
39

Configurable Detection of SDC-causing Errors in Programs

QINING LU, University of British Columbia
GUANPENG LI, University of British Columbia
KARTHIK PATTABIRAMAN, University of British Columbia
MEETA S. GUPTA, Unaffiliated
JUDE A. RIVERS, Unaffiliated

Silent Data Corruption (SDC) is a serious reliability issue in many domains, including embedded systems.
However, current protection techniques are brittle, and do not allow programmers to trade off performance
for SDC coverage. Further, many of them require tens of thousands of fault injection experiments, which are
highly time- and resource-intensive. In this paper, we propose two empirical models, namely SDCTune and
SDCAuto, to predict the SDC proneness of a program’s data. Both models are based on static and dynamic
features of the program alone, and do not require fault injections to be performed. The main difference
between them is that SDCTune requires manual tuning, while SDCAuto is completely automated using
machine-learning algorithms.

We then develop an algorithm using both models to selectively protect the most SDC-prone data in the
program subject to a given performance overhead bound. Our results show that both models are accurate at
predicting the relative SDC rate of an application compared to fault-injection, for a fraction of the time taken.
Further, in terms of efficiency of detection (i.e., ratio of SDC coverage provided to performance overhead),
our technique outperforms full duplication by a factor of 0.78x to 1.65x with SDCTune model, and 0.62x to
0.96x with SDCAuto model.

CCS Concepts: •Computer systems organization ! Reliability; •Software and its engineering !
Software fault tolerance;
Additional Key Words and Phrases: fault tolerance, error detection, reliability, compiler, modeling

ACM Reference Format:
Qining Lu, Guanpeng Li, Karthik Pattabiraman, Meeta S. Gupta and Jude A. Rivers, 2015. Configurable
Detection of SDC-causing Errors in Programs ACM Trans. Embedd. Comput. Syst. 9, 4, Article 39 (March
2010), 25 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Hardware transient errors are increasing due to shrinking feature sizes and dimin-

ishing voltage margins [Borkar 2005; Constantinescu 2008]. Conventional hardware-
only solutions such as guard banding and hardware redundancy are challenging to
apply due to power constraints. As a result, researchers have explored software tech-
niques to tolerate hardware faults [Reis et al. 2005]. However, generic software solu-
tions such as full duplication incur high power and performance overhead, and hence
there is a compelling need for configurable, application-specific solutions for tolerating
hardware faults. This is especially important for embedded systems, which have to op-

Author’s addresses: Q. Lu, (Current address) Department of Electrical and Computer Engineering, UBC,
Vancouver, Canada G. Li, Department of Electrical and Computer Engineering, UBC, Vancouver, Canada K.
Pattabiraman, Department of Electrical and Computer Engineering, UBC, Vancouver, Canada M. S. Gupta,
Work performed when author was with IBM T.J. Watson Research J. A. Rivers, Work performed when author
was with IBM T.J. Watson Research
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© 2010 ACM. 1539-9087/2010/03-ART39 $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 Q. Lu et al.

erate under strict performance and/or power constraints, in order to meet system-wide
timing and energy targets.

Hardware faults can affect the running software in three ways: (1) they may not
have any effect on the application (benign/masked), (2) they may crash or hang the
program, or (3) they may lead to incorrect outputs, also called Silent Data Corrup-
tion (SDCs). While crashes and hangs are important from an availability perspective,
when a crash/hang occurs, there is an indication given so that the system can take
appropriate recovery actions. When an SDC occurs, the program will fail without any
indication of the failure. This can lead to the error propagating in the system and
causing catastrophic effects. Therefore, we focus on SDCs in this paper.

SDCs are caused by errors that propagate to program outputs, and as such, can be
prevented by inserting error detectors or checks in programs. A detector checks the
consistency of a program variable, and if it fails, aborts the program. However, it is
too expensive in practice to insert a check after every program variable, for most com-
modity applications. Commodity applications include those used in desktop or mobile
contexts, as well as data center and high-performance computing (HPC) applications.
Unlike mission-critical and life-critical applications such as those used in aerospace or
banking, commodity applications typically have a fixed performance overhead budget
for protection, and are usually willing to accept the risk of failures. For example, the
cost of a failure in a data center application may be a financial penalty as outlined in
its service level agreement (SLA), and as a result, the risk of failure needs to be bal-
anced with the performance overhead incurred during normal operation. We focus on
commodity applications in this paper, and hence our goal is to provide as high a fault
coverage as possible subject to a given performance overhead specified by the user.

The main challenge then becomes how does one identify the program variables
which, when protected, offer high SDC coverage within the performance overhead bud-
get. One way to identify the variables to protect in an application is to use fault injec-
tion, where we systematically perturb the program to emulate hardware faults and
study whether the fault leads to an SDC. While effective, this method requires a large
number of fault injections to obtain statistically significant estimates, and is hence
highly time-consuming. Another issue with fault injection is that there is significant
manual effort involved in mapping the results of the injection back to the program, and
making decisions about which variable(s) to protect for a given performance overhead.

In this paper, we propose two models, SDCTune and SDCAuto, to quantify the SDC
proneness of program variables, and develop a model-based technique to selectively
protect highly SDC-prone variables in the program. An SDC-prone variable is one in
which a fault is highly likely to result in an SDC, and hence needs to be protected.
SDCTune and SDCAuto use only static and dynamic analysis to identify the SDC-
prone variables in a program, without requiring any fault injections to be performed,
thus achieving significant time-saving. Further, the models allow users to configure
the amount of protection depending on the amount of performance overhead they are
willing to tolerate. We call our first model, SDCTune, as it requires considerable man-
ual tuning for building the model, and second model, SDCAuto, as it builds the model
automatically through a machine learning algorithm, thus requiring little to no effort
on the part of the developer. To the best of our knowledge, we are the first to propose
models for performing configurable protection against SDC-causing errors in general-
purpose applications without using fault injections.

Our approach has three parts. We first identify heuristics that correlate with highly
SDC-prone program variables. We then extract these heuristics using fault injection
experiments on a small set of benchmark programs that we use for training purposes.
Finally, we integrate the heuristics with manual analysis and machine learning al-
gorithms to build our models. While the initial identification of the heuristics used in

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:3

SDCTune and SDCAuto, and the subsequent training require fault injection, we do not
need fault injection to apply our models to new programs.

In this paper, we target transient hardware errors, and hence we focus on error
detection rather than recovery (as the program can be restarted from a checkpoint
to recover from a transient error). We use SDCTune and SDCAuto to identify SDC-
prone variables in the program, and to derive error detectors for the variables, subject
to a given performance overhead. Our detectors recompute the value of the chosen
variable(s) by duplicating their backward slice(s), and compare the recomputed value
with the original one. We make the following contributions in this paper.
— We develop heuristics to identify SDC-prone variables based on an initial fault-

injection study (Section 2). These heuristics are based on static analysis and dy-
namic profile information obtained at runtime (Section 2.5).

— We develop a manually tuned model, SDCTune, based on the heuristics developed to
identify the relatively SDC-prone variables in a program. We also develop an auto-
matically tuned model, SDCAuto, based on a machine learning algorithm [Quinlan
1993], which can automatically build a regression model from training data.

— We then propose an algorithm based on the models to derive error detectors that
check the values of the SDC-prone variables at runtime, subject to a given perfor-
mance overhead constraint specified by the programmer (Section 3).

— We evaluate SDCTune and SDCAuto by using them to predict the overall SDC
proneness of a program relative to other programs. The results show that both SD-
CTune and SDCAuto are highly accurate at predicting the overall SDC proneness of
a program relative to other programs. The correlation coefficient between the pre-
dicted and observed overall SDC ranks (i.e., relative SDC rates) ranges from 0.855
to 0.877 (Section 5).

— We evaluate the detectors inserted by our algorithm by performing fault-injection
experiments on six different programs from those used in our model extraction, for
performance overhead bounds ranging from 10% to 30%. The results show that our
detectors can achieve high detection coverage for SDC-causing errors, for the given
performance overhead. SDCTune achieves 78% to 165% higher efficiencies than
full duplication (i.e., ratio of coverage provided to performance overhead incurred),
while SDCAuto achieves 62% to 96% higher efficiencies (Section 5) than full du-
plication. Both models achieve much higher efficiencies than hot-path duplication.

2. INITIAL FAULT INJECTION STUDY
In this section, we empirically study how SDC proneness of instructions is influenced

by the data dependency chains in the program. We first define some terms we will use
in the paper and formalize the protection problem. We then present our fault model
in Section 2.2 and describe our fault injection experiment in Section 2.3. The results
of the experiment are discussed in Section 2.4, and Section 2.5 develops heuristics for
estimating the SDC proneness of program variables based on the results.

2.1. Terminology and Protection Model
We first define the following terms in this paper:
Overall SDC rate: This is the overall probability that a fault leads to an SDC in

the program. We denote this by P (SDC).
SDC coverage of an instruction: We define the SDC coverage of an instruction I

to be the probability that an SDC failure is caused by a fault in instruction I ’s result
and thus can be detected by protecting instruction I with a detector. This is denoted as
P (I|SDC).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 Q. Lu et al.

SDC proneness per instruction: This is the probability that a fault in instruction
I leads to an SDC. This is denoted as P (SDC|I).

Dynamic count ratio: This is the ratio of the number of dynamic instances of
instruction I executed to the total number of dynamic instructions in the program.
This is denoted as P (I).

Our overall goal is to selectively protect instructions with detectors, to maximize
the SDC detection coverage for a given performance cost budget. The SDC detection
coverage of an instruction, P (I|SDC), represents the “fraction of SDCs” that can be
detected by protecting instruction I, and thus directly represents the importance of
the instruction I. Therefore, our goal is find an instruction set inst set that maxi-
mizes the

P
I2inst set

P (I|SDC) subject to a certain
P

I2inst set

P (I) specified by the
user.

P
I2inst set

P (I|SDC) is the coverage of SDC causing faults by protecting the in-
structions in set: inst set while

P
I2inst set

P (I) is the number of dynamic instances of
protected instructions (through detectors) and is proportional to the protection over-
head.

As mentioned above, it is important to understand how P (I|SDC) varies for each in-
struction in the program. One way to do this is to perform random fault injection into
the program and measure P (I|SDC) for each instruction. However, it is difficult to di-
rectly measure this probability for each instruction by random fault injection as each
instruction may not be injected sufficient number of times to obtain statistically signif-
icant estimates. Instead, we perform a fixed number of fault injections into individual
instructions to measure their SDC proneness, P (SDC|I) at a statistically significant
level. We then use Bayes’ formula to obtain P (I|SDC):

P (I|SDC) =
P (SDC|I)P (I)

P (SDC)
(1)

where,

P (SDC) =
X

I2prog

P (SDC|I)P (I) (2)

2.2. Fault Model
We consider transient hardware faults that occur in processors and corrupt program

data. Such faults are usually caused by electrical noise, cosmic rays or temperature
variation. We focus on transient faults because they occur more frequently than per-
manent errors [Siewiorek 1991]. Further, rates of transient errors are projected to
increase significantly due to the effects of technology scaling [Shivakumar et al. 2002].
Extending our fault model to permanent errors is a direction for future research.

More specifically, we focus on the faults that occur in processors’ functional units
and registers, (i.e., the ALUs, LSUs, GPRs, etc.) which generally result in a corruption
of the program data. However, we do not consider the faults in caches or control logic.
Architectural solutions such as ECC or parity can protect the chip from the faults in
the caches, while faults in the control logic usually trigger hardware exceptions. We
do not consider faults in the program’s code or program counter, as such faults can
be detected by control-flow checking techniques. Finally, as in other work [Hari et al.
2012a; Thomas and Pattabiraman 2013; Feng et al. 2010], we assume that at most one
fault occurs during a program’s execution. This is because transient faults are rare
relative to the execution times of typical programs.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:5

2.3. Fault Injection Experiment
The goal of our fault injection experiment is to understand the reasons for SDCs

when faults are injected into the program. In other words, we want to study the SDC
proneness of instructions in the program, and understand how it varies by instruction.

The fault injection experiment is conducted using LLFI, a program level fault injec-
tion tool, which has been shown to be accurate for measuring SDCs in programs [Wei
et al. 2014]. LLFI works at the intermediate representative (IR) level of LLVM com-
piler infrastructure [Lattner and Adve 2004], and enables the user to inject faults into
the LLVM IR instructions. Using LLFI, we inject into the result of a random dynamic
instruction to emulate the effect of a computational error in the program. Specifically,
we corrupt the instruction’s destination register by flipping a single bit in it (similar
to what prior work has done [Hari et al. 2012a; Thomas and Pattabiraman 2013; Feng
et al. 2010]).

We use four benchmarks in this experiment, namely Bzip2, IS, LU and Water-
spatial. They are from SPEC[Henning 2000], NAS[Bailey et al. 1991] and SPLASH-
2[Woo et al. 1995] benchmark suites respectively. Note that these benchmarks are only
used for the initial fault-injection study - we later derive and validate the model with a
larger set of programs. We choose a limited set of benchmarks in this study to balance
representativeness with time efficiency for fault injections.

We classify the outcome into four categories: (1) Crash, meaning that the program
threw an exception, (2) SDC, which means the program’s output deviated from the
fault-free outcome, (3) Hang, which means the program took significantly longer to
execute than a fault-free run, and (4) Benign, which means the program completed
successfully and its output matched the fault-free outcome. The above outcomes are
mutually exclusive and exhaustive.

2.4. Injection Results
The results of our fault injection experiments show that the top 10% most executed

instructions, or those on the hot paths of the program, are responsible for 85% of
the SDCs on average. This result is similar to that of prior work, which has also ob-
served that a small fraction of static program instructions cause most SDCs [Hari et al.
2012a]. However, this does not mean that all the hot-path instructions should be pro-
tected, as they incur high performance overhead when protected (as we show later).
Further, there is considerable variation in SDC rates even among the top 10% most
executed instructions as the example below shows.

Table I shows an excerpt from the Bzip2 program on its hot path. The principle
described here is observed across all four benchmarks we studied, but we focus on this
(single) basic block for simplicity. The excerpt contains instructions from the LLVM
IR, into which we inject faults. Although the original code is in the LLVM IR form,
we use C source-like semantics for simplicity. For each instruction in the table, we
report its SDC proneness measured by fault injection. It can be observed from the table
that some of the instructions have low SDC proneness, even in this highly executed
block, e.g., instruction 4, 5, 6. This means even if a fault occurs in the result of these
instructions, it is unlikely to result into an SDC, and hence protecting such instructions
will not improve coverage by much, even while incurring high overheads. Therefore,
we need to find factors other than execution time that influence the SDC proneness of
an instruction.

After investigating further, we found that SDC proneness is highly influenced by
data dependencies among the instructions. For example, in Table I, instruction 4-8
constitute a data dependency chain whose final result is stored in instruction 10. In-
struction 8 is the end of this data dependency chain and has an SDC proneness of

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 Q. Lu et al.

Table I: Example from Bzip2 to illustrate the variation of SDC proneness of highly executed
instructions. Results obtained from fault injection.

Source code:

1 s�>bsBuff |= (v << (32 � s�>bsLive � n)) ;

Basic block ID Instruction SDC proneness

bsW()-bb2

1 t1 = &s + OFFSET(bsBuff) 21%
2 t2 = load t1 47%
3 t3 = &s + OFFSET(bsLive) 21%
4 t4 = load t3 13%
5 t5 = 32 - t4 12%
6 t6 = t5 - n 12%
7 t7 = v « t6 58%
8 t8 = t2 | t7 71%
9 t9 = &s + OFFSET(bsBuff) 26%

10 store t8, t9 -

71%. The result of instruction 7 is used in instruction 8 so a fault may propagate from
instruction 7 to instruction 8. But, the execution of instruction 8 can mask the faulty
bit from instruction 7 if the corresponding bit of the result of instruction 2 is 1. This
explains why the SDC proneness for instruction 7 is slightly lower than that of in-
struction 8. The operation of instruction 7 can mask the fault in high bit positions
of the second source operand due to architectural wrapping implementation of these
shifting operations. The consequence of this masking effect is the low SDC proneness of
instruction 4-6. In addition to the arithmetic operations, our results show that address
calculation operations such as instructions 1, 3 and 9 ("getelementptr" instructions
in LLVM) have low SDC proneness. This is because the results of such instructions
are usually used for pointer dereferences and are likely to cause segmentation faults
which crash the application, when corrupted. Thus, we see that to calculate the SDC
proneness of an instruction and determine whether it should be protected, one needs
to take into account the fault propagation and SDC proneness of the end point of its
data dependency chain. These form the basis of our heuristics.

2.5. Heuristics
In this section, we list the heuristics for modelling error propagation and for esti-

mating the SDC proneness of instructions in Table II. Details of these heuristics can
be found in the conference version of the paper [Lu et al. 2014]. Here we provide an
overview. We focus on stores and comparison instructions as these are the ones that are
directly responsible for SDCs. Note however that we calculate the SDC rates for all in-
structions based on the propagation model (Section 2.4), not just stores and compares.
There are 4 categories of store and comparison instruction values as follows:

(1) Addr NoCmp: The stored value is used in calculating memory addresses but not
comparison results, with SDC proneness 22.82% on average.

(2) Addr Cmp: The stored value is used in calculating both memory addresses and com-
parison results, with SDC proneness 48.17% on average.

(3) Cmp NoAddr: The stored value is used in calculating comparison results but not
memory addresses, with SDC proneness 67.25% on average.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:7

(4) NoCmp NoAddr: The stored value is neither used in memory address calculation
nor comparison results, with SDC proneness 56.41% on average.

Table II: Heuristics extracted from initial fault injections

Class of
Heuristics Description

Fault propaga-
tion

The SDC proneness of an instruction will decrease if its result is used in either fault masking or
crash prone instructions.

Store Operations

Addr NoCmp stored values have low SDC proneness in general.

Addr Cmp stored values usually have higher SDC proneness than Addr NoCmp.

The SDC proneness of Addr NoCmp and Addr Cmp stored values increase as their Data
width decrease.

The SDC proneness of Cmp NoAddr stored values depends on the resilience of the comparison
operation to which the value propagates i.e., how likely it is to change the result of the

comparison given a faulty data operand.

The SDC proneness of NoCmp NoAddr stored values depend on the probability of a fault in
them propagating to the program’s output, and whether the output is important to the program.

Comparison Op-
erations

Nested loop depths affect the SDC proneness of loops’ comparison operations, as the SDC
proneness of comparison operations in inner loops are generally lower than the comparison

operations in outer loops.

Comparison operations that only affect silent stores have low SDC proneness.

Comparisons that affect output-related store values have high SDC proneness.

Other Factors Memory allocation functions related stored values and comparison operations have low SDC
proneness.

3. APPROACH
In this section, we first extract program features based on the heuristics to describe

each store and comparison instruction (Section 3.1). We then build both the SDCTune
(Section 3.2) and SDCAuto models (Section 3.3) with extracted features to quantify
the estimation of SDC proneness based on empirical data. Finally, we present our
approach for choosing the SDC-prone locations subject to a maximum performance
overhead using SDCTune and SDCAuto (Section 3.5), and the nature of the detectors
we inserted to protect the program (Section 3.6)

3.1. Feature extraction
The first step of building our SDC-proneness estimation model is extracting features.

Features are extracted according to our heuristics and also based on prior work [Feng
et al. 2010; Thomas and Pattabiraman 2013; Cong and Gururaj 2011; Pattabiraman
et al. 2005]. Note however that the features that are eventually selected to be used
in either SDCTune or SDCAuto are determined in the model building phase, covered
in Section 3.2 and Section 3.3 respectively. Therefore, we can be conservative at this
stage and extract as many features as possible.

In total, 66 features are extracted for stored values and 67 for comparisons. The
features can be classified into three broad categories. (1) Execution time related fea-
tures pertain to dynamic counts of a program variable or those affected by it. (2) Code
structure related features pertain to the position of an program variable in the code. (3)
Data usage related features pertain to the usage of an program variable in the code.
Table III shows an excerpt of all the features we extracted.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 Q. Lu et al.

Table III: Some features extracted for Model Building

Feature
group Subgroup Feature Description

Common
features

Execution
time

inst_func_execution_time_ratio dynamic counts of the specific instruction divided by the
dynamic counts of the function it belongs to

inst_execution_time_ratio_bymax dynamic counts of an instruction divided by the maximum
dynamic counts of all instructions

dominated_execution_time_ratio_bywhole dominated dynamic counts of an instruction divided by the
dynamic counts of all instructions

post_dominated_execution_time_ratio_bymax post dominated dynamic counts of an instruction divided by the
maximum of all instructions

Code
structure

bb_length the number of static instructions in the basic block that
contains the specific instructions

bb_length_ratio_bymax bb_length divided by the maximum of all instructions

post_dominated_loop_depth_ratio_bymax post-dominated loop depth of an instruction divided by the
maximum of all instructions

Data
usage

data_width the number of bits of the result of the specific instruction

in_global whether the specific instruction changes a globally defined
value

Features
for
stored
values

Execution
time

execution_time_loads the dynamic counts of the stored value being loaded

load_execution_time_entropy the entropy computed based on the probabilities of a stored
value being loaded by different load instructions

execution_time_required_for_addr the dynamic counts required for computing the storing address

Code
structure

num_static_loads_ratio_bymax the number of static load instructions divided by the maximum
of all stored values

Data
usage

used_in_oef_func_call whether the stored value is used in functions which have no
side effect

Features
for com-
parisons

Execution
time

decision_entropy_execution_time the entropy computed based on the probabilities of the
comparison results

Code structure is_loop_terminator whether the comparison result can break a loop execution

Data
usage

is_icmp whether the comparison is made between integers

is_fcmp whether the comparison is made between float point values

cmp_with_zero whether the comparison is made with zero

3.2. Manually Tuned Model: SDCTune

Both SDCTune and SDCAuto are built from fault injections over a set of training
programs with the above features. We start building SDCTune by modelling the SDC
proneness of store and comparison instructions in the program. The SDC proneness of
these instructions depends on categorical features such as resilient comparisons, and
on numerical features such as data width (Section 2.5). We manually apply classifi-
cation to model the categorical features, and linear regression to model the numerical
ones. Once we determine the SDC proneness of the store and branch instructions, we
use the data dependencies for estimating the SDC proneness of other instructions. We
explain the classification and regression methods below.

Classification. The goal of classification is to use the categorical features extracted
earlier to classify the stored values or comparison results into different groups so that
we can apply the numerical features (or arithmetic means) to quantify the SDC prone-
ness of each group. This classification is done manually according to our empirical
data. For each division in the model, we first select features that can be covered by
our heuristics. We then adopt those features to split our current group into several sub-
groups. We recursively split these subgroups with our heuristics until all the heuristics
are utilized.

Different categories of stored values and comparison results have different categor-
ical features (these are part of our heuristics) for determining their SDC proneness
(e.g. resilient comparisons or not for Cmp NoAddr stored values, and used in output

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:9

Fig. 1: Manually Tuned classification tree for stored values.

or not for NoCmp NoAddr ones). Therefore, we apply tree-structured classification so
that different features can be used in different categories. The features are arranged
hierarchically in the form of a tree, starting from a root node, and partitioning the
nodes based on different features recursively until all the data in a leaf node belongs
to a single category.

An example tree is shown in Figure 1. In the tree, consider the Cmp NoAddr stored
values category we introduced in Section 2.5. This constitutes one of the four partitions
from the root node of all stored values, and we then split this group into two groups,
namely ResCmp NoAddr and UnresCmp NoAddr. As the tree grows, ResCmp NoAddr
will then be divided again based on whether the value is a global variable, while Un-
resCmp NoAddr will be split based on whether it is accumulative computation. Finally,
we generate a tree that partitions all stored values into its leaf nodes.

Regression. is applied upon the leaf nodes of the classification tree to factor in the
effects of numerical features such as data width. For example, consider a leaf node of
stored values: Addr NoCmp->Not Used in Masking Operations. We find that the SDC
proneness of stored values in this node satisfy the following equation: P̂ (SDC|I) =
�0.012 ⇤ data width+ 0.878. This expression was derived using linear regression based
on the results from fault injection over a set of training programs in Section 4.1. The
reason for the negative correlation in this equation is that the higher bit positions of
stored values in leaf Addr NoCmp->Not Used in Masking Operations are very likely
to cause application crash if they are corrupted. Since values with larger data width
have a higher probability of being corrupted in higher bit positions, faults that occur in
those values are less likely to cause SDCs as they are more likely to cause the program
to crash. For the leaf nodes that do not exhibit a correlation with numerical features,
we take the arithmetic means as the estimation of their SDC proneness.

3.3. Automatically Tuned Model: SDCAuto

Unlike SDCTune, our automatically tuned model, SDCAuto, is built automatically
using a machine learning approach known as the Classification and Regression Tree
(CART) algorithm [Quinlan 1993]. Our goal here is to demonstrate that machine learn-
ing can be used to learn the model automatically, and not to necessarily find the best
approach for machine learning. We choose the CART algorithm due to three reasons:

(1) The built tree model is simple to understand and to interpret. On the contrary, re-
sults from other models such as artificial neural networks (ANNs), may be more
difficult to interpret. The generated CART tree can help us gain a better under-
standing of the relation between SDC proneness and program features by picking
out the features showing strong correlation with SDC proneness.

(2) CART tree is able to handle both numerical and categorical data. Many of the fea-
tures we extracted are categorical data, e.g.,is_global, is_integer and is_fcmp, while
some other features are numerical, e.g., loop_depth, dominated_execution_time and

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 Q. Lu et al.

Fig. 2: Auto tuned decision tree for stored values

data_width. Other regression algorithms may not support a mix of categorical data
and numerical data.

(3) CART tree model is one of the decision tree models that requires little data prepara-
tion [Breiman et al. 1984]. Other regression models, such as support vector machine
(SVM) and Gaussian process, rely on an appropriate normalization method of input
data, which needs delicate tuning based on the application scenarios. However in
our case, the orders of magnitude may be very different for different features (e.g.,
execution time related features and code structure related features), and are hence
very difficult to normalize.

However, one disadvantage of CART algorithm is that the tree may grow to be biased
if some classes of data dominate. In our case, the tree may biased towards some train-
ing programs because of the large number of data points from them while ignoring
other training programs. To balance the dataset between different training programs,
we define data point threshold as a parameter to constrain the maximum number of
data points allowed per application for stored values and comparisons. Store and com-
parison instructions will be ranked in the decreasing order of their dynamic counts,
and only the top ones are incorporated. This is because highly executed instructions
are more valuable for SDC proneness estimation (Equation 2). The number of instruc-
tions we incorporate from each program is limited by the data point threshold.

Our decision tree is built based on the Mean Squared Error (MSE) criteria. The
goal is to minimize the MSE of the tree, which represents the information gain. The
algorithm splits the training dataset recursively to divide the data points into multiple
groups until the divided groups have data points fewer than a threshold value, namely
minimum size of leaves. The end groups are known as leaves and the average value
(i.e., SDC proneness) are assigned as the value of each leaf. For each split, the decision
tree algorithm will select a feature and find an optimal threshold for splitting the node
according to the feature which maximizes the MSE reduction.

In the above algorithm, the growth of the trees is controlled by the parameters:
minimum size of leaves and data point threshold. We study the influence of these pa-
rameters later. Figure 2 shows an example of our built decision tree for stored values
with 17 points as minimum size of leaves and 80 instructions as data point threshold.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:11

3.4. Model usage
Once the trees are built from training dataset, we can use them to estimate the SDC

proneness of the stored values and comparison results of the testing programs. The
estimated SDC proneness of those end points of data dependency chains will be back
propagated along their backward slices to derive the SDC proneness of each instruc-
tion with fault masking or crashing rate considered. Then the SDC proneness of each
instruction will be used to calculate the importance of the instruction and guide the
selection of instructions to duplicate and check under a specific overhead bound as
described in Section 4.3.

3.5. Choosing the Instructions
As shown in Section 2.4, we can calculate the SDC coverage of protecting an instruc-

tion if we know the SDC proneness of that instruction using Equation 1 in Section 2.1.
We apply either SDCTune model or SDCAuto model to estimate the SDC proneness of
each instruction in the program that we want to protect. We also obtain the dynamic
count of each instruction in the program by profiling it with representative inputs.
We then attempt to choose instructions to maximize the SDC coverage subject to a
given performance overhead (Section 2.4), using a standard dynamic programming al-
gorithm [Martello and Toth 1990].

3.6. Detector Design
Once we identify a set of instructions to protect, the next step is to insert error detec-

tors at these instructions. Our detectors are based on duplicating the backward slices
of the instructions to protect, similar to prior work [Feng et al. 2010]. We insert a check
immediately after the instructions to be protected, which compares the original value
computed by the instruction with the value computed by the duplicated instructions.
Any difference in these values is deemed to be an error detection and the program
is stopped. Figure 3b shows a conceptual example of our detector for a given set of
instructions to be protected in Figure 3a.

Note that we assume that there is a single transient fault in the program (Sec-
tion 2.2), and hence it is not possible for both the detector and the chosen instruction
to be erroneous simultaneously. Therefore, any transient error in the computation per-
formed by the chosen instruction will be detected by the corresponding error detector.

A naive implementation of our detectors can result in prohibitive performance over-
head. Therefore, we develop two optimizations to lower the detector overhead. First,
we concatenate adjacent duplicated pieces of code by adding the instructions between
them to the protection set so that we can combine their detectors. Figure 3c shows
how this optimization works for the conceptual example. This optimization provides
benefits when the cost of the saved detector is higher than the cost due to the added
instructions. Second, we perform lazy checking, in which detectors for cumulative com-
putations in loops are moved out of the loop bodies. This optimization is effective for
long running loops, where the cost of running the check in every loop iteration is high.

4. EXPERIMENTAL SETUP
In this section, we empirically evaluate both the SDCTune and SDCAuto models for

configurable SDC protection through fault injection experiments. All the experiments
and evaluations are conducted on a Intel i7 4-core machine with 8GB memory run-
ning Debian Linux. Section 4.1 presents the details of benchmarks and Section 4.2
presents our evaluation metrics. Section 4.3 presents our methodology and workflow
for performing the experiments.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 Q. Lu et al.

(a) Data dependency of detector-
free code. The shaded portion
shows the instructions need pro-
tection.

(b) Basic detector instrumented.
The shaded nodes shows the dupli-
cated instructions and the detec-
tor inserted at the end of the two
dependency chains.

(c) concatenate duplicated instruc-
tions. One instruction is added to
be protect(node e’) that concate-
nates the two dependency chains
and save one checker

Fig. 3: Example of inserted detectors and concatenating instructions

4.1. Benchmarks
We choose a total of 12 applications from a wide variety of domains for training and

testing both of our models. The applications are drawn from the SPEC [Henning 2000],
SPLASH2 [Woo et al. 1995], NAS parallel [Bailey et al. 1991], PARSEC [Bienia et al.
2008] and Parboil [Stratton et al. 2012] benchmark suites. We randomly divide the 12
applications into two groups, one group for training and the other for testing. The four
benchmarks used in Section 2.3 to derive the heuristics are drawn from the training
group. The details of these training and testing benchmarks are shown in Table IV
and Table V respectively. We also show the inputs used for running them. Later we
will swap the testing and training benchmarks. All the applications are compiled and
linked into native executables with -O2 optimization flags and run in a single threaded
mode, as our current implementation of both SDCTune and SDCAuto models work only
with single-threaded programs. This is not a fundamental limitation of our technique
though, but rather a limitation of our implementation.

4.2. Evaluation Method
We evaluate our SDC proneness estimation model from three perspectives as follows.

1. Regression results from decision tree model. To evaluate the regression results, we
calculate the average squared errors for both training and testing dataset. As shown
in Section 3.3, there are two parameters controlling the tree building process: (1)min-
imum size of leaves, and (2)data point threshold. To explore this two-dimensional pa-
rameter space, we vary the minimum size of leaves from 1 to 120 points per leaf and
data point threshold from 10 to 120 data points per program. Average squared errors
for both training and testing dataset are calculated for each point in our exploration
space. Two optimal pairs of parameters are picked out and used for following evalua-
tions for stored value decision tree and comparison decision tree respectively. We also
present the features that are adopted by the optimal trees as these are the features
that show strong correlations with SDC proneness.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:13

Table IV: Training programs: These are
used for training SDCTune and SDCAuto

Program Description Input

NAS-IS Integer
sorting N/A

SPLASH2-
LU

Linear
algebra -p1 -t

SPEC-
Bzip2 Compression dryer.jpg

PARSEC-
Swaptions

Price
portfolio of
swaptions

-ns 32 -sm 10000

-nt 1

SPLASH2-
Water

Molecular
dynamics

NMOL=512

NumProcs=1

Parboil-
Lbm

Fluid
dynamics

20 output.dat 2 1

100_100_130_cf_a.of

Table V: Testing programs: These are used
for evaluating SDCTune and SDCAuto

Program Description Benchmark
suite

SPEC-Gzip Compression input.compressed

SPLASH2-
Ocean

Large-scale
ocean

movements

-n130 -p1 -e1e-7

-r20000.0

-t28800.0 -o

NAS-CG Conjugate
gradient N/A

Parboil-Bfs
Breadth-

First
search

1M/graph_input.dat

SPEC-Mcf Combinatorial
optimization inp.in

SPEC-
Libquantum

Quantum
computing 33 5

Note that we perform brute force search of the space above to fully characterize the
space of the model’s parameters. One can also employ techniques such as gradient
descent to speed up the traversal process at the cost of having less coverage of the
space.

2. Estimation of overall SDC rates:. We perform a statistical fault injection experi-
ment to determine the overall SDC rate of the application. We then compare the SDC
rate estimated by both of our models with that obtained from the fault injection ex-
periment. We use the same fault injection setup as described in Section 2.3. We also
measure the correlation between our estimated SDC rates and SDC rates from fault
injection. The correlation coefficient shows the capability of using our models in com-
paring SDC rates among different applications.

3. SDC coverages for different performance overhead bounds:. The SDC coverage is
defined as the fraction of SDC causing errors detected by our detectors. We apply both
SDCTune model and SDCAuto model to predict the SDC coverage for different instruc-
tions to satisfy the performance overhead bounds provided by the user. Our selection
algorithm(Section 3.5) starts with the instructions providing the highest coverage, and
iteratively expands the set of instructions until the performance overhead bounds are
met. We then perform fault injection experiments on the program instrumented with
our detectors, and measure the percentage(s) of SDCs detected1. We also compare our
results with those of full duplication, i.e., when every instruction is duplicated in the
program, and with that of hot-path duplication, i.e., when the top 10% most executed
instructions are duplicated in the program.

To ensure a fair comparison among these techniques, we use a metric called the
SDC detection efficiency, which is similar to the efficiency metric defined in prior
work [Shafique et al. 2013]. We define the SDC detection efficiency as the ratio be-
tween SDC coverage and performance overhead for a detection technique. We calculate
the SDC detection efficiency of each benchmark under a given performance overhead
bound provided by the user, and compare it with the corresponding efficiencies of full
duplication and hot-path duplication (these correspond to 10% of the paths that ac-

1In this experiment, we do not stop our application when an error is detected, but allow it to continue after
logging the detection. If the error ultimately results in an SDC, we consider it as a detected SDC.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 Q. Lu et al.

Fig. 4: The workflow of building regression trees and exploring the parameter space for SD-
CAuto.

count for 90% of the execution time). The SDC coverage of full duplication is assumed
to be a hundred percent as it can detect all single errors [Reis et al. 2005]. Note that
full duplication techniques cannot be configured to be selective, and hence we cannot
consider different overhead bounds as we do for the other techniques. Further, full
duplication can detect some errors much earlier, as it checks after every instruction,
while we do not. However, we do not consider detection latency in our experiments.

4.3. Work Flow and Implementation
Finding optimal parameters of decision trees. Figure 4 shows the workflow for se-

lecting parameters and measuring the regression results of the decision trees which
are parts of SDCAuto model. The workflow explores the parameter space which con-
sists of minimum size of leaves and data point threshold to test their influences on the
regression results.

We first compile the application using LLVM into its IR form. We then extract the
features that SDCAuto needs to estimate the SDC proneness of stored values and com-
parison results. This is done using an automated compiler pass we wrote in LLVM,
and the LAMPView tool [Mason et al. 2009] for analyzing load/store dependencies. We
also need initial SDC proneness data for each stored value and comparison instruc-
tions to build our decision tree model. This is obtained by fault injections. However,
the fault injections are done for building the models only - utilizing the built models
does not require fault injection. Once the training data and testing data are ready, we
build regression trees for stored values and comparison instructions with minimum
size of leaves iterating from 1 to 120 and data point threshold iterating from 10 to
120. For each combination of minimum size of leaves and data point threshold, we cal-
culate MSE for both training data and testing data to measure the influences of the
two parameters. The values of minimum size of leaves and data point threshold with
minimum MSE of testing data are selected as optimal parameters of regression trees.

Measuring overall SDC estimation and coverage. Figure 5 shows the workflow for
estimating the overall SDC rates and providing configurable protection using either
the SDCTune model or SDCAuto model. The workflow requires the following inputs
from the user: (1) source code for the program, (2) a set of representative input(s)
for executing the application, and (3) output function calls that generate the output
data that are important to the user in terms of SDC failures (as mentioned before,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:15

Fig. 5: The workflow of applying our models for two usage cases: (1) estimate the overall SDC
failure rate and (2) selectively protect the SDC-prone variables subject to a performance overhead.

not all output data in an application is important from the perspective of SDCs, for
example, statistical or timing information in the output - we therefore exclude these
from consideration). In addition, it requires the user to specify the maximum allowable
performance overhead that may be incurred by the detectors inserted by our technique
for the given set of representative inputs.

As before, we first compile the source code and extract features from the compiled
IR. Then, we select to run the extracted features through either the SDCTune or the
SDCAuto model built in Section 3, to generate an estimated SDC proneness for each
instruction. We then use the results from our model to estimate the overall SDC rate
of the application, and for inserting detectors into the program for protecting the most
SDC-prone instructions within the given overhead bound. The detectors are inserted
by another LLVM pass we wrote. We use the representative inputs provided by the user
to execute the program for obtaining its execution time with the detectors2. The above
process of choosing instructions to protect is repeated iteratively until the designated
performance overhead bound is fulfilled. If we exceed the performance overhead bound,
we backtrack and remove the most recently inserted detectors and repeat the process.
This is a heuristic as the problem of choosing an optimal set of detectors for a given
overhead is NP-hard (it is an instance of the well known zero-one knapsack problem).
Other heuristics are also possible. Finally, we generate the executable fortified with the
detectors using the LLVM backend, and use it to measure its performance overhead
and fault coverage by executing it on the target hardware.

5. RESULTS
This section presents the results of our experiments to (1) explore the parameter

space for our decision tree model for SDCAuto, (2) estimate the overall SDC rate of an
application with both SDCTune and SDCAuto models, and (3) apply configurable pro-
tection to maximize detection coverage under different performance overhead bound.

In our experiments, both SDCTune and SDCAuto models require five to fifty minutes
(average of 24 minutes) depending on the application, to estimate the overall SDC rate
and to generate a fortified executable protected with detectors for a given performance
overhead. Most of the time is spent on the Feature extraction and Selection algorithm,
which require one to forty five minutes (average 10.08 minutes) and five seconds to
forty nine minutes (average 14.67 minutes), respectively. On the contrary, fault injec-
tion alone requires anywhere from a few hours to a few days to generate the SDC rates

2Alternatively, we can use a performance model to predict the overheads of the detectors. However, such a
model is non-trivial to obtain, and hence we use direct measurements on the target platform

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 Q. Lu et al.

for each application. Further, estimating the SDC-prone locations in a program using
fault injection requires even more fault injection experiments to achieve statistical sig-
nificance. Further, it requires significant manual effort to map the results of the fault
injection back to the program’s code, which is necessary for placing detectors.

5.1. Effect of decision tree parameters
We explored the parameter spaces for stored value decision tree and comparison in-

struction decision tree. Figure 6 shows the mean squared errors (MSE) for the decision
trees under different minimum size of leaves and data point threshold for training and
testing dataset. From the figure, we can observe that overfitting occurs as we expected
when minimum size of leaves is too small and incomplete learning occurs when the
value is too large. At the same time, a large data point threshold may introduce imbal-
ance in the training dataset and worsen the regression result, as shown in Figure 6d,
while a small value of this parameter can hinder the tree splitting process and de-
crease the accuracy, as shown in Figure 6c and Figure 6a. Based on the above graphs,
we consider minimum size of leaves = 17, data point threshold = 80 as optimal for
stored values, and minimum size of leaves = 57, data point threshold = 40 as optimal
for comparison instructions.

5.2. Estimation of Overall SDC Rates
We estimate the overall SDC rates of the applications using SDCTune model and

SDCAuto model, then compare them with the SDC rates obtained through 3000 ran-
dom fault injections per benchmark. Table VI shows the overall SDC rates (P (SDC))
from the fault injections and the estimated overall SDC rates (P̂ (SDC)) for both train-
ing programs and testing programs. The SDC rates are statistically significant with
an error bar ranging from 1.78%(Lbm) to 0.71%(Swaptions), at the 95% confidence
intervals.

From Table VI, it can be observed that the absolute values of the estimated SDC
rates do not match with the observed ones accurately. For example, for bzip2 the ac-
tual SDC rate is 24.47%, while SDCTune and SDCAuto estimate it to be 17.88% and
19.78% respectively. However, when we consider the ranks of the SDC rates predicted
by the model, the accuracy is high. Figure 7 plots the estimated SDC ranks versus the
observed ranks for both the SDCTune and SDCAuto models. The Pearson’s correlation
coefficient is 0.8770 for our SDCTune model, and 0.8545 for SDCAuto model, showing a
strong positive correlation for both models with regard to the SDC ranks.

Thus, our models are highly accurate in comparing SDC rates of applications rela-
tive to others. However, they are not accurate at predicting the absolute rates of SDCs.
There are two reasons for this inaccuracy. First, our estimation of SDC rates is con-
servative, and sometimes may overestimate the SDC proneness of variables in the
presence of application-specific masking. Second, our load-store dependence analysis
is performed using the LAMPView tool, which does not handle some library functions
such as memcpy.

From our results, we find that despite the inaccuracy in predicting absolute SDC
rates, our models can guide detector placement to obtain high coverage at low perfor-
mance overheads. This is because we are more interested in comparing sets of vari-
ables with each other when deciding which ones to choose for detector placement,
rather than estimate absolute SDC rates.

5.3. SDC Coverage and Detection Efficiency
We use both of our models for inserting error detectors into the applications to max-

imize SDC coverage under a given performance overhead. Figure 9a shows the SDC

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:17

(a) Squared errors of training stored values (b) Squared errors of training comparisons

(c) Squared errors of testing stored values (d) Squared errors of testing comparisons

Fig. 6: Effect of data point threshold(y-axis) and minimum size of leaves(x-axis) on regression
results. Lower values of Mean Square Error (MSE) are better.

Table VI: The SDC rates and ranks from fault injections and our models

Group Benchmark P (SDC) from
injections

P̂ (SDC) from
SDCTune

P̂ (SDC) from
SDCAuto

Training

Lbm 52.53% 48.11% 48.89%
IS 43.46% 33.75% 26.57%
LU 31.9% 25.43% 22.36%

Bzip2 24.47% 17.88% 19.78%
Water 5.9% 9.75% 18.85%

Swaptions 4.1% 11.46% 11.74%

Testing

Gzip 33.67% 32.46% 26.88%
CG 23.67% 3.75% 24.58%

Ocean 20.6% 14.75% 16.8%
Bfs 17.37% 14.27% 17.19%
Mcf 15.76% 17.84% 15.89%

Libquantum 10.5% 10.9% 18.64%

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 Q. Lu et al.

Fig. 7: The correlation of overall SDC rates for all programs. The x-axis is the overall SDC rates
from 3000 random fault injections, the y-axis is the estimated overall SDC rates using either
SDCTune or SDCAuto.

coverage obtained by the SDCTune model for each benchmark under three different
performance overhead bounds: 10%, 20% and 30%. For the training programs, the ge-
ometric means3 of the SDC coverage for the 10%, 20% and 30% overhead bounds are
34.8%, 71.1% and 78.9%, respectively. For the testing programs, the corresponding ge-
ometric means are 37.0%, 58.4% and 74.8% respectively, which are somewhat lower
than the training programs’ averages (as expected). We also measured the SDC cov-
erage obtained with hot-path duplication, and found it to be 74.28% and 92.33% on
average for training and testing programs respectively. Recall that we assumed the
coverage of full duplication to be 100%.

Figure 10a shows the SDC coverage obtained by the SDCAuto model. The geometric
means of the SDC coverage are 31.14%, 66.32% and 76.03% respectively for the train-
ing programs. For the testing programs, the geometric means are 27.37%, 45.70% and
67.63% respectively at the 10%, 20% and 30% performance overhead bounds.

Figure 8 shows the performance overhead of full duplication and hot-path duplica-
tion. The overhead of full duplication is 50.16% on average for the training programs,
while it is 71.37% on average for the testing programs. Hot-path duplication has an
overhead of 33.19% for the training programs, and 61.76% for the testing programs.
Note that both of these overheads are higher than the 30% overhead bound we consid-
ered with our detectors.

We also calculate the detection efficiency of the detectors we inserted, and that of
hot-path duplication based on their overhead and SDC coverages (Section 4.2). Fig-
ure 9b and Figure 10b show the SDC detection efficiency of our detectors with the
three overhead bounds, and the efficiency of hot-path duplication. The efficiencies are
normalized to that of full duplication, which has a baseline efficiency of 1. An efficiency
value close to 1 means that it is not much better than full duplication.

For detectors inserted using the SDCTune model, we observe SDC detection efficien-
cies of 1.75x, 1.78x and 1.32x for the training programs, and 2.65x, 2.09x and 1.78x for
the testing programs, at the 10%, 20% and 30% performance overhead bounds respec-
tively. On the other hand, detectors inserted using the SDCAuto model have detection
efficiencies of 1.56x, 1.67x and 1.27x over full duplication for the training programs,
and 1.96x, 1.64x and 1.62x over full duplication for the testing programs. We observe

3We use geometric means as we are summarizing ratios, i.e., coverage is a ratio.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:19

Fig. 8: The overhead of full duplication and hot-path duplication

higher detection efficiencies for our testing programs because the full duplication over-
heads of the testing programs are often higher than the training programs. This re-
sults in a lower baseline for the testing programs in terms of detection efficiencies.
More details are provided in Section 6. The reason that the efficiencies generally de-
crease as overhead increase is that some of the instructions protected at higher over-
head are not as SDC prone. As the performance overhead of the detectors approaches
that of full duplication, the detection efficiencies will drop to 1.

We also observe no gain in efficiency with hot-path duplication compared to full
duplication in spite of its higher coverage than our technique, as it incurs correspond-
ingly higher overhead (as mentioned in Section 2.4). Thus, placing detectors on the
hot-paths of the application is not much better than full duplication in terms of effi-
ciency. In contrast, our technique significantly outperforms both full-duplication and
hot-path duplication in providing better detection efficiency, for much lower perfor-
mance overhead bounds.

To get a better sense of how dependent are the results on the choices of the test-
ing and training sets, we repeated our experiments on our SDCAuto model with the
swapped training and testing set. The results show a similar trend in general, but with
better coverages and efficiencies for the original testing programs, which are used as
training programs now. Figure 11a and Figure 11b show the SDC detection coverage
results and the normalized SDC detection efficiency results respectively. The overall
coverage and efficiency values of the testing sets are similar in both cases, showing
that the model is not highly sensitive to the choices of these two sets.

6. DISCUSSION
In this section, we first discuss the differences between benchmarks when using

SDCTune model (Section 6.1). Then we discuss the reasons of different results between
SDCTune model and the auto tuned model: SDCAuto (Section 6.2).

6.1. Differences between benchmarks for SDCTune

There are two main reasons for the differences in the detection efficiency among
benchmarks. First, for our technique to be efficient, it needs to protect instructions
with high SDC proneness, but with low dynamic execution count. We observed that
applications which have such instructions experience moderate SDC rates, which are
neither too high nor too low. From Table VI, programs such as Libquantum, Bfs, Mcf,
Bzip2, and Ocean fall into this category. Generally, these programs benefit the most

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 Q. Lu et al.

(a) The SDC coverages with error bars at the 95% confidence interval
for SDCTune model. The error bars are less than 2%, and obtained from
3000 random fault injections per benchmark. The SDC coverage of full
duplication is considered as 100%

(b) The normalized detection efficiency of SDCTune model. Full duplica-
tion is the baseline and has detection efficiency = 1. (Detection efficiency
is the ratio of SDC coverage and performance overhead)

Fig. 9: The results of SDCTune model for different performance overhead bounds, hot-path du-
plication and full duplication.

from SDCTune model (Figure 9b). However, the detectors inserted in Mcf and Ocean
have higher overhead so that the SDC coverage of these two benchmarks are lower in
general under the same performance overhead bound. Mcf has a large amount of com-
parison operations for branches at runtime so that many more check instructions need
to be inserted (Section 3.6), which incur higher performance overheads. For Ocean,
many of its dynamic instances are floating point operations, which cause higher over-
head when duplicated because processors usually have very limited ALU resources for
float point operations.

On the other hand, if the benchmark has highly SDC prone instructions that are
also highly executed, our technique does not do as well since the overhead limit pre-
vents our technique from selecting those SDC prone instructions, which also incur high
overheads. Examples of these programs are Lbm, and IS.

The second reason for the variation in efficiency among benchmarks relative to full
duplication, is that the overhead of full duplication is not uniform, as shown in Fig-
ure 8. We found that for some benchmarks such as IS, Bfs, and Bzip2, the full duplica-
tion overhead is only about 40%. This means that the detection efficiency improvement
over full duplication is unlikely to be very high for these benchmarks. For example,
even though the detection coverage for the benchmarks IS, Bfs and Swaptions is rea-
sonable, their detection efficiency is not very high. In Lbm, our detectors have a lower
detection efficiency compared to full duplication. This is because nearly all SDC prone

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:21

(a) The SDC coverages with error bars at the 95% confidence interval for
SDCAuto model. The error bars are less than 2%, and obtained from 3000
random fault injections per benchmark. The SDC coverage of full duplication
is considered as 100%

(b) The normalized detection efficiency of SDCAuto model. Full duplica-
tion is the baseline and has detection efficiency = 1. (Detection efficiency
is the ratio of SDC coverage and performance overhead)

Fig. 10: The results of SDCAuto model for different performance overhead bounds, hot-path
duplication and full duplication.

instructions in the program have high execution counts, and hence the performance
overhead bounds cannot be satisfied if they are selected for protection. Therefore, this
benchmark has low SDC coverage with our technique.

6.2. Differences between the SDCTune and SDCAuto models
Compared with the results of SDCTune model, SDCAuto model performs worse

across benchmarks. This suggests that the regression trees built by SDCAuto are not
as robust as the ones built by manual analysis in SDCTune.

In SDCTune model, the classification depends on the data dependencies among the
comparison results. These variables are directly grouped according to their usage and
side effects. However, categorizing comparison instructions requires applying multiple
features at the same time, e.g., is_loop_terminator and nest_loop_depth, which is not
supported in the decision tree algorithm of SDCAuto. This makes the tree unable to
split the training data according to the usage of instructions, as a result of which it
fails to estimate the SDC proneness of comparison instructions accurately.

In addition, as shown in Figure 2, the regression tree for stored values also fails in
categorizing the training data according to the four major usage groups(Section 2.5).
All of these four groups need further division to distinguish instructions with high
SDC proneness from those with low SDC proneness. Since our decision tree algorithm

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 Q. Lu et al.

(a) The SDC coverages with swapped training/testing programs for SDCAuto
model.

(b) The normalized detection efficiency of SDCAuto model with swapped train-
ing/testing programs. Full duplication is the baseline and has detection effi-
ciency = 1. (Detection efficiency is the ratio of SDC coverage and performance
overhead)

Fig. 11: The results of SDCAuto model for different performance overhead bounds, hot-path
duplication and full duplication with swapped training/testing set.

determines the splitting points based on MSE criteria, the trees are not likely to split
at these features.

Thus, the SDCAuto model performs worse than the SDCTune model, but still man-
ages to outperform full duplication and hot-path duplication in terms of efficiency (by
62% to 96%). Further, the SDCAuto model does not require any programmer effort to
build and apply, making it a much more practical proposition for developers.

7. RELATED WORK
We classify related work into three categories, namely (1) duplication based tech-

niques, (2) invariant based techniques, and (3) application specific techniques.
Duplication based techniques: SWIFT [Reis et al. 2005] is a compiler based tech-

nique that uses full duplication to detect faults in program data. However, full duplica-
tion can have significant performance overhead, especially in embedded systems which
do not have as many idle resources to mask the overhead of duplication. As shown in
Figure 9b and Figure 10b, SDCTune and SDCAuto both outperform full duplication in

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:23

terms of SDC detection efficiency, and also enable configurability to protect programs
from SDC causing errors under various given performance overheads. One of the ear-
liest papers on identifying critical variables in programs, and selectively protecting
them is by Pattabiraman et al. [Pattabiraman et al. 2005]. Unlike our work, they focus
mostly on crash-causing errors, which are relatively easy to detect compared to SDCs.
Further, they do not provide configurable protection in their work.

Feng et al. [Feng et al. 2010], and Khudia et al. [Khudia et al. 2012] have attempted
to reduce the overhead of full duplication by only duplicating ”high-value” instructions
(and variables), where a fault is unlikely to be detected by other techniques and hence
lead to SDCs. Unlike our work however, they do not provide a mechanism to configure
the protection for a given performance overhead bound. This is especially important
for embedded systems where the system has to satisfy strict performance constraints.

Another branch of work [Lee et al. 2009; Cong and Gururaj 2011; Thomas and Pat-
tabiraman 2013; de Kruijf et al. 2010; Liu et al. 2011] has focused on protecting soft-
computing applications from soft errors, by duplicating only critical instructions or
data in the program. Examples of soft-computing applications are those used in me-
dia processing and machine learning, which can tolerate a certain amount of errors
in their outputs. These papers exploit the resilience of soft computing applications to
come up with targeted protection mechanisms. However, they cannot be applied in
general purpose applications, which are not as error resilient.

Finally, in recent work, Shafique et al. [Shafique et al. 2013] propose a technique for
exploiting fault masking in applications to provide efficient detection. Similar to our
work, they rank the vulnerability of instructions in the program, and allow the user
to specify performance overhead bounds to selectively choose instructions to protect.
However, our work differs from theirs in two ways. First, they consider all failures
as equally bad, including crashes and hangs. However, we focus exclusively on SDC-
causing faults, which are the most insidious of faults. Therefore, we can achieve higher
detection efficiency for protecting against SDC-causing faults. Secondly, their work em-
ploys three metrics to determine the instructions to protect, all of which are estimated
by performing a static analysis of the application’s control and data flow graph, which
is conservative by nature. In contrast, our work uses empirical data to build the model
for estimating the SDC proneness of different instructions, and is hence relatively less
conservative. Since Shafique et al. do not provide a breakdown of their coverage among
SDC failures, crashes and hangs, we cannot quantitatively compare the coverage of
SDCTune and SDCAuto with their technique.

Invariant based techniques [Sahoo et al. 2008; Ernst et al. 1999; Pattabiraman
et al. 2006] detect errors by extracting likely invariants in programs through runtime
profiling and dependency analysis. Those likely invariants are used as assertions to
check abnormal behaviours or data out-of-bounds to detect errors. Invariant based
techniques typically have lower overhead than duplication-based techniques, as the
assertions consist of much fewer instructions than the entire backward slice of the
variables. However, an important limitation of this class of techniques is that they in-
cur false positives, i.e., they can detect an error even when none occurs. This is because
they all learn invariants from testing inputs, and these invariants may not hold when
the program is running with real inputs in production (which may differ from the test
imputs). While our work also learns the model for SDC proneness based on training
applications, it uses static analysis to actually derive the detectors from the backward
slices, and hence incur no false positives as static analysis is conservative.

Application specific techniques: Hari et al. [Hari et al. 2012a] proposes a set of
detectors for detecting SDCs using program-level detectors. Similar to our work, they
also come up with a method to choose variables to protect for maximizing the SDC cov-
erage under a given performance overhead bound. However, there are two differences

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 Q. Lu et al.

between our work and theirs. First, they require fault injections to find the highly SDC
prone variables in the program, which is time consuming. Although they reduce the
fault injection space using their Relyzer technique [Hari et al. 2012b], they still need
to perform tens of thousands of injections. In contrast, we use our model to determine
the SDC prone locations without needing any fault-injections. Secondly, their detector
derivation is done manually based on understanding of the program. Further, some
of their detectors are application-specific and cannot be generalized across programs,
as they rely on specific algorithmic properties. In contrast, we use generic duplication-
based detectors which are automatically derived for any application.

8. CONCLUSION
As hardware errors increase with technology scaling, SDCs are becoming more se-

rious for a wide class of systems. Generic solutions such as full duplication incur high
performance overhead as they do not prioritize protecting against SDC-causing errors.
This paper proposes a configurable protection technique for SDC-causing errors that
allows users to trade-off performance for reliability. We develop heuristics for estimat-
ing the SDC proneness of instructions and build a manually tuned model, SDCTune,
and an automatically tuned model, SDCAuto, based on the heuristics and a decision
tree algorithm. We then use our models to guide the selection of instructions to be
protected with error detectors. Our results show that the detectors inserted using SD-
CTune outperform full duplication by 78% to 165% in detection efficiency, while those
inserted using SDCAuto outperform full duplication by a factor of 62% to 96%.

ACKNOWLEDGMENTS
This work is sponsored, in part, by the Natural Science and Engineering Research Council of Canada

(NSERC), Defense Advanced Research Projects Agency (DARPA), Microsystems Technology Office (MTO),
under contract no. HR0011-13-C-0022. The views expressed are those of the authors and do not reflect
the official policy or position of the NSERC, Department of Defense or the U.S. Government. We thank
Muhammad Shafique for his comments on an earlier draft of this paper.

REFERENCES
D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson,

T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. 1991. The NAS
parallel benchmarks. In ACM/IEEE Conference on Supercomputing (Supercomputing ’91). ACM, New York,
NY, USA, 158–165. http://doi.acm.org/10.1145/125826.125925

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. In International Conference on Parallel Architectures and
Compilation Techniques (PACT ’08). ACM, New York, NY, USA, 72–81. http://doi.acm.org/10.1145/1454115.
1454128

S. Borkar. 2005. Designing reliable systems from unreliable components: the challenges of transistor variability
and degradation. Micro, IEEE 25, 6 (Nov 2005), 10–16.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. 1984. Classification and Regression Trees. Wadsworth and
Brooks, Monterey, CA.

J. Cong and K. Gururaj. 2011. Assuring application-level correctness against soft errors. In Computer-Aided
Design (ICCAD), 2011 IEEE/ACM International Conference on. 150–157.

C. Constantinescu. 2008. Intermittent faults and effects on reliability of integrated circuits. In Reliability and
Maintainability Symposium, 2008. RAMS 2008. 370–374.

Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. 2010. Relax: An Architectural Framework for
Software Recovery of Hardware Faults. In International Symposium on Computer Architecture (ISCA ’10).
ACM, New York, NY, USA, 497–508. http://doi.acm.org/10.1145/1815961.1816026

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999. Dynamically Discovering Likely
Program Invariants to Support Program Evolution. In International Conference on Software Engineering
(ICSE ’99). ACM, New York, NY, USA, 213–224. http://doi.acm.org/10.1145/302405.302467

Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. 2010. Shoestring: Probabilistic Soft Er-
ror Reliability on the Cheap. In International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XV). ACM, New York, NY, USA, 385–396. http://doi.acm.org/10.
1145/1736020.1736063

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Configurable Detection of SDC-causing Errors in Programs 39:25

Siva Kumar Sastry Hari, Sarita V. Adve, and Helia Naeimi. 2012a. Low-cost Program-level Detectors for Reduc-
ing Silent Data Corruptions. In IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN) (DSN ’12). IEEE Computer Society, Washington, DC, USA, 1–12. http://dl.acm.org/citation.cfm?id=
2354410.2355132

Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep Ramachandran. 2012b. Relyzer: Exploiting
Application-level Fault Equivalence to Analyze Application Resiliency to Transient Faults. In International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XVII).
ACM, New York, NY, USA, 123–134. http://doi.acm.org/10.1145/2150976.2150990

John L. Henning. 2000. SPEC CPU2000: measuring CPU performance in the New Millennium. Computer 33, 7
(Jul 2000), 28–35.

Daya Shanker Khudia, Griffin Wright, and Scott Mahlke. 2012. Efficient Soft Error Protection for Com-
modity Embedded Microprocessors Using Profile Information. In International Conference on Languages,
Compilers, Tools and Theory for Embedded Systems (LCTES ’12). ACM, New York, NY, USA, 99–108.
http://doi.acm.org/10.1145/2248418.2248433

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation. In International Symposium on Code Generation and Optimization (CGO ’04). IEEE Com-
puter Society, Washington, DC, USA, 75–. http://dl.acm.org/citation.cfm?id=977395.977673

Kyoungwoo Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian. 2009. Partially Protected
Caches to Reduce Failures Due to Soft Errors in Multimedia Applications. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 17, 9 (Sept 2009), 1343–1347.

Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn. 2011. Flikker: Saving DRAM
Refresh-power Through Critical Data Partitioning. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA, 213–224.
http://doi.acm.org/10.1145/1950365.1950391

Qining Lu, Karthik Pattabiraman, Meeta S. Gupta, and Jude A. Rivers. 2014. SDCTune: A Model for Predicting
the SDC Proneness of an Application for Configurable Protection. In International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES ’14). ACM, New York, NY, USA, Article 23, 10
pages. http://doi.acm.org/10.1145/2656106.2656127

Silvano Martello and Paolo Toth. 1990. Knapsack problems. Wiley New York.
Thomas Mason and others. 2009. LAMPVIEW: A Loop-Aware Toolset for Facilitating Parallelization. Master’s

thesis, Dept. of Electrical Engineeringi, Princeton University (2009).
K. Pattabiraman, Z. Kalbarczyk, and R.K. Iyer. 2005. Application-based metrics for strategic placement of de-

tectors. In Dependable Computing. Pacific Rim International Symposium on. 8 pp.–.
K. Pattabiraman, G.P. Saggese, D. Chen, Z. Kalbarczyk, and R.K. Iyer. 2006. Dynamic Derivation of Application-

Specific Error Detectors and their Implementation in Hardware. In Dependable Computing Conference,
European (EDCC). 97–108.

John Ross Quinlan. 1993. C4. 5: programs for machine learning. Vol. 1. Morgan kaufmann.
G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. 2005. SWIFT: software implemented fault

tolerance. In Code Generation and Optimization, 2005. CGO 2005. International Symposium on. 243–254.
S.K. Sahoo, Man-Lap Li, P. Ramachandran, S.V. Adve, V.S. Adve, and Yuanyuan Zhou. 2008. Using likely pro-

gram invariants to detect hardware errors. In Dependable Systems and Networks, IEEE International Con-
ference on. 70–79.

M. Shafique, S. Rehman, P.V. Aceituno, and J. Henkel. 2013. Exploiting program-level masking and error prop-
agation for constrained reliability optimization. In Design Automation Conference (DAC), 2013 50th ACM /
EDAC / IEEE. 1–9.

Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger, and Lorenzo Alvisi. 2002. Model-
ing the Effect of Technology Trends on the Soft Error Rate of Combinational Logic (DSN). 389–398.

D.P. Siewiorek. 1991. Architecture of fault-tolerant computers. Proceedings of IEEE (1991), 79–91.
John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser Anssari, Geng Daniel

Liu, and W-m Hwu. 2012. Parboil: A revised benchmark suite for scientific and commercial throughput
computing. Center for Reliable and High-Performance Computing (2012).

A. Thomas and K. Pattabiraman. 2013. Error detector placement for soft computation. In Dependable Systems
and Networks (DSN), IEEE/IFIP International Conference on. 1–12.

Jiesheng Wei, A. Thomas, Guanpeng Li, and K. Pattabiraman. 2014. Quantifying the Accuracy of High-Level
Fault Injection Techniques for Hardware Faults. In Dependable Systems and Networks (DSN), IEEE/IFIP
International Conference on. 375–382.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. 1995. The
SPLASH-2 Programs: Characterization and Methodological Considerations. SIGARCH Comput. Archit.
News (1995), 13. http://doi.acm.org/10.1145/225830.223990

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

