. In prior work [56], we have
proposed a host-based IDS for smart meters subject to its
memory limitations. However, we manually performed the
security analysis for building the IDS, which is error prone.

Remote attestation: Software verification techniques
such as virtualization-based remote attestation suggested by
LeMay et. al. [31], Pioneer [53], and oblivious hashing [13]
verify the integrity of software on a third party machine by
executing an instance of the program on a remote server.
These techniques require the embedded system to be con-
nected to the network at all times and maintain a fast and
reliable connection to the server. Also, the network inter-
face must be constantly active to perform attestation, which
consumes substantial power. These are limiting factors for
embedded devices which may be mobile, in isolated places,
or working on limited battery. Moreover, remote attestation
does not ensure that the software running on the device is
free of vulnerabilities that may be exploited by an attacker.

Summary: Existing security technologies do not address
the limitations of IoT devices such as scalability and hard-
ware constraints. Therefore, we need to develop techniques

for security analysis of IoT devices to be able to make them
more secure.

2.2 Techniques for analyzing attacks
Attack patterns: Attack patterns capture the common

methods for exploiting system vulnerabilities. Each attack
pattern encapsulates information including attack prerequi-
sites, targeted vulnerabilities, attacker goals, and resources
required. Thonnar et. al. [58] study a large dataset of net-
work attacks to find the common properties of some of the
attacks. They develop a clustering tool and apply them on
di↵erent feature vectors characterizing the attacks. Gegick
et. al. [22] encode attacks in the attack database and use
them in the design phase to identify potential vulnerabili-
ties in the design components. Fernandez et. al. [21] study
the steps taken to perform a set of attacks and abstract the
steps into attack patterns. They study Denial of Service
(DoS) attacks on VoIP networks and show that their pat-
terns can improve the security of the system at design time,
and help security investigators trace the attacks.

Although integrating attack patterns into the software de-
velopment process improves the security of the software, it
has two disadvantages. First, attack patterns are often at
a high level of abstraction, and require significant manual
e↵ort to apply. Second, for new systems such as smart me-
ters, there is no well-known attack vector from which we can
develop attack patterns.

Attack trees: Attack trees are top-down hierarchical
structures in which lower level activities combine to achieve
the higher level goals. The final goal of the attacker is pre-
sented at the root. Byres et. al. [12] develop attack trees
for power system control networks. They evaluate the vul-
nerability of the system and provide counter measures for
improvements. McLaughlin et. al. [39] use attack trees for
penetration testing of smart meters. Morais et. al. [45] use
attack tree models to describe known attacks, and based on
the trees develop fault injectors to test the attacks against
the system. They test their analysis technique on a mobile
security protocol.

Attack trees are mainly designed to analyze predefined
attack goals. However, many security attacks are not tar-
geted and are based on the vulnerabilities that the attackers
opportunistically find in the system while testing it. In con-
trast, we are not bound to specific attack goals, and the user
of our model may plug-in their own goals, which they would
define as unsafe states of the system.

Attack graphs: Attack graphs have been mainly used
to analyze attacks against networked systems. They take
the vulnerability information of each host in a network of
hosts, along with the network information, and generate the
attack graph. Sheyner et. al. [54] and Jha et. al. [26] pro-
pose techniques for automatically generating and analyzing
attack graphs for networks. They assume that the vulnera-
bility information for each node is available. Based on this
information, they analyze the chains of attacks and their
e↵ects in the network.

To use attack graphs, the programmer needs the complete
set of known vulnerabilities on the host. If the hosts have
unknown vulnerabilities, the analysis will be incomplete. In
this sense, our work may complement this analysis - we pro-
vide security analysis for embedded devices at the node level
which may be used as inputs for attack graphs.

Formal analysis: Formal techniques have been used to

evaluate the security of computer systems [23]. For example,
Matousek et. al. formally verify security constraints on net-
works with dynamic routing protocols [34]. Delaune et. al.
analyze the security of PKCS#11, an API for cryptographic
devices [16]. Miculan et. al. formally analyze the security of
Signle-Sign-On (SSO) authentication protocols for Facebook
[40]. However, these techniques target protocols that have
a formal specification. Smart meters do not (yet) have a
formal specification that we can convert to a model and for-
mally analyze. Therefore, extending prior work for formally
analyzing security of smart meters is challenging.

Summary: Existing techniques for analyzing attacks against
embedded systems do not provide guarantees for finding all
the attacks within a search space. Also, they require a pre-
cise model of the attacks and hence, do not consider un-
known attacks. This is important for smart meters as they
are relatively new, and do not have a comprehensive attack
database. Further, given the long expected lifetime of the
meters and the fact that updating them is harder than up-
dating desktop systems, it is important to find vulnerabili-
ties for which there are no attacks yet. Therefore, we need
techniques that do not need a comprehensive and precise
database of attacks for analyzing their security.

3. BACKGROUND

3.1 Smart Meter
A smart meter is a networked device that measures elec-

tricity and communicates with a server. Smart meters have
three main components, as we explain below.

Control unit: Inside the meter, there is a Microcon-
troller that transfers data measured by the low-level meter
engine to a flash memory. The Microcontroller can save logs
of important events during the activity of the smart meter.

Communication unit: For the meters to be able to com-
municate with each other and the server, they are equipped
with a Network Interface Card (NIC). Meters can be con-
nected to in-home displays, programmable controllable ther-
mostats, etc. to form a Home Area Network (HAN). In each
area, smart meters will be connected to a collector through
field area network (FAN). This collector gathers all data and
communicates with the utility server through Wide Area
Network (WAN). The communication interface di↵ers from
region to region.

Clock: For the meters to have the capability of providing
time-of-use billing services, they are equipped with a real-
time clock (RTC). This clock should be synchronized with
the server clock on a regular basis to prevent any drift. This
is done through synchronization messages.

3.2 Threat model
Access: In this paper, we consider both physical and

network attacks against the meter. We assume that the ad-
versary has both read and write access to the communica-
tion interfaces of the meter (e.g., WiFi, LAN, serial interface
between the components of the meter). This is a realistic
assumption as smart meters are installed in locations (e.g.,
homes, business entities) accessible to people other than the
meter vendors. Due to financial benefits that can be gained
by tampering with the meter, the owners of the meter instal-
lations may act as the adversary as well. For example, open
source tools such as Termineter [57] allow communication
via the serial interface and optical probe, and sending/re-

Access Actions
- Tampering with the

cover seal
A1 Physical access - Observing visible

to the device indicators
- Disabling internal

battery
A2 Physical access to the

internal/external - Send/Receive data via
communication interfaces communication interfaces

A3 Access to a routing
node in the grid network - Dropping data packets

infrastructure

Table 1: Accesses and capabilities of the adversary

playing messages. Accessing the serial interface between the
control unit and communication unit of smart meters may
need the attacker to remove the seal of the cover of the me-
ter. However, it has been shown that it is relatively easy to
do so, and the attacker can erase any traces that the cover
has been removed [38]. We also assume that the attack-
ers may intercept communication of the meter, for example,
by obtaining root access to some node on the grid network.
This is a realistic assumption as it has been shown that the
complexity and the scale of smart grid infrastructure pro-
vides several entry points for attackers to obtain such access
[42]. However, the attacker does not require root access to
the smart meter itself.

Capabilities: We assume that the attacker is able to
drop/replay the messages sent to the smart meter, drop/re-
play messages sent or received between the control unit of
the meter and the network communication unit which is nor-
mally via a serial interface, and can restart the meter (e.g.,
by resetting the power) at a precise time. We do not require
the adversary to be able to decrypt any encrypted messages,
or to be able to spoof any cryptographic tokens. We do as-
sume however that they are capable of reverse-engineering
the meters’ binary code or getting access to its source code.
This is reasonable as security through obscurity (of the code)
is known to be a weak defense strategy [35]. Further, there
are many tools that will allow reverse engineering of the
source code from a binary file, e.g., Ida Pro [49], BinNavi
[10], and OllyDBG [46].

The capabilities of the attacker in our threat model are
basic and do not require high level of expertise. We show
that even considering these basic capabilities, attackers may
mount severe attacks against smart meters (see Sec.5). Note
that it is relatively straightforward to model additional capa-
bilities of the attacker in our model as long as the capabilities
can be described formally. Also, increasing the capabilities of
attackers makes it easier to find attacks against the system,
in our model.

We have presented the summary of accesses and capabil-
ities of the adversary in Table 1. The attacks that we are
targeting in this paper are the results of the vulnerabilities
in the software running on the meter. These vulnerabilities
may exist due to bugs in either the design or the implementa-
tion of the meter software. We are not considering network
attacks on availability such as Denial of Service (DoS). We
are also not considering attacks on privacy of smart meters,
e.g., obtaining consumption data, in this paper.

3.3 Rewriting logic
In this paper, we use Rewriting logic [33] to formally

model smart meters and attacker capabilities. Rewriting
logic is a flexible framework for expressing proof systems. It
allows us to define the transitional rules that transition the
system from one state to another, as well as the functions
defined in the system. Using rewriting logic, we can specify
the behavior of the system as a series of states, functions,
and rules of transitioning between the states. Also, we can
query the transition paths of the system to verify the cor-
rectness of the system behavior.

Formally a rewrite theory is a 4-tuple < = {⌃, E, L,R}. ⌃
is the set of all functions (operations), and constants defined
in <. E is the set of all the equations in <. Equations help
define the operation of the system (for example how two
variables are added together). R is a set of labeled rewriting
rules and L indicates those labels. Rewriting rules model
transitions in the system and express the way the system
evolves. In a rewrite theory, any of the rewrite rules may be
applied concurrently to represent the behavior of a system.
This lets us build rules that capture the behavior of both
the system and the attacker. Using model checking, we can
check if any sequence of the attacker’s rewrite rules together
with the rewrite rules of the smart meter can transition the
system to an unsafe state.

In this paper, we implement the formal model of the sys-
tem in rewriting logic using Maude [15]. Maude is a tool
that supports rewriting logic, and enables the users to both
execute rewriting logic rules and formally verify them. This
is useful as we can execute the model to gain confidence in
it before formally verifying it.

Maude allows us to perform model checking of the system
with regard to invariants. This means that we can check
whether it is possible that from an initial state s in the
model, we can reach a state x, in which an invariant I does
not hold true. In Maude, this is done by using search com-
mand: search(s)) x such that I(x) 6= true. The invariant
I (e.g., data being greater than or equal to 0), may be de-
fined by the user of the system, and we define state x in
which the invariant I does not hold as an unsafe state.

Maude executes the search by doing breadth-first-search,
starting from initial state s, and applying one rewriting rule
at a time to the previous state. This way, all possible tran-
sitions in the model are checked. This is known as explicit
state model checking (ESMC) [6]. Note that other vari-
ants of search strategies are possible in Maude e.g., sym-
bolic model checking [6], that aim to tackle the problem of
state space explosion that ESMC incurs. We do not explore
these in this paper as the state space of the smart meter was
still amenable to be analyzed by ESMC within a reasonable
amount of time, as shown in Sec. 5.

4. APPROACH
In this section, we propose a formal approach for analyzing

security of smart meters. We define a formal model for smart
meters, a set of basic actions for an attacker, and use model
checking to automatically search all the possible scenarios of
applying those actions on the model of smart meters. The
search finds the scenarios that lead to potential attacks, and
is guaranteed to find all the attacks within the state space
of our model (both the smart meter and the attacker).

We follow a three step process for building the model as
follows. In the rest of this section, we explain each of the
steps in more detail.

• Step 1: We formally model the components of smart
meters and their operations. Smart meters are com-
puting devices and can be considered as small gen-
eral purpose computers. However, unlike general pur-
pose computers, smart meters have low memory, low
computing-capacity, and are designed to carry out a
specific set of operations. In prior work, we have pro-
posed an abstract model for operations of smart meters
in [44]. This abstract model represents an implementation-
independent model of the components of the meter,
their operations, and their execution order. In this pa-
per, we express the abstract model formally in rewrit-
ing logic. Rewriting logic lets us model all the oper-
ations (functions) of the system, and the transitions
between its states.

• Step 2: We define a set of capabilities for the attacker
also in rewriting logic. Modeling both the smart meter
and the attacker’s capabilities in rewriting logic allows
us to automatically and systematically search for all
the possible scenarios in which the attacker’s actions
on the meter can take the system to an unsafe state.
An example of an unsafe state is when consumption
data calculated by the meter are lost, and not submit-
ted to the server. The users of our model may define
their own unsafe states as a first order logic formula
over the states of the model.

• Step 3: We compose the model of the smart meter,
concurrently with the model of attacker actions. Us-
ing model checking, our system searches through all
the execution paths of the models that lead to unsafe
states. The actions that take the smart meter into
an unsafe state will be identified as a potential attack
on the system. Because we use model-checking, we are
guaranteed to find all the possible paths that may take
the system into an unsafe state, within the scope of the
model.

4.1 Formal Model
We use the abstract model of smart meters presented by

Molazem et. al. [44] as our input to build the formal model
of smart meters in rewriting logic. This abstract model
presents an implementation-independent model of the com-
ponents of the meter, their operations, and their execution
order. Therefore, it is valid for di↵erent implementations
of smart meters. Using the abstract model, we extract the
execution paths of components of the meter, and formally
describe them. Below, we briefly explain the major opera-
tions of a smart meter as per the abstract model.

Smart meter’s operations: Upon starting, the meter
initializes the sensors and communication interfaces. The
microcontroller periodically collects data from all the sen-
sor channels by polling them, and averages data samples
to calculate consumption data for each channel. Then, the
microcontroller listens to incoming data requests from the
communication unit, via a serial interface. Upon receiving a
data request, consumption data calculated so far are sent to
the communication unit of the meter, which stores the data
on physical storage. The meter verifies connection to the
network and to the server by pinging the server periodically.
At specific time intervals, the meter retrieves all the unsent
consumption data from the physical storage and transmits
them to the utility server via its network interface. The

M
ic

ro
co

nt
ro

lle
r

St
or

e
da

ta
 o

n
ph

ys
ic

al
 m

em
or

y

R
et

rie
ve

 d
at

a
an

d
se

nd
 th

em
 to

 th
e

se
rv

er

U
til

ity
 s

er
ve

r

Se
ns

or
s

Data over
serial

interface Network

1 2 3

Smart Meter

Figure 1: In this paper, we discuss and formalize the first
two execution paths of the smart meter, shown in this figure.

communications unit of the meter also periodically checks
for any input commands that may be sent from the utility
server. The meter parses and verifies any incoming com-
mand from the server, and executes them.

We explain the formal model for two parts of the smart
meter mentioned above (due to space limitations, we can-
not describe the formal model of the entire meter). These
parts include: 1) passing the consumption data from the mi-
crocontroller to the communication unit the meter, and 2)
storing data on the flash memory before submitting it to the
utility server. These paths are shown in Fig.1. For clarity
and simplicity, we omit some details of the models.

4.1.1 Passing consumption data to the storage com-

ponent

A smart meter has a number of sensor channels. A mi-
crocontroller periodically reads each of these channels in a
loop, calculates the consumption data associated with them,
and produces a stream of sensor data. Below we discuss the
formal model for production of a stream of sensor data re-
sulting from sensor channels in the meter. The illustration
of sensor data is presented in Fig. 2. Sensors produce data
tuples that indicate the index of the sensor and its value. A
list of data is formed by putting these tuples together.

The formal model of sensor data is shown in Fig. 3. In
line 2 of Fig. 3, we define SensorElement, SensorList, Sen-
sorNumber, and SensorValue. These are the data types that
we use to formally define sensor data and the operations on
it. In Maude1, each of these types is called a sort. Each
sensor element is a tuple < s, v > (as shown in Fig. 2),
which is the result of the operations of the microcontroller
on sensor channels. s indicates the channel index, which is
of type SensorNumber, and v indicates its value, which is
of type SensorValue. This tuple is formally defined in line
3, by putting two natural numbers (indicated as ’Nat’) to-
gether. A stream of these tuples forms SensorList, which
is defined in line 4. SensorList is simply built by putting
a series of SensorElements together. In line 8 of Fig. 3, we
define a common operation on the sensor data: hasSensor.
This operation verifies whether a stream of sensorElements
(i.e., sensorList), contains data associated with a specific
sensor index, and is defined recursively.

After defining the sensor data in a smart meter, we present
the rules that define their production in Fig. 4. We define
the production of sensor data using a recursive rule. At each
step of the recursion, we either create a tuple of sensor data
for a new sensor channel (line 6), or create a new value for

1We present a brief primer on Maude in Appendix B.

M
ic
ro
co
n
tr
o
lle
r

Se
n
so
rs

… ൏ ,భݏ భݒ 	൏ ,మݏ మݒ 	൏ ,యݏ యݒ 	…

SensorElement

SensorList

Figure 2: SensorList is a series of SensorElements and is the
result of microcontroller operations.

SENSOR-DATA
1. fmod SENSOR-DATA is

2. sort SensorElement SensorList SensorNumber
 SensorValue.

3. op sensorElement : Nat Nat —> SensorElement.
4. op __ : SensorList SensorList —> SensorList.
5. op hasSensor : SensorList Nat—> Bool.

6. var r n t : Nat.
7. var dataList : SensorList.
8. eq hasSensor(sensorElement(r, n) dataList, t) =
 if r==t then true else hasSensor(dataList,t) fi.
9. endfm

Figure 3: Formal model of sensor data in Maude.

an existing sensor channel (line 7). Line 5 is simply the
base case of recursion representing a tuple of sensor data for
channel 0. The model lets us define a limit for the number
of sensor channels, which is not shown here. The number of
sensor channels depends on the specific model of the meter.

4.1.2 Receiving and storing sensor data

After a stream of sensor data is produced by the microcon-
troller, it is received by another process which is in charge of
storing them. This communication is via a serial interface.
The receiver process sends a data request message to the mi-
crocontroller, and waits for a response. If there is any sensor
data available, the microcontroller sends the data, otherwise
no data is sent and the request times out.

The state diagram of this procedure is based on the ab-
stract model and is shown in Fig. 6. The formal model
for receiving sensor data corresponding to the state dia-
gram is shown in Fig. 5. First, the receiver process creates
a socket to communicate with the microcontroller (line 6).
This corresponds to states 1 and 2 of Fig. 6. Next, a request
is sent (via askForData operation) to notify the microcon-
troller that it is expecting to receive sensor data (line 7).
This step corresponds to state 4 of Fig. 6. Then the receiver

SENSOR-STATES
1.mod SENSOR-STATES is
2.op getSensorDataList : —> SensorDataList.

3.var dataList : SensorDataList.
4.var r n : Nat.

5.rl [r1]:getSensorDataList —> sensorDataElement(0,0).
6.crl[r2]:sensorDataElement(r,n) —>
 sensorDataElement(r,n) sensorDataElement(r+1, 0)
 if r < maxSensorNumber.
7.crl[r3]:sensorDataElement(r,n) —>
 sensorDataElement(r,n+1) if n < maxSensorData.
8.endm

Figure 4: Formal model of states of sensor data in Maude.

RECEIVE-SENSOR-DATA
1. mod RECEIVE-SENSOR-DATA is
2. sort DataReques.

3. var s: Socket.
4. var request: DataRequest.
5. var dataList: SensorDataList.

6. rl [l1]: startReceivingSensorData —> createSocket.
7. rl [l2]: s —> askForData.
8. rl [l3]: request —> waitForSensorData.
9. rl [l4]: waitForSensorData —> dataList.
10.rl [l5]: waitForSensorData —> timeoutSensorData.
11.endm

Figure 5: Formal model of receiving sensor data from the
microcontroller.

1-Start
receiving
sensor

data

2-Create
a socket

3-Quit
4-

Request
for data

5-Wait
for data

6-
Timeout

7- Receive
sequence

of data

Failed

Successful

Figure 6: SensorList is a series of SensorElements and is the
result of microcontroller operations.

process waits for data (line 8). This corresponds to state
5 of Fig. 6. Eventually, either a stream of sensor data is
received (line 9), or the request times out (line 10). These
steps correspond to states 6, and 7 of Fig. 6.

After sensor data is received, it will be stored in the flash
memory. We model this process by changing the state of
each tuple of sensor data (known as sensorDataElement), to
a new tuple, namely storedDataElement. Similarly, a stream
of storedDataElements will form storedDataList. We present
the formal model for representing data storage in Fig. 7. In
this figure, we define the types StoredDataElement which
is a tuple similar to sensorData and StoredDataList, which
is a stream of StoredDataElements (lines 2-5). In line 8 of
Fig. 7, the transition of the state of data is defined. The
way this transition works is that in the sequence of received
sensor data, we change the state of each tuple of sensor data
to a tuple of stored data. Eventually, the meter will have a
sequence of stored data that it has received and not yet sent
to the server (in the absence of attacks).

4.2 Attacker model
A classification of security attacks is presented in recom-

STORE-SENSOR-DATA
1.mod STORE-SENSOR-DATA is
2.sort StoredDataElement.
3.sort StoredDataList.

4.op storedDataElement : Nat Nat —> StoredDataElement.
5.op __ : StoredDataElement StoredDataList —>
 StoredDataList.

6.var r n : Nat.
7.var l : StoredDataList.
8.rl [r1] : sensorDataElement(r,n) l —>
 storedDataElement(r,n) l.
9.endm

Figure 7: Formal model of storing sensor data received from
the microcontroller.

ATTACKER-ACTIONS
1. mod ATTACKER-ACTIONS is
2. op crash : —> state.

3. var num : NodeNumber.
4. var val : Nat.
5. var element : SensorDataElement.
6. var list : SensorDataList.
7. var s c p : State.

8. rl [DropMessage] : element list —> list.
9. rl [Reboot] : s —> reboot.
10.rl [Replay] : c —> p if before(c, p).
11.endm

Figure 8: Formal model of the attacker actions.

mendation X.8002, and RFC 49493, which divide the attacks
into passive attacks and active attacks. Passive attacks in-
volve gaining information about the system, but do not af-
fect the system resources. Active attacks modify system
resources or its operations. We focus on active attacks.

We formally define actions for dropping messages, reboot-
ing and restarting the system (to interrupt data flow and
message processing), and replaying a message. These ac-
tions are simple and can be done by ordinary users of smart
meters (see Sec.3.2). It is possible to extend the set of at-
tacker actions to more sophisticated ones.

We present the formal rules for the attackers’ action in
Fig. 8. Dropping a message is defined in line 8 of Fig. 8 for
dropping SensorDataElements. The complete set of rules
include other communication protocols of the meter. As a
result of this rule, any element of sensor data, at random,
may be dropped by an attacker.

Line 9 presents the general rule for rebooting the system.
This action may correspond to simply rebooting the meter
by unplugging it from power and plugging it back in. To
define this action, we define an extra operation reboot. At
any state s, we can transition to a reboot state from the
current state s. For instance, while the system is generating
a series of sensor data tuples, transitioning to the reboot
state will interrupt the normal execution path as the rules
for generating sensor data cannot be applied anymore. This
action can hence lead to data loss.

Line 10 presents a rule that lets the system go from cur-
rent state c to a previous state p. This transition is not
part of the legitimate flow of the system. p is replaced by
any state in the system that involves communication. By
transitioning back to such a state, the model can re-execute
the communication procedure. This rule models an attacker
that replays messages sent between components of the me-
ter via its interfaces, e.g, serial interface. Equation before in
line 10, will return true, if state p is a prior state.

By adding these extra actions to the rules of the system,
we are able to search through the execution steps and verify
whether we can reach unsafe states. Examples of unsafe
states are those in which produced sensor data are not stored
on flash, and transitioning to a data submission state while
the socket is closed. Note that not all the unsafe states
produced necessarily represent a feasible attack on the real
smart meter. We discuss this in more detail in Sec. 5.

2Security architecture for Open Systems Interconnection for
CCITT applications
3Internet Security Glossary Version 2

Mapping the results of formal analysis to the code:
We need to map the results of the formal model back to
the meter’s code to mount the attacks. To facilitate the
process of mapping the results of the formal model to the
code, we developed a semi-automated tool. The input to
the tool is L = (r1, r2, ..., rn), a sequence of rewrite rules
ri, 1 i n that lead to an unsafe state. The output of the
tool is the execution paths of the code that may represent L.
The process is semi-automated at present, as the the user
of the tool needs to manually match the first and the last
rewrite rules (r1 and rn) to two nodes of the control flow
graph, v1 and v2. This can be done by providing the id of
the rewrite rule and the corresponding function name in the
code that implements the rule. The tool performs simple
graph traversal and generates the paths between v1 and v2
in the control flow graph. These represent the viable paths
corresponding to the input L, and are returned to the user.
We used this semi-automated tool to translate the results of
formal analysis to the meter’s code.

5. EVALUATION
In this section we present the attacks found by the model

checker, and the results of mounting the attacks on a real
smart meter. We address the following research questions:

• RQ1 (Practicality): How applicable are the attacks
discovered by the model checker on a real smart meter?

• RQ2 (Performance): How long does it take for the
model checker to discover the attacks?

5.1 Testbed
Formal analysis testbed: Our test machine on which

we run our Maude model checker [15] consists of a 3.4GHz
Intel CPU and 16GB of RAM. It runs Ubuntu Linux.

Smart meter testbed: To evaluate the results of the
formal analysis, we use SEGMeter, an open source smart
meter from smart energy groups [55] (Fig. 9). SEGMeter is
used by home users and businesses to monitor energy con-
sumption [3].

SEGMeter consists of two main boards: 1) an Arduino
board [7] with an ATMEGA32x series microcontroller, which
is connected to a set of sensors and calculates consumption
information and, 2) a gateway board which has LAN and
wifi network interfaces, and communicates with the utility
server. The boards communicate with each other through a
serial interface. The meter software is split between the two
boards, with the communication unit running on the gate-
way board and the control unit on the Arduino board. The
software running on the gateway board consists of about
1300 lines of code written in the Lua language (not count-
ing the communication stack implementation). The software
running on the Arduino board consists of about 1500 lines
of C code (not including the Arduino libraries).

5.2 Practicality (RQ1)
Our formal model is based on an abstract model of smart

meters, as described in Sec. 4.1. Hence, it does not factor
in the implementation details of SEGMeter, and some of
the attacks found by our model may not be applicable to
it. This is because our formal model must be applicable to
other implementations of smart meters as well.

In this RQ, we investigate which of the attacks found by
the formal model are applicable to the SEGMeter. For each

Arduino board

Gateway board

Figure 9: SEGMeter: our open source meter testbed. The
Arduino board measures electricity consumption, and the
gateway board communicates with the server.

of the attacks, we attempt to execute the attack on SEGMe-
ter, and check if it results in an unsafe state on the meter.
The results of this section show that the findings of the for-
mal analysis result in real attacks on the SEGMeter

We need additional hardware to mount some of the at-
tacks. We explain the reasons later in this section. We use
widely available inexpensive, o↵-the-shelf hardware, namely
an USB-to-Serial cable and a relay timer, which together
cost less than $50 4. These do not require advanced skills to
work with (e.g, soldering or working with laser beam), and
hence the attacks are easy to mount.

5.2.1 Rebooting meter

An attacker may reboot and restart execution at any point
by cutting o↵ the power to the meter. Smart meters may
or may not have backup batter. Even if the meter has a
backup battery, the attacker may disable it (see Sec. 3.2).
As smart meters are deployed at homes and businesses, they
must have mechanisms (both at the implementation and the
design level) to handle these incidents without losing data.
In our testbed, we observed that the system may reboot
several times a day due to crashes. Therefore losing data
in such incidents is an indication of bugs in the system that
attackers may exploit.

We study the e↵ect of rebooting execution by adding its
action model (as defined in Sec.4.2), to the model of the
smart meter. For this experiment, we define an unsafe state
as one in which some of the consumption data is lost. In
other words, state sB , reachable from state sA, is unsafe, if
sA contains some consumption data that is not included in
sB . Here we consider the states before data is submitted to
the server. Below is an example of the search we perform on
the model to find such unsafe states (simplified for clarity):

search sensor(N1,M1) sensor(N2,M2) sensor(N3,M3)

) sensor(N1,M1) sensor(N2,M2). (1)

The above search phrase considers 3 sensor channels for
the meter, represented as sensor(Ni,Mi). Ni indicates the
channel index, and Mi indicates its corresponding measured
energy. The search finds the paths where data are received
from three sensor channels, but only two of them have been
stored. This entails that the data measured by one of the
sensor channels is lost, and not sent to the server.
Maude found 9 distinct groups of solutions for the cases

where the system may face data loss as a result of system

4As of May 2016, from ebay.com

1- Receive
consumption

data

2-Send
data to the

server

3-Fetch
previous

data

4-Append
new data to

previous
data

5-Update
the data file

Terminate Start

Figure 10: The abstract model for updating sensor data file.

reboot. These solutions correspond to four meter compo-
nents shown in Fig. 1, namely 1) receiving sensor data, 2)
storing sensor data to the flash, 3) retrieving data from flash
memory, and 4) submitting data to the server. In our exper-
iments, we observed that in three of these components (1, 3,
and 4), SEGMeter handles system reboot correctly without
losing data. However, we found that component 2, namely
storing data to flash memory, does not handle reboot cor-
rectly, and is vulnerable to attacks found by our model. In
particular, storing data to flash memory lacks proper ac-
knowledgment mechanisms which leads to data loss if the
system is terminated at specific points in this component.
We explain an example below.

Example of system reboot attack on SEGMeter:
To understand this attack, we need to understand how con-
sumption data is updated in our smart meter model. Fig.10
shows the state diagram of this process. In state 1, the meter
receives new data from sensors. These data may be directly
sent to the server (state 2), or be stored in a data file. The
main reasons for storing data before sending them to the
server are reduction of communication overhead, and han-
dling temporary unavailability of connection to the server.
When storing the data, the meter appends them to the pre-
viously stored data (states 3 and 4) and updates the data
file (state 5). By letting the attacker reboot the system, our
model produced paths from states 1, 3, and 4 of Fig.10, to
the initial state of the system. In these paths, the meter re-
ceives new consumption data, but does not update the data
file, and hence the data is lost when the meter is rebooted.

We profiled the paths of the meter, and found that SEG-
Meter updates its data files in time intervals of 30 seconds
and 42 seconds. Also, we discovered that LEDs on the meter
indicate the start time of transferring data and storing them.
Leveraging these information, we used a programmable solid
state timer to trigger the reboot. We used the timer to en-
sure we can mount the attack at the precise time for max-
imum damage. We programmed the timer and repeatedly
applied the reboot in 30 second and 42 second time inter-
vals. We found that in 14 out of 20 tries, the new data is lost
(i.e., the attack was successful). Further, we found that in 3
cases the attacks had even more devastating consequences.
In these cases, rebooting not only erases the new data, but
also wipes out all the previously stored data in the file from
the system. This happens as the meter has an implementa-
tion bug, where a file is opened in ’write’ mode, as opposed
to in ’append’ mode and written back. This bug is dor-
mant if there is no attack. Appendix . A.1 provides detailed
explanation of this attack, and suggestions for mitigating it.

5.2.2 Dropping messages

One benefit of smart meters is that they enable the utility
providers to adopt time-of-use billing. Therefore, smart me-
ters periodically coordinate their clock with a time server,
via time synchronization messages. In this attack, we were

1-Start
2-Check
time with

the server

3-Ask the
server for
updated

time

4-Update
time based
on server’s
response

5-Check
sensors for

data

time is ok

time
is not

ok

6-Drop
messages

Figure 11: The abstract model for time synchronization.
The dotted lines are added by the attacker.

able to successfully compromise time synchronization for the
SEGMeter by dropping time synchronization messages.

An example of the search we perform in our model to find
scenarios in which dropping time synchronization messages
leads to an unsafe state is given below.

search timeSyncRequest) incorrectT ime. (2)

The above search phrase explores the model to see if there
are execution paths that result in the meter having incorrect
date or time settings, in spite of sending time synchroniza-
tion messages to the server. This leads to the consumption
data having incorrect time stamps, which in turn leads to
incorrect billing (with a time-of-use billing policy).

Example of message-dropping attack on SEGMe-
ter: Fig. 11 shows the state diagram for time synchroniza-
tion in the meter. In state 2, the meter sends its current time
to the server, and receives a response indicating whether the
current time is valid. If the time is valid, the meter goes to
state 5, and starts the process of calculating and storing
consumption data. Otherwise, it goes to state 3 where it
sends a time adjustment request to the server. The server
responds with a command to adjust the time on the meter
(state 4), and the system checks whether the time adjust-
ment was successful (by going back to state 2). If not, the
above process is repeated until it is successful.

The attacker’s actions resulted in creating extra states
(shown by dotted lines, as state 6) between states 3 and 4 of
Fig. 11, where messages are dropped (eliminated). Dropping
the messages results in the time value to be invalid in our
model (as no response is received from the server), and it
does not transition to a state with valid time, which in turn
results in incorrect time-labels for data.

In our lab setup, we have root access to the machine that
routes the smart meter tra�c to the campus gateway. This
corresponds to access A3 in Table 1, and is in line with our
threat model in Sec. 3.2. On that machine, we added an
IPTables rule that targets the packets destined for the time
server and drops them. We observed that this causes the
smart meter to get stuck in an infinite loop and hang. As a
result, the meter is prevented from recording new consump-
tion data. We present details of mounting this attack, and
suggestions for mitigating it in Sec. A.2.

5.2.3 Replaying messages

In the smart meter, replaying a messages involves transi-
tioning to a state prior to sending the message, which may
cause the system to malfunction. Below is an example of a
search we perform on our model to check if replaying mes-
sages can lead to unsafe states.

1-Connect
to sensors

2-Send
data

request
command

3-Listen
for input

data
4-Receive

data
5-Timeout

6-Close
the

connection

Start

Attacker action

Figure 12: The abstract model for sensor communication

search ask � for � sensor � data)
nullSocket N : sensorData. (3)

In the above search, ask� for� sensor� data represents
a state where a data-request command is received by the
microcontroller. In an attack free execution, the microcon-
troller sends the newly calculated consumption data, and
the other end (i.e., the gateway board) receives the data. In
the query, we are checking whether it is possible that the
microcontroller sends new sensor data, while the other end
of the connection is closed (as indicated by nullSocket). This
would result in the data being lost as it would be removed
from the microcontroller’s memory after being sent, but not
be recorded, as there is no receiver on the other end.

We found a successful instantiation of this attack on the
SEGMeter that was identified by the formal model.

Example of replaying message attack on SEGMe-
ter: Fig. 12 illustrates the state diagram of our model, when
the microcontroller communicates with the gateway board
of the meter. In states 1 and 2, the gateway board es-
tablishes a connection with the microcontroller and sends
a data-request command. In state 3, the data storage com-
ponent listens for input data. If there is any data available,
it reads them (state 4). Otherwise, the connection times out
(state 5). After all the data is received, or the data request
times out, the connection is closed (state 6).

A replay attack makes the system directly transition to
states of the model where a message is sent. In this case,
such a transition represents jumping to state 2, as pointed
to by a dashed arrow in Fig.12. This results in creating a
path from state 6 to state 2, and sending the data-request
message again after the connection is closed (in our model,
socket will transition to a null socket). Going through the
data-request transition while the state of the receiver socket
is null in our model, results in the data not transitioning to
the received state, and later, to the stored state. This attack
would result in data loss.

We successfully mounted this attack on SEGMeter, using
a laptop computer5 and an USB-to-Serial cable. As a result
of this attack, we were able to force the meter to delete the
newly calculated data, without saving them. Note that we
do not require root access to mount this attack, nor do we
need to decrypt any of the messages. Sec. A.3 has more
details on this attack, and suggestions for mitigating it.

Summary: We observe that many of the attacks found
by the model checker apply to the SEGMeter, and that they
result in exposing non-trivial corner cases and bugs in its
implementation. Further, most attack can be carried out
using inexpensive, o↵-the-shelf hardware components with
little technical expertise on the part of the attacker.

5The attack can be carried out through a specialized micro-
controller such as an Aurdino, and does not need a laptop.

Attacker action Time (h) Attacks Found
Dropping packets 0.002 12

Replay 0.005 845
System rebooting 1.9 6452

Table 2: Performance of model checker for di↵erent attacks

5.3 Performance (RQ2)
We measure the time taken to run the searches associated

with each attacker action in Maude, along with the number
of attack paths for each action found by the model in Table
2. As can be seen, the time varies widely from a few seconds
to a couple of hours depending on the kind of attack and
the attacker actions. As expected, the larger the state space
explored by the search queries, the longer it takes for the
search. The search for the e↵ects of dropping packets takes
the least time (7 seconds) as it only a↵ects the messages
sent/received between the meter components and the server,
and as each message has only two states, namely dropped
or unchanged. However, the search for the e↵ects of system
reboot takes about 2 hours as the system can be rebooted
(or not), at every state in the state space of the model, which
are much more numerous than messages.

Table 2 shows that when the attacker action a↵ects a
larger state space (such as system reboot), the number of
paths to explore in the model is higher. However, we ob-
served that many of the paths in the model represent the
same attack, applied on di↵erent elements of the model (for
example dropping di↵erent packets of time synchronization,
or dropping such packets at di↵erent runs of the system).
Therefore, although a search query may return hundreds of
results, in most cases we only need to try one of them on
the code to test whether it applies, as they are all mostly
equivalent. This significantly reduces the number of attacks
that need to be tested on the code.

Our results show that with a running time of a few hours,
the model checker is able to analyze the model and find
attacks on di↵erent execution paths of the model. Since
the analysis is done o✏ine prior to deployment, we do not
expect the analysis time to be a bottleneck. Further, our
formal model captures the design-level properties of smart
meters, and not their implementation. Therefore, the size of
the code does not a↵ect the model checker’s performance.

Another consideration in evaluating performance of the
system is the time taken to successfully map an attack found
by the formal model to the implementation. Based on our
experience, this process was straightforward and took a few
minutes for each attack (maximum duration was half an
hour). We also developed a semi-automated tool for this
purpose (Section 4). We acknowledge that we were very fa-
miliar with the SEGMeter’s code and implementation. Be-
cause we target the smart meter’s developers in our work,
we expect them to be even more familiar with their code.

6. DISCUSSION
Applicability to other IoT devices: While we have

focused on smart meters in this paper, the same ideas can
be extended to other classes of embedded devices in IoT
systems. The main requirement for doing so is to 1) iden-
tify the viable attacker actions specific to that system, and
2) based on the attacker actions, define an abstraction of
the system that we can use to build an implementation-

independent formal model. For example, AUTOSAR (AU-
Tomotive Open System ARchitecture) is an open software
architecture that provides the basic infrastructure for devel-
oping vehicular software. Similar platforms have been pro-
posed for other classes of embedded systems, e.g., medical
devices [1, 4]. Given the open and standardized architec-
ture of these systems, we believe we should be able to take
a similar approach for them. Extending this approach to
these systems is a direction for future work.

Complexity of the attacks: We have demonstrated
attacks resulting from dropping messages, replaying mes-
sages, and rebooting the system. An attacker is unlikely to
mount a successful attack by taking random destructive ac-
tions, and needs to carefully time or coordinate her actions
to mount these attacks. For actions such as dropping/re-
playing messages, the number of choices for an attacker are
exponential, with respect to the number of messages. Also,
the choices for rebooting the meter are exponential in the
number of states, which run into thousands. We note that
brute-force actions such as replaying all the messages, or
dropping all the messages results in easy detection of suspi-
cious activities (e.g., out of sync heartbeat messages or no
heartbeat messages) either by the server or by reviewing the
activity logs (manually or by automated tools). Therefore,
attackers are unlikely to perform such actions.

Limitations: There are three limitations of our formal
modeling approach as follows.

1. Scalability: Increasing the complexity of the model
and the number of attacker actions increases the state space
of the formal model, which in turn increases the time taken
to generate attacks (proportionately). Intuitively, we do not
expect the software running on embedded systems to have
high complexity as they are normally running on devices
with limited computational and memory resources. There-
fore, we believe the technique can scale for many classes of
embedded systems.

2. Model correctness: The correctness of our results
depends on the correctness of the formal model. There are
two aspects to correctness. First, there may be a mismatch
between the design of the model and the specifications. We
mitigate this by building a single model for the common
features of smart meters, rather than a di↵erent model for
every di↵erent meter. This allows us to refine potential flaws
of the model over time by reusing and improving the model.
The second aspect of correctness is implementation bugs in
the model. We partially mitigate this limitation by using
the executable engine of Maude to execute the model and
see if, in the absence of attacker actions, it matches the real
meter’s behavior.

3. Abstraction level: Our model is built at the de-
sign level rather than at the implementation level of smart
meters. This means that we may not be able to model low
level actions for the attacker and discover attacks associated
with specific implementations of smart meters (e.g., bu↵er
overflows). Also, not all the attacks found at the abstract
level may be mapped to the code. However, despite this
limitation, we were able to find many attacks that apply to
a real smart meter, SEGMeter.

7. CONCLUSION
IoT devices have gained wide adoption, and their security

is an emerging concern. However, existing security tech-
niques do not address their limitations and requirements.

In this paper, we analyze the security of smart meters, a
widely-used IoT device. We build a formal model of smart
meters using rewriting logic. We also formally define a set
of attacker actions, and use model-checking to find all the
possible sequences of the attacker actions that may transi-
tion the system to an unsafe state. Using the formal model,
we were able to find attacks within a modest time of about
two hours on the meter. We evaluated the attacks found on
SEGMeter, an open source smart meter. We found that a
sizeable subset of the attacks found map to real attacks, and
can be carried out using commodity, inexpensive hardware
that is easy to use, thereby demonstrating their practicality.

Acknowledgements
This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC) through
the Strategic Networks Grants programme for Developing
next generation Intelligent Vehicular Networks and Appli-
cations (DIVA), and the Discovery Grants Programme.

8. REFERENCES
[1] Green hills medical devices platform. http:

//www.ghs.com/products/medical platform.html.
[2] Information and technology standards, advanced

metering infrastructure, government of ontario
canada. http://www.decc.gov.uk/assets/decc/
Consultations/smart-meter-imp-prospectus/
1478-design-requirements.pdf.

[3] Monitoring o�ce power consumption with a segmeter.
http://www.anchor.com.au/blog/2012/11/
monitoring-o�ce-power-consumption-with-a-segmeter.

[4] Wind river medical devices platform.
http://www.windriver.com/announces/
platform-for-medical-devices.

[5] Najwa Aaraj, Anand Raghunathan, and Niraj K Jha.
Analysis and design of a hardware/software trusted
platform module for embedded systems. ACM
Transactions on Embedded Computing Systems
(TECS), 8(1):8, 2008.

[6] Christel Baier, Joost-Pieter Katoen, et al. Principles
of model checking, volume 26202649. MIT press
Cambridge, 2008.

[7] Arduino home page. http://www.arduino.cc.
[8] R. Berthier, W.H. Sanders, and H. Khurana. Intrusion

detection for advanced metering infrastructures:
Requirements and architecture directions. In Smart
Grid Communications (SmartGridComm), 2010,
pages 350 – 355, 2010.

[9] Robin Berthier and William H. Sanders.
Specification-based intrusion detection for advanced
metering infrastructures. PRDC, IEEE, 0, 2011.

[10] BinNavi. https://www.zynamics.com/binnavi.html.
[11] S. Brinkhaus, D. Carluccio, U. Greveler, D B. Justus,

and C. Wegener. Smart hacking for privacy. In 28th
Chaos Communication Congress, Berlin, Germany,
DEC. 2011.

[12] Eric J Byres, Matthew Franz, and Darrin Miller. The
use of attack trees in assessing vulnerabilities in scada
systems. In Proceedings of the International
Infrastructure Survivability Workshop. Citeseer, 2004.

[13] Yuqun Chen, Ramarathnam Venkatesan, Matthew
Cary, Ruoming Pang, Saurabh Sinha, and Mariusz H

Jakubowski. Oblivious hashing: A stealthy software
integrity verification primitive. Work, pages 400–414,
2003.

[14] Manuel Clavel, Francisco Durán, Steven Eker,
Santiago Escobar, Patrick Lincoln, Narciso
Martı-Oliet, José Meseguer, and Carolyn Talcott.
Maude manual (version 2.7). 2015.

[15] Manuel Clavel, Francisco Durán, Steven Eker, Patrick
Lincoln, Narciso Mart́ı-Oliet, José Meseguer, and
Carolyn Talcott. All about maude-a high-performance
logical framework: how to specify, program and verify
systems in rewriting logic. Springer-Verlag, 2007.

[16] Stéphanie Delaune, Steve Kremer, and Graham Steel.
Formal security analysis of pkcs# 11 and proprietary
extensions. Journal of Computer Security,
18(6):1211–1245, 2010.

[17] Department of Energy and Climate Change and the
O�ce of Gas and Electricity Markets. Smart metering
implementation programm, March 2011. http:
//www.ofgem.gov.uk/e-serve/sm/Documentation/
Documents1/Design%20Requirements.pdf.

[18] Department of Energy and Climate Change and the
O�ce of Gas and Electricity Markets. Smart metering
âĂŞ response to prospectus consultation, March 2011.
http://www.ofgem.gov.uk/Pages/MoreInformation.
aspx?docid=56&refer=e-serve/sm/Documentation.

[19] Fbi: Smart meter hacks likely to spread.
http://krebsonsecurity.com/2012/04/
fbi-smart-meter-hacks-likely-to-spread/.

[20] K. Fehrenbacher. Smart meter worm could spread like
a virus., 2010. http://earth2tech.com/2009/07/31/
smart-meter-worm-could-spread-like-a-virus/.

[21] Eduardo Fernandez, Juan Pelaez, and Maria
Larrondo-Petrie. Attack patterns: A new forensic and
design tool. In Advances in digital forensics III, pages
345–357. Springer, 2007.

[22] Michael Gegick and Laurie Williams. Matching attack
patterns to security vulnerabilities in
software-intensive system designs. ACM SIGSOFT
Software Engineering Notes, 30(4):1–7, 2005.

[23] David Gries. The science of programming. Springer
Science & Business Media, 2012.

[24] In-stat and ndp group company. http://www.instat.
com/press.asp?ID=3352&sku=IN1104731WH.

[25] Hacking Medical Devices for Fun and Insulin:
Breaking the Human.
https://media.blackhat.com/bh-us-11/Radcli↵e/BH
US 11 Radcli↵e Hacking Medical Devices WP.pdf.

[26] Somesh Jha, Oleg Sheyner, and Jeannette Wing. Two
formal analyses of attack graphs. In Computer
Security Foundations Workshop, 2002. Proceedings.
15th IEEE, pages 49–63. IEEE, 2002.

[27] Hacking Humans.
http://blog.kaspersky.com/hacking-humans/.

[28] Himanshu Khurana, Mark Hadley, Ning Lu, and
Deborah A. Frincke. Smart-grid security issues. IEEE
Security & Privacy, pages 81–85, 2010.

[29] Christoph Klemenjak, Dominik Egarter, and Wilfried
Elmenreich. Yomo: the arduino-based smart metering
board. Computer Science-Research and Development,
pages 1–7, 2015.

[30] Karl Koscher, Alexei Czeskis, Franziska Roesner,
Shwetak Patel, Tadayoshi Kohno, Stephen Checkoway,

Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, and Stefan Savage. Experimental
security analysis of a modern automobile. In
Proceedings of the 2010 IEEE Symposium on Security
and Privacy, SP ’10, pages 447–462, Washington, DC,
USA, 2010. IEEE Computer Society.

[31] Michael LeMay, George Gross, Carl A. Gunter, and
Sanjam Garg. Unified architecture for large-scale
attested metering. In Proceedings of HICCS’07,
Washington, DC, USA, 2007. IEEE Computer Society.

[32] N. Lewson. Smart meter crypto flaw worse than
thought, 2010. http://rdist.root.org/2010/01/11/
smart-meter-crypto-flaw-worse-than-thought.

[33] Narciso Mart́ı-Oliet and José Meseguer. Rewriting
logic as a logical and semantic framework. Electronic
Notes in Theoretical Computer Science, 4:190–225,
1996.

[34] Petr Matousek, Jaroslav Ráb, Ondrej Rysavy, and
Miroslav Svéda. A formal model for network-wide
security analysis. In Engineering of Computer Based
Systems, 2008. ECBS 2008. 15th Annual IEEE
International Conference and Workshop on the, pages
171–181. IEEE, 2008.

[35] Bishop Matt et al. Introduction to computer security.
Pearson Education India, 2006.

[36] Sjouke Mauw and Martijn Oostdijk. Foundations of
attack trees. In Information Security and
Cryptology-ICISC 2005, pages 186–198. Springer,
2006.

[37] P. McDaniel and S. McLaughlin. Security and privacy
challenges in the smart grid. IEEE S&P, 2009.

[38] Stephen McLaughlin, Dmitry Podkuiko, and Patrick
McDaniel. Energy theft in the advanced metering
infrastructure. In Critical Information Infrastructures
Security, pages 176–187. Springer, 2010.

[39] Stephen McLaughlin, Dmitry Podkuiko, Sergei
Miadzvezhanka, Adam Delozier, and Patrick
McDaniel. Multi-vendor penetration testing in the
advanced metering infrastructure. In Proceedings of
ACSAC’10, pages 107–116. ACM, 2010.

[40] Marino Miculan and Caterina Urban. Formal analysis
of facebook connect single sign-on authentication
protocol. In SOFSEM, volume 11, pages 22–28.
Citeseer, 2011.

[41] Roberto Minerva, Abyi Biru, and Domenico Rotondi.
Towards a definition of the internet of things (iot).
IEEE Internet Initiative, Torino, Italy, 2015.

[42] Yilin Mo, Ti↵any Hyun-Jin Kim, Kenneth Brancik,
Dona Dickinson, Heejo Lee, Adrian Perrig, and Bruno
Sinopoli. Cyber–physical security of a smart grid
infrastructure. Proceedings of the IEEE,
100(1):195–209, 2012.

[43] Sibin Mohan, Jaesik Choi, Man-Ki Yoon, Lui Sha, and
Jung-Eun Kim. Securecore: A multicore-based
intrusion detection architecture for real-time
embedded systems. In Proceedings of the 2013 IEEE
19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), Washington, DC,
USA, 2013. IEEE Computer Society.

[44] Farid Molazem and Karthik Pattabiraman. A model
for security analysis of smart meters. In WRAITS,
Dependable Systems and Networks Workshops
(DSN-W), 2012.

[45] Anderson Morais, Eliane Martins, Ana Cavalli, and
Willy Jimenez. Security protocol testing using attack
trees. In Computational Science and Engineering,
2009. CSE’09. International Conference on, volume 2,
pages 690–697. IEEE, 2009.

[46] OllyDBG. www.ollydbg.de.
[47] Vijayakrishnan Pasupathinathan, Josef Pieprzyk, and

Huaxiong Wang. Formal security analysis of australian
e-passport implementation. In AISC’08 Proceedings of
the Sixth Australasian Conference on Information
Security-(CRPIT Volume 81-Information Security
2008), volume 81, pages 75–82. Australian Computer
Society, Inc, 2008.

[48] Miguel Correia Paulo Veŕıssimo, Nuno Ferreira Neves.
Crutial: The blueprint of a reference critical
information infrastructure architecture. In Proceedings
of ISC06, August 2006.

[49] Ida Pro. https://www.hex-rays.com/products/ida/.
[50] Indrajit Ray and Nayot Poolsapassit. Using attack

trees to identify malicious attacks from authorized
insiders. In Computer Security–ESORICS 2005, pages
231–246. Springer, 2005.

[51] Dries Schellekens, Brecht Wyseur, and Bart Preneel.
Remote attestation on legacy operating systems with
trusted platform modules. Sci. Comput. Program.,
74:13–22, December 2008.

[52] Bruce Schneier. Attack trees. Dr. DobbâĂŹs journal,
24(12):21–29, 1999.

[53] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig,
Leendert van Doorn, and Pradeep Khosla. Pioneer:
verifying code integrity and enforcing untampered
code execution on legacy systems. In Proceedings of
the twentieth ACM symposium on Operating systems
principles, SOSP ’05, pages 1–16, New York, NY,
USA, 2005. ACM.

[54] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard
Lippmann, and Jeannette M Wing. Automated
generation and analysis of attack graphs. In Security
and privacy, 2002. Proceedings. 2002 IEEE
Symposium on, pages 273–284. IEEE, 2002.

[55] Smart energy groups home page.
http://smartenergygroups.com.

[56] Farid Molazem Tabrizi and Karthik Pattabiraman. A
model-based intrusion detection system for smart
meters. In High-Assurance Systems Engineering
(HASE), 2014 IEEE 15th International Symposium
on, pages 17–24. IEEE, 2014.

[57] smart meter testing framework Termineter.
https://code.google.com/p/termineter/.

[58] Olivier Thonnard and Marc Dacier. A framework for
attack patterns’ discovery in honeynet data. digital
investigation, 5:S128–S139, 2008.

[59] Arduino UNO.
https://www.arduino.cc/en/main/arduinoBoardUno.

[60] Antti Valmari. The state explosion problem. In
Lectures on Petri nets I: Basic models, pages 429–528.
Springer, 1998.

[61] K. Zetter. Security pros question deployment of smart
meters. Threat Level: Privacy, Crime and Security
Online, March 2010.

[62] S. Zonouz, R. Berthier, and P. Haghani. A fuzzy
markov model for scalable reliability analysis of
advanced metering infrastructure. In ISGT’12, 2012.

APPENDIX
In the appendices, we provide more details about the attacks
on SEGmeter, and then provide a brief overview of Maude.

A. MOUNTING THE ATTACKS ON THE SMART
METER

In this section, we present the details of mounting the
attacks explained in Sec. 5 on SEGMeter.

A.1 Rebooting the meter
In this section, we present the details of the attack intro-

duced in Sec. 5.2.1.
We show the snapshot of the code in SEGMeter associated

with updating data file in Fig.14. In line 2 (associated with
state 3 of Fig.10), previously recorded data (called all data)
are read from the data file. In line 3 (associated with state
4 of Fig.10), current data and previous data are merged
together. In line 5 (associated with state 5 of Fig.10), the
data file is updated with the merged data.

The meter updates the data file in alternating 30 second
and 42 second intervals. Smart meters follow a precise pro-
cedure for sampling data and calculating consumption, to
ensure correct billing. The indicated timing is the result of
this process. We measured these by profiling the software
running on the meter. Although software profiling may not
be feasible for an adversary, we observed that data transmis-
sion via serial interface and storing data, are indicated on
SEGMeter by a flashing LED. Therefore, even someone who
is able to observe the meter (access A1 in Table 1) may syn-
chronize their operation of rebooting the meter with these
time intervals.

We used a programmable solid state timer (Fig. 13) to
trigger the reboot, to ensure we can mount the attack at
the precise time for maximum damage. We placed the timer
between the power source and the meter’s power adapter.
We programmed the timer and repeatedly applied the reboot
in 30 second and 42 second time intervals. We found that in
14 out of 20 tries, the new data is lost. However, we found
that in 3 cases the attacks not only erase the new data, but
wipe out all the previously stored data in the file. The reason
is that in line 4 of Fig. 14, the data file is opened in write
mode (shown as ’w’ in the code), which erases the contents
of the file. This is not a problem in normal execution as the
content of the file is read into memory (before overwriting
it), and merged with the new data (line 3). However if we
reboot the system right after line 4, the meter does not get
the chance to write the in-memory data to the persistent
storage. Rebooting the meter before the file has been closed
results in losing a large portion of previously stored data 6.

Mitigation: For mitigating the attack that loses all data,
the meter’s implementation should be modified to open the
data file in append mode. However, the meter is still vulner-
able to losing new data received from the control unit. An-
other more fundamental fix is for the flash memory to send
an acknowledgement message to the microcontroller after it
stores the data. It is only after the reception of this con-
firmation message that the microcontroller should remove
consumption data from its memory. Otherwise, it should

6We found a similar vulnerability on YoMo [29], another
open source smart meter, suggesting that this is a common
design pattern.

Figure 13: We used a programmable solid state timer for
rebooting the system at precise times, and an USB-to-Serial
cable to mount replay attack on the meter.

1.function update_node_list()
// state 3

2. all_data = get_node_list()
 …

// state 4
3. all_data =
 merge_tables(current_data,all_data)
 …
4. data_file = assert(io.open(dataFile, “w”))
 …

// state 5
5. for key, value in pairs(node_list) do

…
6. data_file:write(data)
7. end

…
8. assert(data_file:close())
 …
9.end

Figure 14: SEGMeter code for updating sensor data file.
The comments are added by us to show the mapping with
the states in Fig. 10.

re-send the data to the flash memory till the acknowledge-
ment is received.

A.2 Dropping messages
In this section, we present the details of the attack intro-

duced in Sec. 5.2.2.
Figures 15a, 15b, and 15c show the SEGMeter code for

time synchronization. Function check time() (Fig.15b) cor-
responds to state 2 of Fig.11, and communicates with the
server to verify whether the current time on the meter is cor-
rect. Function set time() (Fig.15c) corresponds to state 4 of
Fig.11 and requests a time from the server, and sets the me-
ter’s time to the server’s time. Function confirm time is ok()
(Fig.15a) is the main function in charge of time synchro-
nization. It calls check time() in line 3 to verify whether the
meter’s time is correct. If the time is incorrect, it will call
set time() (line 5). This process is repeated in a ’while’ loop
until the time is set correctly for the meter.

The attacks found by our model correspond to dropping
messages in line 2 in check time() or set time() functions.
In our lab setup, we have root access to the machine that
routes the SEGMeter tra�c to the campus gateway. This
corresponds to access A3 in Table 1 and is in line with our
threat model in Sec. 3.2. In the specified machine, we used
IPTables command to drop the desired packets. IPTables
is a user-space firewall that is installed by default on all
o�cial Ubuntu distributions. One can use IPTables to add
rules regarding actions on incoming and outgoing packets.
We added a rule to drop the packets that were directed to
the meter’s time server. This rule is as follows:

iptables �A INPUT � d ADDRESS � j DROP

In the above rule, ADRESS is the time server’s IP address
and DROP is the action applied to the packets destined that

1.function confirm_time_is_OK()
2. while time_is_ok == false do
 ...
3. time_is_ok = check_time()
4. if (time_is_ok == true) then
5. set_time()
6. break
7. end
8. end
9.end

(a) confirm time is ok() function

1. function check_time()
2. output = call_seg_api()
3. if (output != nil) then
4. result = string.find(output, ''ok'')
5. if (search_result != nil) then
6. return true
7. end
8. end
9. return false
10.end

(b) check time() function

1.function set_time()
2. output = call_seg_api()
3. if (output != nil) then
4. time = extract_time(output)
 ...
5. local executable=''date -s''..time
6. os.execute(executable)
 ...
7. end
8.end

(c) set time() function

Figure 15: Time synchronization code for SEGMeter.

1.function serial_talker()
// state 1

2. serial_client = socket.connect()
 …
3. while (status != “closed”) do
 …

// state 2

4. command = “(all_nodes (start_data))”
5. serial_client:send(command .. “;\n”)
 …

// state 3

6. status = serial_client:receive()
 …
7. end
 …

// state 6

8. serial_client:close()
9.end

Figure 16: SEGMeter code for communicating with the sen-
sors on the smart meter. The comments are added by us to
show the mapping with the states in Fig. 12.

server.
We observed that after adding the above rule, the boolean

variable time is ok in confirm time is ok() will remain false.
This will cause the code to get stuck in an infinite loop and
hang. As a result, the meter is prevented from recording
new consumption data. We note that this attack is appli-
cable regardless of whether the packets are encrypted, as
the attacker applies the DROP action only based on the IP
address of the packets, and not the payload. It may be possi-
ble to detect this attack by monitoring time synchronization
packets at the server. However, a cleverer implementation
of the attack can allow some packets through to prevent
raising suspicion from the server (we did not implement this
however).

Mitigation: Developers should define an upper-bound
for the number of tries for sending time synchronization
messages, and keep track of the tries with a counter. If
the counter value exceeds the bound, the meter should stop
sending the messages and take other corrective actions. On
further investigation, we found that such a counter actually
exists in the SEGMeter code and its value is recorded in the
logs. However no action is taken based on its value, likely
due to an implementation bug. This example shows that
our model can even find subtle implementation bugs in the
meter’s code.

A.3 Replaying messages
In this section, we present the details of the attack intro-

duced in Sec. 5.2.3. Fig.16 shows a snapshot of the meter
code associated with the states shown in Fig.12. In line
2 of Fig.16, the communication unit of SEGMeter creates
a socket to communicate with the microcontroller (corre-
sponding to state 1 of Fig.12). In lines 4 and 5 of Fig.16, the

communication unit prepares a data-request command and
sends it to the sensors (corresponding to state 2 of Fig.12).
This data-request command is a simple string and is not en-
crypted. In line 6, the data storage component waits on the
socket to receive any incoming data (corresponding to state
3 of Fig.12). In the end, the communication unit closes the
connection (line 8, corresponding to state 6 of Fig.12).

To mount the attack, we used a USB-to-Serial cable (13)
to connect our laptop to the sensor board via its serial in-
terface (a 6 pin connector). This cable is a USB to TTL
level serial interface converter and usually operates at the 5
Volt level. To establish the serial communication, we need
to configure the communication parameters. These include:
1) the size of data in a frame (5-9 bits), 2) number of stop
bits (1-2 bits), 3) availability of parity (0-1 bit), and 4) the
baud rate. We used the default settings for the first three
parameters, namely 8 bit data size, 1 stop bit, and no par-
ity, which turned out to be the settings used in the meter.
To select the baud rate, we tried the 10 common baud rates
ranging from 300 to 230400 and within a few minutes were
able to find the baud rate used, namely 38400bps. Thus,
we could communicate with the meter through the USB-to-
Serial cable.

To communicate with the meter, we sent the same mes-
sage as in line 4 to the microcontroller. These packets con-
tain the data-request command (shown in line 3). We note
that for mounting the attack, the attacker does not need to
be able to read the contents of the packet, but only needs to
resend the packet to the microcontroller. We observed that
as a result of replaying data request command, the micro-
controller responds with the new sensor data and erases the
data from its memory. However, these data are not received
by the gateway board as its connection is closed (line 8 of
Fig.16) and consequently, will not be recorded. This leads
to incorrect billing to the attacker’s benefit. Although we
used our laptop to send commands to the meter, an attacker
may use a device as simple as an Arduino Uno board [59],
to avoid detection upon inspection. The board may even be
placed and hidden inside the meter, as it has a small form
factor. An Aurdino board costs about $25 on eBay (as of
May 2016), and hence this attack is inexpensive.

Mitigation: We note that this attack will be success-
ful even if messages are encrypted (which was not the case
for the SEGMeter though). Hence, simple encryption will
not mitigate the attack. To mitigate this attack, develop-
ers should include unique sequence numbers to requests so
that they can be validated by the microcontroller. The en-
tire message needs to be signed cryptographically to prevent
attackers from modifying the sequence numbers.

B. MAUDE SYNTAX
In this section, we introduce the syntax of Maude for defin-

ing sort, operation, equation, and rewrite rules. A compre-
hensive manual on Maude can be found in Clavel et. al.[14]

Maude consists of Modules. They define a collection of
sorts, operations on sorts, equations, and rewrite rules to
change (rewrite) user inputs.

Sort: A sort is a category for value. It can describe any
type, including ‘integer’ and ‘list’. A sort is described with
the keyword sort, and a period at the end:

sort real .

A subsort specifies a category, that is a subset of another
sort. For example, ’integer’ numbers are a subsort of ’real’
numbers:

subsort integer < real .

Operation: Maude allows definition of operations on the
defined sorts. An operation is defined using the keyword op,
followed by the name of the operation , a colon, the names
of the sorts that are input to the operation, an arrow (!),
the sort that is the output of the operation, and a period:

op + : integer integer ! integer .

Equation: In Maude, equations are used to define rules
for the interpreter, so that it can simplify expressions. An
equation is indicated by the keyword eq. For example, one
rule of addition is that, 0 plus a number equals the same
number:

eq 0 +N = N .

Rewrite rule: Rewrite rules define the transitions in the
system. They are not equations as they apply only in one
direction. They determine the changes in the states of the
system. Rewrite rules are indicated by the keyword rl. For
example, assuming we have a model of a networked system
in which, under certain conditions, a ’socket’ may be closed,
we show:

rl[socket� rule] : open� socket) closed� socket .

In the above formula, the term in the bracket is the name
of the rewrite rule.

