GPGPU in HPC

Sl
g

& T

Scientific Applications

Soft Errors

Bauman et al. [TDMR, 2005]

a-particle

substrate

>

M =0101

N &
s

v

§,8,

Traditional Method: DMR

Dual Modular Redundancy (DMR)
* Run 2 copies

* Compare for divergence

Too much energy consumption!

Software Solutions

Applit atior Level
Advantages

Oper iting System Level e No hardware modification
* Errors can be masked

Architectural Level

* Allow selective protection

Device/Circuit Level

Impact

Challenges for GPGPU Resilience

* Different architecture and programming model from CPUs

* No scalable fault injection tools for HPC GPGPU applications

Our Contributions

LLFI-GPU: Characterization
Scalable Fault of Error
Injector Propagation

Implications on

Error Mitigations

Existing Publicly Available GPU Fault Injectors

* Hauberk [IPDPS, 2011]

e Source code level fault injection

* Not representative for hardware errors

* GPU-Qin [ISPASS, 2014]

* Debugger-based

* Execution is slow

* GPGPU-Sim based fault injector [DSN, 2015]

* Not full system simulation

Goals of LLFI-GPU

* Native Speed
* Program-level fault injection

* Compile to binary

* Full system simulation
 Execute on real hardware

* Able to simulate different failure outcomes

* Representativeness
* LLVM IR level fault injection

* Close to assembly, yet preserve high-level program symbols

LLVM (Low Level Virtual Machine)

Fortran -

Haskell -

GHC Frontend

Clang C/C++/0ObjC LLFI for CPU
Frontend
e
LLVM
llvm-gce Frontend Optimizer
e e —-

LLVM IR LLVM IR

LLVM
X86 Backend

LLVM
PowerPC Backend

LLVM
ARM Backend

LLFI for CPU: https://github.com/DependableSystemsLab/LLFI

-~ X86

- PowerPC

-» ARM

LLFI-GPU: Overview

PTX Assembly

SASS Assembly

NVCC Compilation

LLFI-GPU

Instrumentation
Passes

RO = add R1, R2
RO = injectFault(RO)
R4 = mul RO, R3

10

Advantages of LLFI-GPU

* Compile on large GPGPU programs

e 1000x faster compared to GPU-Qin (MatrixMul)

* Represented simulation

e Full system simulation of soft errors

* Open-source

* https://github.com/DependableSystemsLab/LLFI-GPU

Experiment Setup: Nvidia K20

e 12 Benchmarks
 Rodinia & Parboil suites

e Lulesh (LLNL), Barns-Hut (Texas State Univ.), Fiber (Northeastern Univ.), Circuit Solver (Rice
Univ.) and NMF (UC Berkley)

* Fault Injection

* 10,000 per application (Error bar: 0.22%-2.99% , 95% confidence level)

* Fault Model
* Single bit-flip

* Transient faults in execution units

Failure Outcomes

* Silent Data Corruption (SDC)

* Mismatch in program outputs from golden run and fault injection run

* Crash

* CUDA exceptions (e.g, illegal memory address)
* Cause kernel execution to halt
* Benign

* No effect on program output

Our Contributions

LLFI-GPU: Characterization

Scalable Fault of Error Implications on

Injector Propagation

Error Mitigations

14

Research Question 1

What is the percentage of SDCs in different

memory states?

Memory State

cudaMalloc(M1)
cudaMemcpy(M1, ...
cudaMemcpy(M2, ...)

Result Memory (RM)

Kernel<<<>>>, . Output Memory (OM)

cudaMemcpy(..., M2

Foreach(M?2): if(ele>0) {print(ele

16

SDC in Different Memory States

SDC of States
bfs barneshut nmf

SDCy,, - SDCpy, 0.00% 0.20% 0.00% Average of SDCyam)

in all benchmarks:

Most of the faults in TM propagate RM 0.09%

Size of States

bfs barneshut .
Average size of RM
RM 14.29% 37.50% 0.03%
T™ 100% 100% 100% in all benchmarks:

Checking RM reduces ~86% overhead 13.56%

while retaining coverage .

Example of Checkers

Pattabiraman et al. [TDSC, 2011]
Hari et al. [DSN, 2012]

* Check value range of particular states

e Calculating angle: if (angle > 60 or angle < 0) {error detected}

* Overhead is directly proportional to the number of states checked

* Checking RM reduces ~“86% overhead

* Small loss of coverage

Research Question 2

How long do errors take to propagate to the RM?

Metrics: Kernel Call

... to measure propagation time of error Error detection latency is 2

Error Detector Error Detector Error Detector

l > CPU Execution

Error Detected
Erxror Occurred
> GPU Execution

Kernel 1 Kernel 2 Ker&el 3

™~ -~ -

20

Tracking Error Propagation

Kernell<<<>>>

DumpTo
DumpTo
DumpTo

DIS
IS

DIS

(TM)
<(RM)

<(OM)

Kernel2 <<<>>>

Compared with golden copy

for any data corruptions

21

Propagation Latency to RM

100.00% *
80.00%
60.00% Checking RM provides

40.00%

short detection latency

20.00%

0.00%
0 1 2 3 4 5

el)fg —le=harneshut =®=—nmf

22

Implications

RM is a narrow tunnel where faults frequently propagate through

e Checking RM for SDC is a better trade-off

Crash-causing faults rarely propagate across kernel calls

* Deploying high frequency checkpoints for GPGPU can avoid checkpoint corruptions

Studied on 2 GPGPU platforms (Nvidia GTX 960 & Nvidia K20)

* Results are statistically indistinguishable

Investigated in error spread & masking etc

e ... more interesting findings can be found in the paper !

Summary

* Designed a scalable fault injector for GPGPUs: LLFI-GPU
* Characterized error propagation patterns in GPGPU applications
* Discussed their implications on error mitigation techniques

 Name: Guanpeng(Justin) Li (gpli@ece.ubc.ca)
Website: ece.ubc.ca/~gpli

LLFI-GPU:
* https://github.com/DependableSystemsLab/LLFI-GPU

Results:
* https://www.dropbox.com/s/xrvojidskkcridy/Fl data.xlsx?dl=0

Acknowledgements

NSERC
CRSNG

INN@VATION CA

CANADA FOUNDATION ‘ FONDATION CANADIENNE

FOR INNOVATION POURLINNOVATION

