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ABSTRACT
Requirements for reliability, low power consumption, and perfor-
mance place complex and conflicting demands on the design of
high-performance computing (HPC) systems. Fault-tolerance tech-
niques such as checkpoint/restart (C/R) protect HPC applications
against hardware faults. These techniques, however, have non neg-
ligible overheads particularly when the fault rate exposed by the
hardware is high: it is estimated that in future HPC systems, up
to 60% of the computational cycles/power will be used for fault
tolerance.

To mitigate the overall overhead of fault-tolerance techniques,
we propose LetGo, an approach that attempts to continue the execu-
tion of a HPC application when crashes would otherwise occur. Our
hypothesis is that a class of HPC applications have good enough
intrinsic fault tolerance so that its possible to re-purpose the default
mechanism that terminates an application once a crash-causing
error is signalled, and instead attempt to repair the corrupted ap-
plication state, and continue the application execution. This paper
explores this hypothesis, and quantifies the impact of using this
observation in the context of checkpoint/restart (C/R) mechanisms.

Our fault-injection experiments using a suite of five HPC ap-
plications show that, on average, LetGo is able to elide 62% of the
crashes encountered by applications, of which 80% result in correct
output, while incurring a negligible performance overhead. As a
result, when LetGo is used in conjunction with a C/R scheme, it
enables significantly higher efficiency thereby leading to faster time
to solution.
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1 INTRODUCTION
Transient hardware faults, caused by particle strikes and cosmic
rays, have become one of the major concerns for current high-
performance computing (HPC) systems [51]. Today’s large HPC sys-
tems have amean-time between failure (MTBF) of tens of hours [30],
even with hardware- and software-based protection techniques
employed together. As the hardware feature sizes shrink and the
complexity of the HPC systems increase, the failure rate is expected
to further increase, which mandates that a larger portion of com-
putation cycles are used for fault tolerance [15].

Transient hardware faults (i.e., bit flips) often result in applica-
tion crashes, due to the runtime system detecting the error and
terminating the application, thereby losing the application’s work.
Checkpoint/restart (C/R) is one of the most popular methods to
recover from such faults [19, 54, 55] by loading a previously saved
intermediate state of the application (i.e., a checkpoint), and restart-
ing the execution. While useful, checkpoint/restart techniques in-
cur high overheads in terms of performance, energy and memory,
which will be exacerbated as the failure rate increases [13, 58].

This paper proposes LetGo, which upon detecting an impend-
ing crash, attempts to repair the application state to enable it to
continue its execution (instead of recovering from a checkpoint).
LetGo is based on three observations. First, a large class of HPC
applications are, intrinsically, resilient to localized numerical per-
turbations as they require computation results to converge over
time. As a result, they are able to mask some data corruptions. For
example, Casas et al. [7] show that the algebraic multi-grid (AMG)
solver, which is based on iterative methods, has high intrinsic re-
siliency. Second, many HPC applications have application-specific
acceptance checks (e.g., based on energy conservation laws). These
checks can be used to filter out obvious deviations in the applica-
tion’s output, and reduce the probability of producing incorrect
results. For example, High Performance Linpack (HPL) solves a
linear system using LU decomposition [46] and tests the correct-
ness of the result by checking the residual of the linear system as
a norm-wise backward error [29, 41]. Third, most crash-causing
errors lead to program crashes within a small number of dynamic
instructions, and are hence unlikely to propagate to a large part of
the application state [36, 48]. Therefore, the impact of crash-causing
faults is likely to be confined to a small portion of the application’s
state, thus allowing recovery.
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Taken together, these observations offer an optimistic hypothesis
that it may be possible to re-purpose the default mechanism that
terminates an application once a crash-causing error is signalled, and
attempt to repair the corrupted application state and continue the
application execution. This paper explores this hypothesis, proposes
heuristics to repair the application state, and quantifies the impact
of using this observation in the context of C/R mechanisms.

To enable this explorationwe design and implement LetGo. LetGo
works by monitoring the application at runtime; when a crash-
causing error occurs, LetGo intercepts the hardware exception
(e.g., segmentation fault), and does not pass the exception on to
the application. Instead, it advances the program counter of the
application to the next instruction, bypassing the crash-causing
instruction. Further, LetGo employs various heuristics to adjust
the state of the application’s register file to hide the effects of the
ignored instruction and ensure, to the extent possible, that the
application state is not corrupted.

Figure 1 illustrates how LetGo can be used in the context of a
checkpoint/restart (C/R) scheme. As shown in Figure 1a and 1b, the
default action of a C/R scheme on fail-stop failures is to rewind to
the last checkpoint. LetGo allows the HPC run-time to continue
the execution of an application once a crash-causing error occurs
(Figure 1c) and later use application-level correctness test to detect
possible state corruption. If the application passes these checks,
LetGo assumes that intermediate/final states of an application are
correct, and hence no recovery is needed. This reduces checkpoint
overheads in two ways: first, LetGo avoids the overhead of restart-
ing from a previous checkpoint upon the occurrence of a crash-
causing error; second, since crashes are less frequent, checkpoints
can be taken less frequently as well (or not at all if the developer is
prepared to accept the risk of unrecoverable failures). The potential
cost of LetGo is an increased rate of Silent Data Corruption (SDC)
leading to incorrect results. We argue that this may be acceptable
for two reasons: first, our experiments indicate that this increase is
low (the resulting SDC rate is in the same range as the SDC rate
of the original application), and, second, since the possibility of
undetected incorrect results exists even with the original applica-
tion (i.e., without using LetGo), application users independently
need to develop efficient techniques to increase confidence in the
application results. By leveraging these application checks, LetGo
reduces the chances of an error causing a SDC. To the best of our
knowledge, LetGo is the first system that applies the idea of tolerating
errors by repairing application state in the context of C/R in HPC
applications.

This paper makes the following contributions:

• We propose a methodology to reduce the overhead of C/R
techniques for HPC applications by resuming the execution
of an application upon the occurrence of a crash-causing
error without going back to the last checkpoint.

• We design LetGo, a light-weight run-time system that con-
sists of two main components: a monitor that intercepts
and handles operating system signals generated when a
crash-causing error occurs, and a modifier that employs
heuristics to adjust program state to increase the proba-
bility of successful application continuation (Section 4.1).
Importantly, LetGo requires neither modifications to the

application, nor the availability of the application’s source
code for analysis (Section 4.3 and Section 4.2). therefore, it
is practical to deploy in today’s HPC context.

• We evaluate LetGo through fault-injection experiments
using five DoE mini-applications. We find that LetGo is
able to continue the application’s execution in about 62%
of the cases when it encounters a crash-causing error (for
the remaining 38%, it gives up and the application can be
restarted from a checkpoint as before). The increase in
the SDC rate (undetected incorrect output) is low: 0.913%
arithmetic mean. (Section 6.1).

• Finally, we evaluate the end-to-end impact of LetGo in
the context of a C/R scheme and its sensitivity to a wide
range of parameters. We find that LetGo offers significant
efficiency gains (1.01x to 1.20x) in the ratio between the
time spent for useful work and the total time cost, com-
pared to the standard C/R scheme, across a wide range of
parameters.

Our evaluation shows that, on average, LetGo is able to con-
tinue to completion 62% of the crashes while increasing the overall
application SDC rates from 0.75% to 1.6%. This highlights a key
contribution of LetGo: it creates the opportunity to trade off confi-
dence in results for efficiency (time to solution). Certainly, for some
applications - or for some operational situations - confidence in re-
sults is the user’s primary concern, and LetGo will not be used. We
believe, however, that there are many situations that make LetGo
attractive: Firstly, since Silent Data Corruptions (SCD) can occur
anyways (due to bit-flips even when LetGo is not used), users of
HPC applications are already taking the risk of getting incorrect
results, and have developed techniques to validate their results.
Application-specific checks to diminish this risk are an active area
of research [21, 22, 28, 39] and LetGo will benefit from all these
efforts. Secondly, for some applications LetGo performs extremely
well (e.g., for CLAMR and SANP all faults that would lead to crashes
can be elided by LetGo, without resulting in any additional SDCs).
In these cases, LetGo certainly represents an appealing solution.
Finally, note that it is trivial to collect information on whether a
run has benefited from LetGo repair heuristics and thus offers users
additional information base on which to reason about confidence.

2 RELATEDWORK
There have been many efforts to provide comprehensive solu-
tions for HPC system to recover from failures. Recovery strategies
can be grouped along two dimensions: first, on whether they are
application-aware or application-agnostic, and, second on whether
they roll-back to previously correct state or use heuristics to attempt
to repair state and roll-forward. An example of application-agnostic
approach is that of Chien et al. [18] who propose a global view re-
silience (GVR) framework that allows applications to store and
compute an approximation from the current and versioned appli-
cation data for a forward recovery. Aupy et al. [1] discuss how to
combine the silent error detection and checkpointing, and schedule
the checkpointing and verification in an optimal-balanced way with
a rollback recovery. Other approaches rely on a detailed understand-
ing of the application: Gamel et al. [23] design and implement a local
recovery scheme specialized for stencil-based applications for a fast
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checkpoint interval

next interval
CPV

(a) A standard checkpoint interval with-
out LetGo.

CPV

checkpoint interval

next interval

(b) If a crash occurs, the HPC run-time
loads the last checkpoint. In existing so-
lutions a crash occurs each time a crash-
causing error is signalled.

CPV

checkpoint interval

next interval
L

(c) LetGo continues the execution of the
application when a crash-causing error
occurs, and the HPC run-time does not
load the checkpoint.

Figure 1: Illustration of how LetGo changes the behavior of an HPC application that uses checkpointing by continuing the execution when a
crash-causing error occurs. Axes indicate time. The labels used for time intervals: CP - checkpoint; V - application acceptance check/verifica-
tion; L - LetGo framework, lightning bolt: crash-causing error

rollback in the minimum scale, while algorithm-based fault toler-
ance (ABFT) techniques such as [14, 56] compute checksums for the
intermediate states of the LU factorization problems and enable for-
ward recovery. LetGo aims to provide an application-agnostic and
forward recovery solution, in the same vein as GVR [18] however
it is more general and efficient (as there is no need to store previ-
ous program states, and no need of any data structure or interface
support).

LetGo is inspired by two key areas: failure-oblivious comput-
ing, which focuses on recovering from failures caused by software
bugs [49, 50]; and approximate computingwhich makes the assump-
tion that ignoring some errors during application execution, will
still lead to producing acceptable results. We discuss below how
LetGo relates to these areas and highlight the differences.

Failure oblivious computing: Rinard et al. [49, 50] propose failure
oblivious computing, an approach that continues application execu-
tion when memory-related errors occur during execution. To this
end it relies on a technique called boundless memory block: when
there is a out-of-bound write, the written value is stored in a hash
table indexed by the its memory location, then for out-of-bound
reads it retrieves the value from the hash table if the same memory
address is used (or uses a default value if the hash table has not
been initialized for that value). This is enabled by compile-time
instrumentation and checks for all memory accesses at runtime.
Our approach differs from theirs majorly in two ways: (1) LetGo
focuses on all types of crashes whereas the technique above focuses
on out-of-bound memory accesses, a subset of sources of crashes
in HPC systems, and (2) we focus on HPC applications where we
believe such techniques are likely to have a high impact.

Recently, Long et al. [38] proposed a run-time repair and contain-
ment in the same style at the original failure-oblivious computing
work. They expand the solution used to drop assumptions on appli-
cation structure and impose no instrumentation on program during
execution. This technique works for errors including divide-by-
zero and null pointer de-referencing. Both Rinard et al. [49] and
Long et al. [38] find that that the one of the biggest reasons to the
success of their techniques is the common computational pattern
that occurs in all of their benchmark applications, that the input
of the applications can be divided into units and no interaction
between computations on different input units. This is not a the
typical computation model for HPC applications.

Approximate computing [27, 42] starts with the observation that,
in many scenarios, an approximate result is sufficient for the pur-
pose of the task, hence energy and performance gains may be
achieved when relaxing the precision constraints. The philosophy
of approximate computing is applied to different system levels in-
cluding circuit design [26, 57], architectural design [24, 47] and
application characterization and kernel design [9]. This concept,
along with related body of research such as probabilistic comput-
ing [8, 44], offer potential platforms for applications that can toler-
ate imprecision in the final answer. However, LetGo does not aim
to aggressively relax the accuracy of the computation, which is a
different philosophy from Approximate computing or Probabilistic
computing.

Failure escaping:Carbin et al. [6] design Jolt, a system that detects
when an application has entered an infinite loop and allows the
program to escape from the loop and continue. Jolt has a similar
philosophy as LetGo: adjusting the program state when a program
appears to be traped in a failing state. However, Jolt and LetGo
target different failure types: Jolt is only designed to help programs
escape from a infinite loop (a hang), a relatively infrequent failure
scenario as our fault-injection experiments indicate.

3 BACKGROUND

Context: The effectiveness of LetGo is influenced by two factors:
(1) the application-level acceptance checks that detect whether the
application state is corrupted before delivering results to users, (2)
the resilience characteristics of the HPC application making it able
to withstand minor numerical perturbations. This section argues
that a large class of HPC applications present these characteristics,
and offers an example that illustrate how these two factors affect
application fault-tolerance.

Factor 1: Application acceptance checks. Since the rate of hardware
faults is expected to increase and applications become increasingly
complex (and, as a result, the design and implementation process is
error-prone), there is an increased awareness for the need of result
acceptance tests, to boost the confidence in the results offered by
HPC applications. Result acceptance checks are usually written by
application developers to ensure that computation results do not
violate application-specific properties, such as energy conservation
or numeric tolerance for result approximation. These acceptance
checks are typically placed at the end of the computation (i.e. the
residual check performed in HPL application [46]), but they can be
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also placed during application execution to detect earlier possible
state corruption such as [43].

Factor 2: Fault masking in HPC applications. A large class of HPC
applications are based on iterative processes (For example, stencil
computations iteratively compute physical properties at time T+1
based on values at time T; iterative solvers work by improving the
accuracy of the solution at each step. For an iterative method that is
convergent, numerical errors introduced by a hardware fault can be
eliminated during this convergence process (although it may take
longer). Prior studies such as [7] show that the algebraic multi-grid
solver always masks errors if it is not terminated by a crash.

Terminology. We use standard trminology for the fault-tolerance
domain: fault/error/failure [2]. Hardware faults are defects in the
system that may be caused by cosmic rays or particle strikes. We
are concerned with the faults that are not masked by the hardware
and are thus visible at the application level. Errors are the mani-
festation of faults visible in the application state. Failures are the
final outcomes of errors, and include crashes, application hangs,
and SDCs.

4 SYSTEM DESIGN
Our goal is to demonstrate the feasibility and evaluate the potential
impact of a run-time framework that allows the program to avoid
termination and correct its state after a crash-causing error occurs.
The four main requirements of LetGo are:

a) Transparency: LetGo should be able to transparently track
the system behavior, monitor for crash-causing errors, and
modify the application state to enable application continu-
ation once a crash-causing error occurs, all without modi-
fying the application’s code (R1).

b) Convenience: As HPC applications tend to be conserva-
tive and sensitive to the computation environment, LetGo
should not make any assumption about the application’s
compilation level or require changes the application’s com-
pilation process (R2).

c) Low overhead: To be attractive for deployment in produc-
tion systems, LetGo should incur minimum overheads in
terms of performance, energy and memory footprint (R3).

d) A low rate of newly introduced failures: LetGo inherently
trades the ability to continue application execution for the
risk of introducing new failures. For LetGo to be practical,
the increase in the rate of undetected incorrect results
should be low (R4).

The rest of this section describes LetGo design in detail and,
shows how LetGo satisfies the above requirements.

4.1 Overall Design
LetGo is activated when a crash-causing error occurs. LetGo detects
the exceptions raised by the OS, intercepts the OS signals, and
modifies the default behavior of the application for these signals.
Then it diagnoses which states of the program have been corrupted,
and modifies the application state to ensure, to the extent possible,
application continuation. Figures 2 and 3 show this process.

LetGo contains two components: the monitor and the modifier.

LetGo

Application

OS

Process 
states

Process 
execution

Signal 
HandlingMonitor

Modifier

Figure 2: LetGo architecture overview.

Application OSLetGo
1. configure signal 

handling

2. send signals when 
exceptions

3. switch to LetGo 
framework

4. move program counter,
apply heuristics to increase 
the probability of success 

5. switch back 
to continue 

m

Figure 3: A sequence diagram highlighting LetGo use: the step 1-5
describe the interactions between LetGo, the application, and the
operating system: LetGo starts by installing the monitor - i.e., con-
figuring the the signal handling, and launches the application in a
debugger (step 1). If the application encounters a signal, LetGo de-
tects it (step 2) and takes the control of the application (step 3). To
avoid the failure, LetGo increments the program counter (i.e., in-
struction pointer) of the application and adjusts the necessary pro-
gram states (step 4). After the modification, LetGo lets the applica-
tion continue without any further interference (step 5).

The monitor is attached to the application at startup. It changes
the default behavior of the application from termination to pausing
when operating system signals such as SIGSEGV and SIGBUS are
received. Themonitor intercepts these signals and hands the control
over to the modifier.

The modifier kicks in when executing the current application in-
struction would lead to an application termination (crash). The mod-
ifier attempts to avoid the crash: it advances the program counter
(i.e., instruction pointer) to the next instruction, and inspects and
modifies application state (e.g., the stack pointer) to increase the
probability of a successful continued execution. The details of the
modifier are discussed in Section 4.2. Note that the application
might still not be able to finish successfully and it may crash again
- if so, LetGo does not intervene and allows the application to ter-
minate.

4.2 Heuristics
We describe the modifications that the LetGo mmodifier makes to
the application state (in Step 4 of Figure 3). Thesemodifications have
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two goals: first, increase the likelihood that, once the application
continues execution, it does not crash again; and, second, reduce
the chance that data corruption propagates further.

There are two issues to deal with: first, advancing the program
counter may bypass memory loads or stores, and hence the desti-
nation register that is supposed to hold the value from the memory
load (or the memory location used for store) may contain an in-
correct value , which may cause subsequent errors in case this
register is later used; and, second, if the fault has corrupted the
stack pointer register sp (i.e., rsp in X86-64) or the base pointer
register bp (i.e., rbp in X86-64), and the application continues due to
LetGo, the likelihood of receiving another system exception due to
a memory-related violation high because sp and bp are repeatedly
used. To mitigate these challenges, LetGo employs two heuristics
(to satisfy R4).

Heuristic I - This heuristic deals with memory load/store instruc-
tions. If the program crashes due to the error in a memory-load
instruction, LetGo feeds the to-be-written register(s) (which holds
the data loaded from the memory) with a “fake" value(s). In practice,
0 is chosen as the value to feed to the register. We choose 0 by de-
fault because the memory often contains a lot of 0s as initialization
data [12]. For the case where the program stops at a memory-store
instruction, the value in that memory location remains the same be-
cause the memory-store operation is not successful. In this case, we
do nothing - our empirical experience suggests that this is a more
practical decision than assigning a random value. In the future, this
heuristic can be combined with run-time analysis for more realistic
and application-dependent behaviour.

Heuristic II - As discussed above, if a fault affects the values
in the stack pointer register or the base pointer register, the cor-
rupted registers may cause consecutive memory access violations.
Since LetGo avoids performing run-time tracking, determining the
correctness of the values in sp and bp statically becomes challeng-
ing. To overcome this challenge, LetGo implements the following
heuristic that include a detection and a correction phase:

(1) Detection: for each function, the difference between the
values in sp and bp can be approximately bound in a range
via static analysis, hence this range can be calculated with
minimum effort and can be used to indicate the corruption
in sp or bp at run-time.

(2) Correction:: since sp and bp usually hold the same value at
the beginning of each function, one can be used to correct
the error in the other one if necessary.

We explain the intuition behind this heuristic with two observa-
tions based on the code in Listing 1. First, bp is normally pointed
to the top of the stack (line 2), hence sp and bp usually carry the
same value at the beginning of every function call. Second, based
on the size of the memory allocated on the stack (line 3), the range
of bp can be inferred as sp < bp < sp + 0x290 ( bp is always greater
than sp because the stack grows downwards. Therefore, when the
program receives an exception and stops at an instruction that in-
volves stack operation, LetGo runs the following steps: First, it gets
the size of the allocated memory by searching for the beginning of
the function that the instruction belongs to and then locating the
instruction that shows how much memory the function needs on
the stack (by analyzing the assembly code). Second, it calculates

Signal Stop Pass to program Description
SIGSEGV Yes No Segfault
SIGBUS Yes No Bus error
SIGABRT Yes No Aborted

Table 1: gdb signal handling information redefined by LetGo. ’Stop’
means the program will stop upon a signal, and ’Pass to program’
means this signal will not be passed to the program

the valid range based on the size and checks if the bp is in it, and,
finally, if the range constraint is invalid, LetGo copies the value of
the sp to the bp (or vice versa depending on which one is used in
the instruction causing the crash).
Listing 1: Example of a common sequence of X86 instructions at the
beginning of a function

1 push \%rbp
2 mov \%rsp,\%rbp
3 sub \$0x290, \%rsp

For the rest of this paper, we refer to the version of LetGo that
applies these heuristics as LetGo-E(nhanced) and the version with-
out heuristics as LetGo-B(asic). We evaluate the effectiveness of
LetGo-B and LetGo-E in Section 6.

4.3 Implementation
We implement the LetGo prototype with three production-level
tools that are widely adopted and readily available on HPC systems:
gdb, PIN [45] and pexpect [52].

gdb: LetGo relies on gdb to control the application’s execution.
gdb provides the interfaces to handle operating system signals and
to change the values in the program registers. We describe these
two aspects in turn. LetGo uses gdb to redefine the behaviour of an
application against OS signals as described in Table 1. Since most
of application crashes are due to memory-related errors such as
segmentation faults or bus errors [21, 25], LetGo currently supports
three signals related to memory errors: SIGSEGV, SIGBUS and
SIGABRT, and can be easily extended for more signals if needed
(e.g., exceptions generated by ECC or chipkill). (Satisfying R1).

Note that the LetGo use of gdb does not require any source-code
level analysis (or changes to the application). Applications there-
fore do not need to run in the debug mode, which inhibits code
optimization and often results in significant performance degrada-
tion (satisfying R2 and R3). Applications can run with LetGo for
any optimization/compilation requirement levels they need. We
evaluate the generated overhead in Section 5.

b) PIN: It is a tool that supports dynamic instrumentation of
programs. PIN can insert arbitrary code at arbitrary locations of
an executable during its execution. LetGo uses PIN to conduct
instruction-level analysis, such as obtaining the next PC, parsing
an instruction and finding the size of allocated memory on the
stack. Since LetGo only needs the static information of a program,
there is no need for LetGo to keep track of dynamic program states
and only dissembler inside PIN is needed. Therefore, LetGo incurs
minimum performance overhead (Satisfying R3). It is possible to
use other lightweight tools for parsing instructions instead of PIN.

c) pexpect: expect [37] is a tool that automates interactive appli-
cations (e.g. telnet, ftp, etc.) and it is widely for testing. LetGo uses
pexpect, the Python extension of expect to automate all interactions
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between LetGo and the application: e.g., configuring signal han-
dlers and updating register values. Since these are relatively rarely
executed operations, the overall performance impact is small.

All the interactions between a gdb process and the target appli-
cation are automated via pexpect, and confined to a limited number
of gdb commands such as “print" or “set". When heuristics need to
be applied, LetGo relies on PIN to analyze the program and feed
the result to gdb. As a prototype, the current implementation of
LetGo is used to support the experimentation, to demonstrate the
ability of automation, and to investigate the overheads incurred -
for a production version, one can directly and efficiently implement
the functionality offered by each of these tools, so the overhead
estimates we offer are conservative.

5 EVALUATION METHODOLOGY
This section focuses on evaluating the ability of LetGo to transform
crashes into successful application runs To this end, this section
first describes the fault model and the fault injection methodology
we use, then explains how the various failure outcome categories
are impacted by LetGo, and proposes metrics to quantitatively eval-
uate LetGo effectiveness. Using this information, the next section
evaluates LetGo impact on reducing C/R overheads.

5.1 Fault Model
Soft errors are one of the main sources of hardware errors in proces-
sors [4], and are the focus of this work. We consider faults occurring
in the computational units of processors, such as the ALUs, pipeline
latches and register files. Our methodology is agnostic to whether a
fault arises in the register file or is propagated to the registers from
elsewhere. We do not consider faults in caches or main memory
because we assume that they are protected by ECC or chipkill in
HPC systems. We use the single-bit-flip model as it is the most
common transient fault model in today’s systems [53]. We also
assume that at most one fault occurs in an application run leading
to a crash-causing error, as soft errors are relatively rare compared
to typical application execution times.

5.2 Categories of Fault Outcomes
The traditional outcomes of a fault affecting an application can
be categorized as crashes, detected by the application acceptance
check, hangs, SDCs, and benign outcomes. When applying LetGo,
(some of the) crash outcomes are transferred to other categories,
thus, to evaluate LetGo we further categorize the outcomes that
correspond to a crash in a non-LetGo context in multiple new
classes as presented in Figure 4.

At the top level of our taxonomy (Figure 4), a fault either causes
a program to crash, or not. In Figure 4 we label these two classes -
Finished and Crash.

(1) A finished run can result further in two outcomes: the
program contains errors in the output that are detected by
the application’s acceptance checks (labeled as Detected),
or the output of the program passes those checks (labeled
as Pass check). If the output passes the check, it may differ

Fault Injection

Finished Crash

Detected Pass check

C-Detected

Double crashC-Finished

C-Pass checkBenign SDC

C-Benign C-SDC

Figure 4: Classification of the fault injection outcomes. LetGo has
impact only on the right side of the tree above as it attempts to avoid
a crash outcome.

from the golden run, in which case we consider it an SDC 1;
or the output matches the golden run, labeled as Benign.

(2) A Crash run is where LetGo has impact. When LetGo is
deployed, it may fail to continue the application and lead to
a second crash (labeled as DoubleCrash) or make the appli-
cation to finish successfully labeled C-Finished. In this case,
the program may have similar outcomes as in the Finished
case (when no crash occurs) - we label these as C-Benign
(no observable outcome of the fault), C-Detected (incorrect
output detected by application acceptance checks), and
C-SDC (incorrect output not detected by those checks, but
different from the golden run). Compared to a situation
when LetGo is not used, LetGo is able to transfer some of
the crash outcomes to C-Benign, C-SDC, or C-Detected
outcome.

5.3 Metrics of Effectiveness
The effectiveness of LetGo can be estimated by answering questions
like “How many crashes can be converted to continued execution?",
“what is the likelihood of producing correct results after contin-
uation?", “How often the application check can catch the errors
after continuation?" and “How many incorrect results will be pro-
duced after continuation?". To this end, we define four metrics to
quantitatively evaluate LetGo effectiveness:

Continuability is the likelihood that LetGo is able to convert a
crashing program into the program that would finish (regardless of
the correctness of the output).

Continuability =
C-Pass check +C-Detected

Crash
(1)

Continued_detected is the likelihood that the application accep-
tance check catches errors in the application (if any) after continu-
ation.

1This is a conservative assumption as we do not know how the results of the application
are used. The application output also includes the application data that is compared
between such data from the golden run, as defined in Table 2
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Application Domian
# dynamic
instructions
(billions)

Application
data used to
check for SDCs

Criteria used in
application acceptance check

LULESH Hydrodynamics 1.0 Mesh
Number of iterations: exactly the same
Final origin energy: correct to at least 6 digits
Measures of symmetry: smaller than 10−8

CLAMR Adaptive mesh
refinement 2.8 Mesh Threshold for the mass change per iteration

HPL Dense
linear solver 1.2 Solution

vector Residual check on the solution vector

COMD Classical molecular
dynamics 5.1 Each atom’s

property Energy conservation

SNAP Discrete ordinates
transport 1.6 Flux solution The flux solution output should be symmetric

PENNANT Unstructured
mesh physics 1.7 Mesh Energy conservation

Table 2: Benchmark description. The last two columns present which data is used for bit-wise comparison to determine SDCs (undetected
incorrect results), and, respectively describe the result acceptance check used by each application. All benchmarks are compiled with g++ 4.93
using O3 except for SNAP, which is a FORTRAN program.

Continued_detected =
C-Detected

Crash
(2)

Continued_correct is the likelihood that the programs result in
the correct output after continuation.

Continued_correct =
C-Beniдn
Crash

(3)

Continued_SDC indicates the likelihood that application finished
but results in SDCs - undetected incorrect results.

Continued_SDC =
C-SDC
Crash

(4)

Note that the Continuability is the sum of Continued_detected,
Continued_correct andContinued_SDCmetrics. All four values range
from 0 to 1.

For an application to benefit from LetGo, it needs to satisfy the
following properties: first, there is a low probability that the key
program states are not affected by the failure (indicated by high
Continuability), and second, there is a high probability that the
program states adjusted by LetGo converge to the original path
(indicated by the high Continued_correct and low Continued_SDC).

5.4 Fault Injection Methodology
To evaluate LetGo, we implement a software-based fault injection
tool based on gdb and PIN 2. Our injector does not require the
application’s source code, nor does it need the application to be
compiled using special compilers or compilation flags.

The fault injection experiments for an application consists of
two phases: we first perform a one-time profiling phase to count the
number of dynamic instructions using the PIN tool. As we assume
all dynamic instructions have equal likelihood of being affected
by a fault, we use the number of total instructions to randomly
choose an instruction to inject a fault for each fault injection run.
During this phase, we also profile the number of times each static
instruction in the program is executed during the profiling phase so
at to be able to inject a fault at the appropriate dynamic instruction.
For example, if we choose to inject into the 5th dynamic instance

2The tool is publicly available at https://github.com/flyree/pb_interceptor

of an instruction, we need to skip the first 4 instances when the
breakpoint is reached (using the continue command of gdb).

During the fault injection phase, we then use gdb to set a break-
point at the randomly-chosen dynamic instruction and inject a fault
at the instruction by flipping a single bit in its destination register
(after the instruction completes). This emulates the effect of a fault
in the computational units involved in the instruction.

The profiling phase is run once per application and is relatively
slow. The injection phase, on the other hand, is executed tens of
thousands of times, and is much faster as it does not involve running
the application inside a virtual machine as PIN does. We perform a
total of 20, 000 fault injections per application, one per run, to obtain
tight error bounds of 0.1% to 0.2% at the 95% confidence interval.

5.5 Benchmarks
Weuse sixHPCmini-applications namely LULESH [20], CLAMR [43],
HPL [46], SNAP [35], PENNANT [33] and COMD [10] (details
in Table 2). Note that these benchmarks meet the assumption
that application-level acceptance checks are well defined/imple-
mented. All benchmarks exhibit convergence-based iterative com-
putation patterns except for HPL, which is implemented with a
direct method3 [16]. Therefore, we separate the results of HPL from
others and discuss them in Section 8.

Table 2 briefly describes the acceptance checks for each bench-
mark. For CLAMR, HPL, PENNANT, we use the built-in acceptance
checks (written by the developers), while for LULESH, COMD and
SNAP, we wrote the checks ourselves based on their verification
specifications: Section 6.2 in [31] for LULESH, “Verification correct-
ness" section in [11] for COMD and ”Verification of Results" section
in [34] for SNAP.

6 EXPERIMENTAL RESULTS
This section presents experiments that aim to understand whether
LetGo is indeed able to continue application execution when a
crash-causing error occurs with minimal impact on application
correctness and efficiency. The next section evaluates the impact
of LetGo in the context of an C/R mechanism.

3A direct method computes the exact answers after a finite number of steps (in the
absence of roundoff)

https://github.com/flyree/pb_interceptor


HPDC ’17, June 26-30, Washington , DC, USA Bo Fang, Qiang Guan, Nathan Debardeleben, Karthik Pattabiraman, and Matei Ripeanu

Benchmark
Finished Crash

Detected Pass check Double crash C-Detected C-Pass check
Benign SDC C-Benign C-SDC

LULESH 0.90% 22.00% 0.13% 25.00% 2.30% 49.50% 0.17%
CLAMR 0.50% 33.30% 0.50% 25.00% 1.10% 39.60% 0.00%
SNAP 0.02% 43.94% 0.01% 20.77% 0.06% 35.20% 0.00%
COMD 1.00% 55.00% 1.10% 18.32% 0.85% 22.13% 1.60%
PENNANT 1.00% 50.00% 2.00% 19.00% 2.50% 22.70% 2.80%
AVERAGE 0.68% 40.85% 0.75% 21.62% 1.36% 34.02% 0.91%

Table 3: Fault injection results for five iterative benchmarks when using LetGo-E. The value for each outcome category is normalized using
the total number of fault injection runs for the application. Error bars range from 0.1% to 0.2% at the 95% confidence level.

6.1 Effectiveness of LetGo
We run the fault injection experiments for both LetGo-B (the ba-
sic version that uses minimal repair heuristics) and LetGo-E (the
version that uses the advanced heuristics described in Section 4).
Table 3 shows the fault injection result for the five benchmarks that
use iterative, convergence-based solutions when using LetGo-E. We
discuss HPL, a direct method, separately in the discussion section.

We note the following: First, the the average crash rate over
all applications is 56%, showing that more than half of the time
when a fault occurs the application will crash (i.e., in the table
this shows as the sum of values in the four columns under the
“Crash" category). Second, with LetGo-E, on average, 62% of these
crashes can be transformed to continue running the application
to termination (only 38% are double crashes). We first discuss the
results for LetGo-E, and then compare these results with those for
LetGo-B to understand the effectiveness of the heuristics introduced
by LetGo-E. We observe the following:

(1) The ability of LetGo-E to enable continued execution
when facing a crash-causing error: The mean continu-
ability for the benchmark set is 62%, which indicates that
62% of the time when the benchmark program receives a
crashing signal, LetGo-E resumes the execution and the
application completes successfully without crashing again.

(2) LetGo-E is able to convertmore thanhalf of the crashes
to produce correct results (and thus possibly offer a so-
lution to lower checkpoint overheads for a long-running
applications).

(3) Low rate of undetected incorrect results. The rate of
Continued_SDC cases for all benchmarks is on average in
the same range as the SDC rate of the unmodified applica-
tion. For CLAMR and SNAP, we do not observe new SDCs
after applying LetGo-E. Overall, LetGo-E maintains the
low SDC rate of the original application (yet it doubles it
only 1.6% of the cases did the program produce incorrect
results after continuing it with LetGo-E, compared with
0.75% when not using LetGo). We further discuss the im-
pact of the increased SDC rates, and techniques to mitigate
it, in Section 8.

(4) Continued_detected of the application-level accep-
tance checks. The Continued_detected of LetGo-E across
the five benchmarks is 2.4%: for our benchmarks, after

LetGo-E continues the execution, the application accep-
tance checks would detect the errors 2.4% of the time - this
is slightly higher than the case without LetGo-E.

Thus, we find that LetGo-E has a high likelihood to convert crashes
into either benign or detected states, while only marginally increasing
the SDCs produced.

Figure 5 compares LetGo-B and LetGo-E over the four metrics.
Figure 5a shows that LetGo-E achieves an improvement in Continu-
ability for CLAMR by 32% and for PENNANT by 5% over LetGo-B
, but not much for the other benchmarks (considering the error
bars). Overall, LetGo-E achieves 14% on average higher Continua-
bility than LetGo-B. Figure 5b shows that the Continued_detected
declines by 1% from LetGo-B to LetGo-E on average and with only
0.8% increase in CLAMR. Therefore, the efficacy of the acceptance
checks is not much affected by the heuristics employed by LetGo-E.
Figure 5c shows that LetGo-E has higher Continued_correct over
LetGo-B by 4% on average across all benchmarks. This shows that
it allows more crashes to be converted into correct results than
LetGo-B. In Figure 5d, we find that Continued_SDC ratio for LetGo-
E remains the same as that of LetGo-B on average. In Figure 5d, we
can observe that LetGo-E totally eliminate the SDCs for CLAMR
and SNAP, and has almost the marginally different values of the
Continued_SDC metric for all benchmarks - the worst case is 2%
higher Continued_SDC faults for PENNANT. Thus, the heuristics
used by LetGo-E does not add much to the incorrect executions.

Overall, the heuristics introduced by LetGo-E lead to better con-
tinuablility (by about 14%) over LetGo-B for continuing the programs,
and producing 5% more correct results than LetGo-B.

6.2 Performance Overhead
To estimate performance overhead, we experimentally measure the
performance LetGo for a single application run outside the context
of a C/R scheme. In Section 7, we will evaluate the end-to-end
impact of LetGo when used in the context of an C/R scheme, that
is in the presence of failures and considering C/R overheads.

There are two source of overhead in LetGo: a). Running the pro-
gram with gdb. b). Adjusting program states after a crash happens.
We report the time overhead for each part below. Since LetGo-E is
a superset of the operations performed by LetGo-B, we report only
the LetGo-E overheads to get the worst-case time overhead.

We first measure the execution time of LULESH with LetGo,
under three input sizes. We find that for the three different input
sizes, the number of dynamic instructions range from 1 billion
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Figure 5: Comparison of Continuability, Continued_detected, Continued_correct and Continued_SDC between the LetGo-B and LetGo-E.
LetGo-E has a higher likelihood of converting crashes into correctly executions for our benchmarks than LetGo-B but no increase in Contin-
ued_SDC cases.

to 180 billion, and LULESH with gdb exhibits consistently low
overhead (i.e., less than 1% compared to running it without gdb
for each case). We have observed a similar trend for the rest of
the benchmarks as well. As explained in Section 4, this is because
LetGo neither changes the applications’ compilation levels nor does
it set breakpoints on the application.

We also measured the time overhead of adjusting program states
after a crash by measuring how much time is spent in LetGo-E
for each benchmark (i.e., the time spent in step 4 of the Figure 3).
We find that across all of our benchmarks, the wall-clock time
spent in LetGo is roughly around 2-5 seconds, and, as expected, it
stays constant when we increase the input size. This time is trivial
compared to the overall execution time of most HPC programs.
Recall that LetGo takes two actions to adjust the program states:
1). finding the next PC, 2) applying the two heuristics if necessary.
As explained in Section 4.2 and Section 4.3, both actions only need
a disassembler to acquire the static instruction-level information
of a program - we use PIN. With a more efficient disassembler,
the time overhead can be even further reduced. Thus, LetGo incurs
insignificant performance overheads in most cases, and this overhead
does not increase with increase in applications’ input sizes.

7 LETGO IN A C/R CONTEXT
The previous section demonstrated that LetGo is indeed able to
often continue application execution with minimal impact on ap-
plication correctness and efficiency. This section aims to evaluate
the end-to-end impact of LetGo in the context of a long-running
parallel application using a C/R mechanism. The main challenge in
this evaluation is that there are multiple configuration scenarios
that need to be considered, and hence direct measurement is pro-
hibitively expensive. To address this issue, we model a typical HPC
system using C/R as a state machine and have built a continuous-
time event simulation of the system. This simulation framework
enables us to compare resource usage efficiency with and without
LetGo. We predict the overall performance gains using LetGo, based
on the effectiveness of LetGo estimated with fault injections on
an application-specific basis in the previous section. We focus on
LetGo-E as we found that it achieves higher Continuability and
Continued_correct compared to LetGo-B. In the rest of this section,
when we say LetGo, we mean LetGo-E.

Model assumptions.We make a number of assumptions that
are standard for most of the checkpointing literature [5, 13, 17, 58].
Our models assume that all crashes are due to transient hardware

faults, and hence restarting the application from a checkpoint will
be sufficient to recover from the crash. In a similar vein, we assume
that the checkpointing process itself is not corrupted by a fault.
We further assume that the application does not have any other
fault-tolerance mechanism than C/R (and LetGo), and that it does
not modify its behaviour based on the faults encountered. Finally,
when modelling a multi-node platform, we assume the HPC system
uses synchronous coordinated checkpointing, which implies that
checkpoints are taken at the same time across different nodes via
synchronization; and that, when one node crashes, all nodes in
the system have to fall back to the last checkpoint and re-execute
together.

Parameter description We categorize the model parameters
into three classes, summarized in Table 4:

(1) Configured: The time towrite a checkpoint (T_chk), and the
mean time between faults (MTBFaults) are configured by
the model users based on the characteristics of the platform
and the application;

(2) Estimated: The probability of a crash after a fault occurs
(P_crash), the probability that an application passes an
application-defined acceptance check (P_v, the probability
that an application passes an an application-defined accep-
tance check after LetGo has been used to repair state (P_v’),
and LetGo Continuability (P_letgo) are obtained from the
fault injection experiments on a per application basis.

(3) Derived: The checkpoint interval T is determined to be a
value that maximizes efficiency for the current configura-
tion based on Young’s formula [58] (when not explicitly
mentioned otherwise in the experiment description). The
recovery time (T_r) is, conservatively, chosen to be equal
to the checkpoint overhead T_c as we assume the equal
write and read speed access to the stable storage (also used
in prior work [5]), and neglect the additional coordination
overhead. We assume that the time spent for an acceptance
check (T_v) is proportional to the checkpoint overhead be-
cause the size of the data to check is the same.We use: T_v =
0.01 * T_c. The overhead for synchronizing multiple nodes
(T_sync) to take a coordinated checkpoint is (optimistically,
as we do not consider system scaling effects) a constant
fraction of the per/node checkpointing time (T_chk). We
use two values for the synchronization overhead as 10%
and 50% of the checkpointing overhead.



HPDC ’17, June 26-30, Washington , DC, USA Bo Fang, Qiang Guan, Nathan Debardeleben, Karthik Pattabiraman, and Matei Ripeanu

Parameter Description Value
T Checkpoint interval (useful work)

√
2 ∗T_chk ∗MTBF†

T_r Time spent for recovery from a previous checkpoint T_chk
T_chk Time spent writing a checkpoint System-dependent
T_sync Time spent in synchronization across nodes 50%*T_chk and 10%*T_chk
T_v Time spent in application acceptance check 1%*T_chk
T_letgo Time spent in LetGo 5s
P_crash The probability that a application crashes when a fault occurs Application-dependent
P_v The probability that an application passes the verification check Application-dependent
P_v’ The probability that an application passes the verification check with LetGo Application-dependent
P_letgo The Continuability of LetGo Application-dependent
MTBF Mean time between failure System-dependent
MTBF_letgo Mean time between failure with LetGo MTBF/(1-62%)
MTBFaults Mean time between faults System-dependent

† EI-Sayed et al. [17] show that checkpointing under Young’s formula achieves almost identical performance as more
sophisticated schemes, based on exhaustive observations on the production systems.

Table 4: The description of parameters of the models

Finallywe can derivemean time between failures (MTBF)
based on the experiments in the previous section. As we ob-
serve from the fault injection experiments in the previous
section, on average 56% of faults lead to crashes. Thus for
simplicity, we use MTBFaults = 2*MTBF. The C/R scheme
with LetGo helps the application avoid crashes, which re-
sults in a longer MTBF. We refer to this new MTBF of the
system after LetGo is applied as MTBF_letgo, and since the
Continuability of LetGo is about 62% on average, we set
MTBF_letgo equal to MTBF/(1-62%).

Model description. The state machine modelling a system
that does not use LetGo is depicted in Figure 6a and has three states:
COMPutation, Checkpoint, and VERIF-ication. In the beginning,
the application enters the COMP state for normal computation.
A transition is made from the state COMP to VERIF if no crash
happens ( 1⃝), and the acceptance check is applied on the applica-
tion data/output. If this check passes, a transition is made from the
state VERIF to CHK ( 5⃝) and a checkpoint is taken immediately. If
the application does not pass the check, it transits from the state
VERIF to COMP ( 2⃝). A transition from the state COMP back to
itself occurs when a failure is detected ( 4⃝), or faults occur when the
application is in the COMP state but none of them cause crashes,
so that the application stays in the COMP state and the number
of faults will be increased ( 3⃝). When faults are accumulated in
the system, the probability that the application passes the verifica-
tion check is modeled as (P_v )f aults , given the assumption that
hardware transient faults occur as independent events.

Figure 6b illustrates the model for the C/R scheme when using
LetGo. The state machine contains two more states: "LETGO" and
"CONT"inue. Due to space limitations, we emphasize here only the
transitions related to the new states. When there is a failure (i.e.,
crash) occurring during the computation (i.e., the application stays
in the COMP state), a transition is made to the LETGO state ( 3⃝). The
application moves from the LetGo state to CONT if LetGo continues
the execution of the application ( 4⃝), otherwise, the application
transits back to the COMP state (11⃝). While the application stays in

the CONT state, the occurring fault can either cause another crash
andmake the application transit to the COMP state ( 6⃝), or not cause
a crash and make the application proceed to the state VERIF. The
"isLetGo" flag is set for choosing the different base probabilities (P_v
or P_v’) that the application passes the verification check ( 5⃝). The
base probability is used in the conditions of the state transitions 2⃝
and 9⃝. The actual probability is then calculated using (P_v )f aults

or (P_v ′)f aults in 8⃝ and 7⃝.

Evaluation metric. The goal of the simulation is to understand
the impact of LetGo on resource usage efficiency in the context of
a long running application using a C/R scheme in the presence of
faults. We define resource usage efficiency as the ratio between the
accumulated useful time and the total time spent (i.e., u/cost). To
evaluate the efficiency of both setups (with and without LetGo), we
perform simulations for configuration parameters corresponding
to different benchmarks and different platforms.

Choice of parameters. We justify the chocies for the check-
pointing overhead, and the MTBF. We first discuss the checkpoint-
ing overhead: the time spent to write a checkpoint to the persistent
storage depends on the characteristics of the hardware. For more
advanced hardware, the checkpointing overhead becomes less sig-
nificant. However, on one side, advanced hardware support such
as burst buffers represent additional costs. To the degree these are
added to reduce checkpointing overheads, a checkpointing scheme
with lower overhead would enable provisioning systems for lower
overall cost. On the other side, even in the presence of burst-buffers,
checkpointing is still a major bottleneck on deployed systems as
our simulations show. We use two criteria for choosing the check-
point overheads. Here are two data points that justify our choice of
parameters to seed our simulations:

• Back-of-the-envelope calculation: For each checkpointing
overhead value we pick for our simulations we assume
that the system-level checkpointing writes some portion
of the main memory to the persistent storage. A modern
HPC node normally features 32 to 128GB memory. For a
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3: COMP->LETGO
Condition:
    (t < T - q) & p(P_crash) == TRUE
Actions:
    cost += t
    q += t
    faults += 1
    t = next(cost)

4: LETGO-> CONT
Condition:
    p(P_fix) == TRUE
Actions:
    cost += T_letgo
    t = next(cost)

11: LETGO-> COMP
Condition:
    p(1- P_fix) == TRUE
Actions:
    cost += T_letgo + T_r + T_sync
    q = 0
    faults = 0
    t = next(cost)

6: CONT-> COMP
Condition:
    (t < T - q) & p( P_crash) == TRUE
Actions:
    cost += t + T_r + T_sync
    q = 0
    faults = 0
    t = next(cost)

7: CONT-> CONT 
Condition:
    (t < T - q) & p(1-P_crash) == TRUE
Actions:
    cost += t 
    q += t
    faults += 1
    t = next(cost)

5: CONT-> VERIF 
Condition:
    t > T - q 
Actions:
    cost += T - q
    q = 0
    t = next(cost)
    isLetGo = 1

9: VERIF> CHK 
Condition:
    if isLetGo == 0:
        p((P v)faults(P v)faults ) == TRUE
    else:
        p((P v0)faults(P v0)faults) == TRUE
Actions:
    cost += T_v
    u += T
    q = 0
    t = next(cost)
    isLetGo = 0

0: Initialization
Condition:
    No
Actions:
    cost = 0
    u = 0
    q = 0
    t = next(cost)
    faults = 0
    faults_total = 0
    isLetGo = 0

2: VERIF> COMP 
Condition:
    if isLetGo == 0:
        p(1-(P v)faults(P v)faults) == TRUE
    else:
        p(1-(P v0)faults(P v0)faults) == TRUE
Actions:
    cost += T_v + T_r + T_sync
    q = 0
    faults = 0
    t = next(cost)
    isLetGo = 0

(b) M-L

Figure 6: The state machines for the standard C/R scheme (a) and the C/R scheme with LetGo (b). The black circle represents the termination
state of the model. We use u/cost to represent the efficiency of the model. t: time interval till the next fault; cost: accumulated runtime; u: accumulated
useful work; q: accumulated useful work within the current checkpoint interval; faults: number of faults that did not lead to crashes since the last checkpoint;
faults_total: total number of faults that did not lead to crashes; isLetGo: a flag that indicates that if the P_v’ is chosen or not

burst buffer implemented with SSD, the average I/O band-
width for write is around 1GiB/s, and the peak value is
6GiB/s [3]. For spinning disks, the I/O bandwidth is usu-
ally around 50MiB/s to 500MiB/s. As a result, our choices
for the checkpoint overhead of (12s, 120s or 1200s) respec-
tively represent, (i) a well provisioned system using burst
buffers, (ii) and averagely provisioned system (e.g., using
burst buffers, or compression and spinning disks); and (iii)
a naive, under-provisoned system. We note that a similar
set of values is also used in prior work [5, 17].

• Future system requirements: The Alliance for application
Performance at EXtreme scale (APEX) 2020 document [32]
requires that the systems delivered in 2020 have a single
job mean time to interrupt of more than 24 hours, and for a
delta-checkpoint scheme (i.e., the time to checkpoint 80% of
aggregate memory of the system to persistent storage), the
time for writing the checkpoint to be less than 7.2 minutes
(432s). This suggests that our parameters are in the same
ballpark as those of the current and future systems.

Along similar lines, we derive MTBFaults for existing systems
from previously reported studies: we start with the system pre-
sented by [5] as a baseline. This system contains about 10, 000 nodes,
and usually experiences around 2 failures per day [40] (MTBF of 12
hours). Based on this data, we scale MTBF for larger systems, and
also consider systems with lower node-level reliability.

Running the Simulation. We assume that the hardware tran-
sient faults hitting the system are governed by a Poisson process
and we generate a random time sequence for the occurrences of
the hardware faults. Then, we seed the models with various sets
of parameters and run the simulation over the generated sequence
for a long simulation time (10 years), to determine the asymptotic
efficiency value for each benchmark.

Experimental Results. We first show the efficiency for the
C/R system with and without LetGo under different checkpoint
overheads. We take the system that has a MTBFaults of 21600
seconds (i.e.,MTBF = 12hours) and a synchronization overhead of
10% of the checkpoint interval as an example.

The efficiency improvement enabled by LetGo is between 1% to
11% across our benchmarks (absolute values, the relative values are
much higher (nearly 20%)). As the checkpoint overhead scales up
(from 12s to 1200s), the efficiency gain increases for all applications,
while, at the same time, the absolute efficiency per application
decreases. Figure 7 shows the applications that have the highest and
lowest efficiency gains respectively, LULESH and SNAP, when the
checkpoint overhead is 1200 seconds. This trend is consistent across
all applications, and across different synchronization overheads.
Our results thus show that LetGo offers significant efficiency gains.

We then scale the system from 100, 000 nodes to 200, 000 and
400, 000 nodes. Scaling results in lower MTBF for the whole system:
6 and 3 hours. Again, we use two benchmarks namely CLAMR
and PENNANT as examples, shown in Figure 8. As the scale of the
system increases, the efficiency of the system both with and without
LetGo decreases, as expected. Importantly, the rate of decrease of
efficiency is lower for the system with LetGo than without. This
trend is consistent with all our benchmarks, suggesting that LetGo
offers better efficiency as the system scale increases.

0.6

0.7

0.8

0.9

1

T_chk = 12 T_chk = 120 T_chk = 1200

Ef
fic
ie
nc
y

MTBFaults = 21600s

LULESH LUESH-LetGo

(a) Efficiency of LULESHwith and
without LetGo

0.6

0.7

0.8

0.9

1

T_chk = 12s T_chk = 120s T_chk = 1200s

Ef
fic
ie
nc
y

MTBFaults = 21600s

SNAP SNAP-LetGo

(b) Efficiency of SNAP with and
without LetGo

Figure 7: Efficiency with and without LetGo under different check-
point overheads for LULESH and SNAP.

8 DISCUSSION
We address a number of interrelated issues.

What is LetGo effectiveness wheh used for applications
that do not use convergent methods?We have evaluated LetGo
on five benchmarks that use convergent methods. We have also
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Figure 8: The trend of the efficiency for the C/R scheme with
and without LetGo when the system scales from 100,000 nodes to
200,000 nodes and 400,000 nodes

evaluated LetGo on HPL, which is a linear algebra solver that uses
a direct method. Our fault injection experiments show that, with-
out the presence of LetGo, 34% of faults lead to crashes, 38% lead
to incorrect output detected by the HPL residual check, about 1%
lead to SDCs, and 27% lead to correct output. We find that the
application-level acceptance checks are much more selective than
for the applications in our initial set, and this would make HPL a
good candidate for use with LetGo. However, while the crash rate
is still high (34%), it is lower than that of the other applications,
where it was around 60% - this would potentially reduce the im-
pact of LetGo. When using LetGo with HPL, we obtain around 70%
Continuability and 2x increases in SDC rate (from 1% to 3%). To
understand the overall performance, we run the simulation of a
C/R scheme with the potential results from applying LetGo-E to
HPL. Our simulation results show that the efficiency of the stan-
dard C/R scheme applied to HPL is around 40%, and LetGo-E only
marginally improves efficiency. Thus, LetGo by itself is not a good
fit for applications like HPL - other error correcting mechanisms
(e.g. ABFT) may be needed for such programs.

Determining when/how to use LetGo An operator will de-
cide whether to use LetGo depending on a mix of factors: i) how
frequently the system experience hardware faults that crashes the
application, ii) what is the likelihood of the application to expe-
rience additional SDCs given the use of LetGo, iii) what is the
checkpoint overhead for a specific C/R scheme for that application
and deployment, iv) what is the acceptable increase in the SDC rate.
It is reasonable to assume that the operator has (an approximation
for) some of the information above as she needs to configure the
checkpoint interval when LetGo is not used. Additionally, the op-
erator needs information to estimate the increase in SDC rate due
to LetGo. A large characterization study with applications from
multiple categories that extends the preliminary data provided in
this paper is necessary to provide these estimates.

Towards large-scale application The current implementation
of LetGo focuses on the single-threaded scenario. As an initial ef-
fort, we considered this work to be the “proof of concept” for the
continuous execution upon failures, and bridges the system level
continuation with the correctness of application behaviors. Thus, it
is in the early stage of being practical in large-scale production sys-
tems. However, the main design and implementation foundations
hold no obstacles to be extended for concurrent/multi-threaded ap-
plications. Meanwhile, we would like to understand the possibility
of integrating LetGo with parallel programming systems such as
MPI.

Hardware Fault Models Precise data on the bit-flip rates ob-
served in practice is notoriously hard to obtain. However, we main-
tain that bit-flips leading to application application crashes are still
a frequent root cause for failure. For example, Martino et al. [40]
show that in Blue Waters, hardware related issues are the single
largest cause of failures (42%) - bugs and configuration errors are
only 23%. Of these, 67% of hardware errors are memory errors,
and 30% of memory errors manifested as multiple bit flips that
cannot be corrected via ECC. While LetGo does not support ECC
errors today, there is no fundamental obstacle in adding support for
such errors. Moreover, since LetGo allows applications to continue
with errors, it may be possible to use it for application-specific
(re)configuration of the hardware fault tolerance mechanisms to
enable energy savings.

9 CONCLUSION
This paper demonstrates that it is possible to continue HPC applica-
tion execution rather than terminate it when facing crash-causing
errors due to hardware transient faults. We have implemented the
above idea in a system called LetGo, which monitors the execu-
tion of an application and modifies its default behavior when a
termination-causing OS signal is generated. When used in the con-
text of a C/R scheme, LetGo enables sizable resource usage efficiency
gains. More specifically, for a set of HPC benchmarks, LetGo offers
over 50% chance that the application can continue and produce cor-
rect results without performing a roll-back/recovery. We evaluate
the impact of LetGo for long-running applications that use C/R, and
find that LetGo enables sizable efficiency gains. The efficiency gains
increase with both the system scale and checkpointing overheads,
thus suggesting that LetGo will likely be even more important for
future large-scale HPC applications and systems.
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