TensorFI: A Configurable Fault Injector for
TensorFlow Applications

Guanpeng Li*, Karthik Pattabiraman*, Nathan DeBardeleben”
*Department of Electrical and Computer Engineering, University of British Columbia
“Ultrascale Systems Research Center, Los Alamos National Laboratory1
Email: {gpli, karthikp} @ece.ubc.ca, ndebard @lanl.gov

ABSTRACT

Machine Learning (ML) applications have emerged as the
killer applications for next generation hardware and software
platforms, and there is a lot of interest in software frameworks
to build such applications. TensorFlow is a high-level data-
flow framework for building ML applications and has become
the most popular one in the recent past. ML applications are
also being increasingly used in safety-critical systems such
as self-driving cars and home robotics. Therefore, there is a
compelling need to evaluate the resilience of ML applications
built using frameworks such as TensorFlow. In this paper, we
build a high-level fault injection framework for TensorFlow
called TensorFI for evaluating the resilience of ML applica-
tions. TensorFI is flexible, easy to use, and portable. It also
allows ML application programmers to explore the effects of
different parameters and algorithms on error resilience.

I. INTRODUCTION

In the last decade, Machine Learning (ML) has become
ubiquitous, with applications ranging from speech recognition
to game playing. Much of this revolution has been fueled by
the rise of deep neural networks, which automatically learn
to classify objects such as images based on a few training
samples and data. Simultaneously, there has been an explosion
in the number of ML frameworks and software infrastructure
such as TensorFlow [1] to facilitate the rapid development of
ML algorithms. The main goal of these frameworks is to auto-
mate the more mundane aspects of developing ML programs,
and allow programmers to focus on the core algorithms.

ML applications have also found their way to safety-critical
domains such as self-driving cars (i.e., autonomous vehicles)
and home robotics. In these domains, it is vitally important that
the ML application provide reliability and safety guarantees on
its outputs, even in the presence of faults and failures. While
these can include both accidental (i.e., random) and malicious
faults, we focus on the former in this paper. Therefore, it
is necessary to evaluate the resilience of ML applications
deployed in safety-critical contexts, in the presence of faults.

'This work was primarily performed at the Ultrascale Systems Research
Center (USRC) at Los Alamos National Laboratory, supported by the U.S.
Department of Energy contract AC52-06NA25396. The publication has been
assigned the LANL identifier LA-UR-18-27031. We also acknowledge support
from the NSERC, Canada for this research.

Fault Injection (FI) is a widely used technique to evaluate
the resilience of software applications to faults. While FI
has been extensively used in general purpose applications, its
use in ML applications presents three main challenges. First,
because ML applications are often written using specialized
infrastructures, it is difficult to inject faults at the level of
individual program statements or variables as these are hidden
inside the framework. Second, it is difficult to interpret the
results of the FI experiments as they are dependent on the
application and the inputs as well as the framework being
deployed. Finally, performing FI in ML applications requires
the programmer to understand where faults are likely to occur
in the application and map them to its implementation.

In this paper, we build a fault injector for ML applications
written using specialized frameworks. Because TensorFlow is
the most widely used, publicly available software framework
for writing ML applications today, we only support Tensor-
Flow and we call our injector TensorFI. TensorFI has three
main features. First, it does not rely on the internal implemen-
tation of TensorFlow, aiding its portability to different plat-
forms and TensorFlow versions. Second, it requires minimal
modifications for programmers to make to their applications
and is hence easy fo use. Third, it allows programmers to
configure the injection process through an external interface
without modifying the application (flexible).

The main abstraction used in TensorFlow is a computational
data-flow graph, in which different ML operations are repre-
sented as graph nodes and the flow of data between them
is represented as edges. Developers will typically construct
the ML application as a TensorFlow graph, and allow the
system to optimize it at runtime depending on the platform
it is deployed on (e.g., CPUs, GPUs). TensorFI interposes
on the TensorFlow graph to inject faults at the level of
TensorFlow operators or nodes. In other words, it allows
programmers to emulate both hardware and software faults
in the computations of specific ML operators in TensorFlow,
and evaluate the effects of the faults on the end-to-end result
of the ML application. Furthermore, the faults can also be
configured through an external configuration file to allow
rapid exploration of the ML resilience space, and choosing
appropriate parameters and algorithms for resilient ML.

Prior work has attempted to evaluate the effects of faults
in ML algorithms [2], [4]. However, most prior work is
limited to specific ML algorithms and their implementations,

rather than targeting an entire class of such algorithms (that
use a framework). Other work has attempted to consider the
effects of hardware faults in ML applications implemented
on accelerator platforms [8]. However, this work is limited
to specific hardware accelerators, and does not incorporate
software faults. To the best of our knowledge, we are the first
to build a fault injector for both hardware and software faults
in general ML applications built using software frameworks.
We make the following contributions in this paper:

o We propose a systematic approach for performing fault
injection in ML frameworks such as TensorFlow that use
dataflow graphs to represent their computations,

o We build a fault injector called TensorFI, to inject faults
in applications built using TensorFlow. We demonstrate
the use of TensorFI on a simple example program.

o Using TensorFI, we evaluate different ML algorithms
on the same data set in terms of their performance and
resilience, to understand which algorithm(s) perform best
under different fault types and fault probabilities.

II. BACKGROUND AND FAULT MODEL
A. Fault Injection

Fault injection (FI) is the act of systematically injecting
faults or perturbations in the system under test (SUT) and
studying the effects of the fault. FI can be done in hardware
or software, and can be used to model both hardware and
software faults. Software Implemented Fault Injection (SWiFI)
is the injection of faults through software-based techniques
such as debuggers and instrumentation. SWiFI can be used for
injecting either hardware or software faults. In this paper, when
we say fault injection, we are referring to SWiFI techniques.
SWiFI techniques can be further classified into compiler-based
or runtime injections. In compiler-based techniques, the code
is mutated to inject the fault prior to the program being
run. In runtime fault injection techniques, the perturbation is
done during the execution of the program with no changes
to the code during its compilation. Runtime injection has the
advantage that it can access the dynamic state of the program
but is limited in that it does not have information about where
the fault can occur in the program. Compile-time injection on
the other hand does not have access to runtime information,
but it can use knowledge of the program’s code to seed the
fault. It is also typically faster than runtime injections. Hybrid
FI attempts to combine the advantages of compile-time and
runtime injections by modifying the code at compile-time to
insert hooks for runtime injections.

FI techniques can also be classified into interface-level
injection and implementation-level techniques. In the former,
faults are injected at the level of interfaces (e.g., function calls,
Application Programmer Interface (APIs)), while in the latter,
faults are injected into the implementation of the APIs or
functions. The main advantage of interface-level fault injection
is that it is independent of the implementation and is hence
much more portable than implementation-level fault injection.
On the other hand, interface-level injection is often more

limited than implementation level injection as it cannot access
the internal states of the SUTs. With that said, it is possible to
emulate a wide variety of faults that propagate to the interface
of the SUT, and hence interface-level injection is widely used
in practice [6], [7]. In this paper, we primarily inject faults at
the level of machine-learning operators in TensorFlow, which
corresponds to a form of interface-level fault injection.

B. Machine Learning Applications

Typically, a machine learning (ML) application consists of
two phases: a training phase where a ML model is trained
using a certain ML algorithm (e.g., linear regression) and
an inference phase, where the model performs a task. The
parameters of the ML model are learned from training data,
then in the inference phase the model is used for the actual
ML task on test data. Note that the test data is typically
independent from the training data. Both the training data and
the test data constitute an ML dataset.

An ML model takes features that are used in the inference
phase as input to make a prediction. Two general ML tasks
are regression and classification. The former is used to predict
the value of one or more outputs given a set of feature
values, while the latter is used to classify the input feature
values into one or more categories. ML models can be either
supervised or unsupervised. Supervised algorithms are those
in which the training samples have a known label assigned
to them, while unsupervised algorithms are those in which
there are no known labels for the training data. Examples of
common supervised ML algorithms are linear regression and
random forests. Examples of unsupervised ML algorithms are
k-Nearest neighbors (kNN) and kernel density estimation.

The overall quality of a supervised ML model is determined
by a variety of metrics related to accuracy, which is a quantita-
tive meaure of how much the predicted value differs from the
ground truth or correct value. Common metrics are precision,
recall, F1 score, and Area under the ROC curve. In cases where
the ground truth is not available (e.g., for unsupervised ML
algorithms), quality is defined in terms of some other external
metric such as the tightness of the clusters formed.

C. Tensorflow

TensorFlow is an open-source framework released by
Google for modeling large data-flow graphs. It has been
prominently used in ML algorithms’ implementation and has
more users than almost all other open-source frameworks
such as Torch or Caffe. Unlike many other ML frameworks,
TensorFlow does not make any assumptions about the imple-
mentation of the ML algorithms, and allows users to express
their algorithm however they see fit as long as they use the
dataflow graph abstraction (see below). This distinguishes it
from higher-level frameworks such as Keras, which provides
a high-level API for users to express the ML algorithms and
abstracts away the implementation details completely. Thus,
TensorFlow is considered a lower level framework as it allows
users more flexibility, but has a steeper learning curve. It is

worth noting that many of the higher level frameworks them-
selves use TensorFlow as their backend for implementation,
and thus TensorFlow can be used indirectly as well.

The central abstraction in TensorFlow is the data-flow
graph, which is a high-level representation of the flow of
information among the various ML operators '. Users of
TensorFlow have to construct the ML algorithm using the
standard operators provided by TensorFlow or define their own
operators. Operators are not allowed to have side effects, i.e.,
affect the global state of the program (with some exceptions),
and hence the only method for communicating data across
operators is through the edges of the data flow graph.

To use TensorFlow, programmers first use one of the in-built
learning algorithms to construct the dataflow graph of their
ML algorithm during the training phase. Various optimizations
on the graph are also performed based on the input data set.
Once the graph is built and optimized, it is not allowed to be
modified. The graph is then used for the inference phase in
which data is fed into the graph through the use of placeholder
operators, and the outputs of the graph correspond to the
outputs of the ML algorithm. In this phase, the graph is
typically executed directly in the optimized form on the target
platform using custom libraries.

TensorFlow also provides a convenient Python language in-
terface for programmers to construct and manipulate the data-
flow graphs. Though other languages are also supported, the
dominant use of TensorFlow is through its Python interface.
Note however that the majority of the ML operators and algo-
rithms are implemented as C/C++ code, and have optimized
versions for different platforms. The Python interface simply
provides a wrapper around these C/C++ implementations.

D. Fault Model

We consider two categories of faults in our work, hardware
faults and software faults, that occur during the execution of
the TensorFlow operators. Because our framework operates
at the level of TensorFlow operators, we abstract the faults
to the interfaces of the operators. In other words, we assume
that a hardware or software fault has occurred and caused
the output(s) of the TensorFlow operator to diverge from its
correct output. We do not make any assumptions about the
nature of the output’s divergence though. We also assume that
the faults do not modify the structure of the TensorFlow graph,
and that the inputs provided to the graph are not faulty (i.e.,
errors in the datasets used) - such faults would be extraneous
to TensorFlow and hence we do not consider them. Finally,
we do not consider faults in the ML algorithm e.g., using the
wrong ML algorithm or wrong parameters.

We assume faults occur with a fixed probability or rate
that is known a priori in each operation of the TensorFlow
graph. Since the errors we inject are interface errors, this fault
injection rate represents the interface error rate. Projecting
the error rates for other levels requires applying appropriate
derating factors, which depends on the platform and the
application - we do not consider these factors in this paper.

ITechnically, an operator in a TensorFlow graph can be any computation.

III. DESIGN AND IMPLEMENTATION

We start this section by articulating the design constraints
and assumptions of TensorFI, followed by the various alterna-
tives in the design. We then present the design of TensorFI,
and an example of its operation. Finally, we present some of
the implementation details.

A. Design Constraints and Assumptions

We aim to respect three design constraints in the design of
TensorFI as follows.

o Ease of Use and Compatibility: We aim to make
an injector that is as easy to use as possible, with
minimal modifications to the application code. We also
need to ensure compatibility with third-party libraries and
sophisticated training algorithms that may construct the
TensorFlow graph using custom API methods.

« Portability: Because TensorFlow may be pre-installed
on the system, and each individual system may have its
own installation of TensorFlow, we should not assume
the programmer is able to make any modifications to
TensorFlow or its libraries.

o Speed of Execution: The third and final principle is
that the injection process should not interfere with the
normal execution of the TensorFlow graph when no faults
are injected. Further, it should not make the main graph
incapable of being executed on GPUs or parallelized due
to the modifications it makes. Finally, the fault injection
process should be reasonably fast, though it does not have
to be as optimized as the main graph.

We also make the following assumptions about the faults

injected by TensorFI.

o Faults are only injected during the inference phase, and
not during the training phase. This is because training is
a limited operation and done once, while inferencing is
done thousands of times (typically) on the trained graph,
and is hence more likely to experience faults at runtime.

o Faults occur only during the execution of the TensorFlow
operators, and that the faults are transient in nature. In
other words, if we reexecute the same operator, the fault
may not appear. This is because studies have shown
that the kinds of faults that are prevalent in mature
software are often transient faults [5]. Further, we do
not make any assumptions about specific implementation
of the TensorFlow operators, and so we cannot model
permanent faults easily.

« Finally, we assume that the effect of a fault propagates to
the outputs of the TensorFlow operators only and not to
any other state. In other words, there is no implicit error
propagation to the permanent state or to other operators
which is not visible at TensorFlow graph level. Again, this
is in keeping with the structure of TensorFlow graphs, and
fault model considered (Section II).

B. Design Alternatives

Based on the design constraints and assumptions in the
previous section, we identified three potential ways to inject

faults in TensorFlow graphs. The first and perhaps most
straightforward method was to modify TensorFlow operators
in place with fault injection versions. The fault injection ver-
sions would check for the presence of runtime flags and then
either inject the fault or continue with the regular operation of
the operator. This is similar to the method used by compiler-
based fault injection tools such as LLFI [9]. Unfortunately,
this method does not work with TensorFlow graphs because
the operators are implemented in C/C++ code, and cannot be
modified once they are constructed 2.

A second design alternative is to directly modify the C++
implementation of the TensorFlow graph to perform fault
injections. While this would work for injecting faults, it
violates the portability constraint as it would depend on the
specific version of TensorFlow being used and the platform it
is being executed on. Further, it would also violate the Speed
of Execution constraint as the TensorFlow operators are opti-
mized for specific platforms (e.g., GPUs), and modifying them
would potentially break the platform-specific optimizations.

The third design alternative we considered was to directly
inject faults into the higher-level APIs exposed by TensorFlow
rather than into the dataflow graph. The advantage of this
method would be that one can intercept the API calls and
inject different kinds of faults. However, this method would be
limited to user code that uses the high-level APIs, and would
not be compatible with third party libraries or frameworks
that manipulate the TensorFlow graph. This would violate the
Ease of Use and Compatibility constraints. Further, we would
be limited in the kinds of faults we can inject as we would
not have visibility into the actual TensorFlow graph.

Due to the above mentioned problems, we did not consider
the above design alternatives. We explain our design in the
next section.

C. Design of TensorFI

To satisfy the design constraints outlined earlier, we built
TensorFI as a two-phase injector that operates directly on
TensorFlow graphs. The main idea is to create a replica of
the original TensorFlow graph but with a different set of
operators than the original ones. The new operators are capable
of injecting faults during the execution of the operators and
can be controlled by an external configuration file. Further,
when no faults are being injected, the operators emulate the
behavior of the original TensorFlow operators they replace.

Because TensorFlow does not allow the dataflow graph to
be modified once it is constructed, we need to create a copy
of the entire graph, and not just the operators we aim to inject
faults into. The new graph mirrors the original one, and takes
the same inputs as it. However, it does not directly modify
any of the nodes or edges of the original graph and hence
does not affect its operation. At runtime, a decision is made
as to whether to invoke the original TensorFlow graph or the
duplicated one for each invocation of the ML algorithm (this is

2More accurately, the modification would have no effect on the runtime
graph as it is compiled to C/C++ code and changes through the Python
interface are not carried out in the C++ version of the code.

Execution
Phase

Instrumentation
Phase

Fig. 1: TensorFI Phases of operation

done by replacing the session.run method of the main session
object in TensorFlow). Once the graph is chosen, it is executed
to completion at runtime to produce the corresponding outputs.

Figure 1 shows the two phases of TensorFI’s operation.
The first phase instruments the graph, and creates a duplicate
of each node for fault injection purposes. The second phase
executes the graph to inject faults at runtime, and returns the
corresponding output. Note that the first phase is performed
only once for the entire graph, while the second phase is per-
formed each time the graph is executed (and faults injected).

We explain below how this design satisfies the design
constraints identified earlier.

o Ease of Use and Compatibility: To use TensorFI, the
programmer has to change a single line in the Python
code. Everything else happens behind the scenes, namely
the graph copying and modifications. Because we operate
at the level of the TensorFlow graph, our method is fully
compatible with third-party APIs.

o Portability: We do not make any modifications to the
TensorFlow code or the internal C++ implementation of
the TensorFlow operators which are platform specific. We
do perform monkey patching® of the TensorFlow session
object (Section III-E), but this is done using the publicly
documented TensorFlow methods from within the Python
code. We do however depend on the interfaces of the
TensorFlow operators being consistent across TensorFlow
versions, which is reasonable as the TensorFlow interface
is fairly stable across its versions and platforms.

o Speed of Execution: TensorFI does not interfere with
the operation of the main TensorFlow graph, and hence
does not slow it down in any way. Further, the original
TensorFlow operators are not modified in any way, and
hence they can be optimized or parallelized for specific
platforms. The only overhead introduced by TensorFI is
the check at runtime on whether to call the original graph
or the duplicated graph, but this overhead is minimal.
Further, the check is executed at most once per inference
procedure, and hence its cost can be amortized over the
execution of the entire graph.

D. Example of TensorFI’s Operation

We consider an example of TensorFI’s operation on a small
TensorFlow program. Because our goal is to illustrate the
operation of TensorFI, we consider a simple computation
represented as a graph. The example is shown in Figure 2. The

3This refers to the act of replacing the object’s methods in-place without
modifying the corresponding class declaration.

faulty

Placeholder Node x

Inject
fault into
ADD

Fig. 2: Example of TensorFlow graph and how TensorFI
modifies it. The nodes in blue represent the original nodes in
the graph, while the nodes in red are those added by TensorFI
for fault injection.

nodes in blue represent the original TensorFlow graph, while
those in red represent the duplicated nodes by TensorFI.

In the original TensorFlow graph, there are two operators,
an ADD operator which adds two constant node “a” and “b”,
and a MUL operator, which multiplies the resulting value
with that from a place-holder node. A place-holder node is
used to feed data from an external source such as a file into
a TensorFlow graph, and as such represents an input to the
system. A constant node represents a constant value. TensorFI
duplicates both the ADD and MUL operators in parallel to the
main TensorFlow graph, and feeds them with the values of the
constant nodes as well as the place-holder node. Note however
that there is no flow of values back from the duplicated graph
to the original graph, and hence the fault injection nodes
do not interfere with the original computation performed by
the graph. The outputs orig and faulty represent the original
and fault-injected values respectively. The graph is created
before the fault injection process is launched after the original
TensorFlow graph is created (i.e., after the training phase).

At runtime, a dynamic decision is made as to whether we
want to compute the orig output or the faulty output. If the
orig output is demanded, then the graph nodes corresponding
to the original TensorFlow graph are executed. Otherwise, the
nodes inserted by TensorFI are executed and these emulate the
behavior of the original nodes, except that they inject faults.
For example, assume that we want to inject a fault into the
ADD operator. Every other node inserted by TensorFI would
behave exactly like the original nodes in the TensorFlow graph,
with the exception of the ADD operator which would inject
faults with a certain probability (specified by the user).

E. Implementation

TensorFI supports the following features:
o Launching multiple FI runs with support for comparing
each FI result with the golden run

o Launching multiple FI runs in parallel (multi-threading)

o Support for visualizing the modified TensorFlow graphs

o Ability to specify fault type etc. in a configuration file

o Automated logging of fault injection runs

o Support for statistics collection and analysis

We have implemented TensorFI using the Python language
as TensorFlow primarily exposes a Python interface. Our

implementation consists of about 2500 lines of heavily com-
mented Python code, and is split into 5 modules as follows.

e TensorFI: The main module which interfaces with Ten-
sorFlow and intercepts the session.run method to inter-
pose TensorFI’s run method.

o ModifyGraph: This module is responsible for traversing
the TensorFlow graph and making a mirror image of it.

o InjectFault: This module is responsible for actually in-
jecting the faults into each operator of TensorFlow, using
custom injection functions for each operator.

o FIConfig: This is responsible for parsing a fault configu-
ration file, and configuring the initial fault injection state.
We support Yaml format for the configuration file.

« Statistics Collection: This module collects the global
statistics for the fault injection runs, and also logs the
detailed fault information for each run.

We have made TensorFI publicly available under a MIT
license on Github*. We have also added extensive documenta-
tion on the installation, use, and programming of TensorFI in
the repository. We will also publicly release all the benchmarks
and experimental setup used in this paper for generating the
results, if the paper is accepted.

IV. USAGE MODEL

In this section, we explain how a developer would use
TensorFI in a TensorFlow application. We use an example in
Figure 3 for illustration.

In the example, we consider a simple TensorFlow program
that models a Perceptron neural network. For brevity, we
omit the construction of the original TensorFlow graph. The
first line initializes TensorFI on the TensorFlow graph with
the current session. It also sets the debugging log level, and
initially disables fault injections (during the execution of the
graph). In the second line, we run the original TensorFlow
graph with a set of test images and store the result in
correctResult - since injections are disabled, there are no faults
injected in this run of the TensorFlow graph, and hence the
result corresponds to the golden run. We also make the new
graph constructed by TensorFI available for visualization using
Tensorboard, which is a graph visualization tool that comes
with TensorFlow.

After performing a number of initialiations, we then launch
fault injections using TensorFI in parallel using the plaunch
function. We set the total number of injections to 100, the
number of threads to 5 (for parallel injections), and collect
statistics for each thread in a list called myStats. We also
use the correctResult to compare with the result of each fault
injected run - this is done through the difffunc function, which
is declared as an anonymous function (i.e., lambda function)
in Python, and computes the difference between each fault
injected run’s result and the correctResult. Finally, we collate
the statistics collected by each thread using the collateStats
method, and print them to the console using gezStats.

“https://github.com/DependableSystemsLab/TensorFl/

Add the fault injection code here to instrument the graph

fi = ti.TensorFI(sess, “pPerceptron”, ev 50,

correctResult « sess.run(accuracy,
Y: mnist.test.labels})

print("Testing Accuracy:", correctResult)

diffFunc lambda x: math.fabs(x correctResult)

Make the log files in TensorBoard

logs_path « “./logs"

logkriter tf.summary.Filekriter(logs_path, sess.graph)

Initialize the number of threads

numThreads « S

Now start performing fault injections, and collect statistics
myStats = []

for i in range(nuaThreads):

myStats.append(ti.FIStat("Perceptron®))

Launch the fault injections in parallel

fi.pLaunch(mt - 100,

print(ti.collateStats(myStats).getStats())

« numThreads,

True)

«{X: mnist.test.images,

« difffunc, « myStats)

Fig. 3: Example of TensorFI usage in a simple ML application

Note that only the first line is mandatory for injecting faults
using TensorFlow, namely that of attaching TensorFI to the
TensorFlow graph. Everything else is either a convenience
function (e.g., launching fault injections in parallel), or is there
for ease of visualization and debugging. In fact, we could
have used sess.run to launch a single fault injection of the
TensorFlow graph after attaching TensorFI, exactly like how
the original TensorFlow graph is executed.

Figure 4 shows a sample configuration file for configuring
TensorFI in YAML format. This is loaded at application ini-
tialization, and is fixed for the entire fault injection campaign.
The configuration file consists of the following fields:

o Seed: The random seed used in the fault injection exper-

iments, for reproducibility purposes (this is optional).

o ScalarFaultType: The fault type to inject for scalar
values - acceptable types are None (no fault), Zero (zero
out the value), and Random (set it to a random value).

o TensorFaultType: The fault type to inject for tensor
values - - acceptable types are None (no fault), Zero (zero
out the tensor), and Random (fill it with random values).

o Ops: This is a list of the TensorFlow operators that need
to be injected, and the probability for injecting a fault
into each operator. Probability values can range from 0
(never inject) to 1 (always inject).

o SkipCount: This is an optional parameter for skipping
the first ‘n’ invocations of an operator before injection,
where ‘n’ can be any integer value, greater than O.

V. EXPERIMENTAL SETUP

We study the effects of different experimental parameters
on the error resilience of well-known ML algorithms using
TensorFI. The goal is to demonstrate that TensorFI is able to

This is a sample YAML file for fault injection configuration
The fields here should correspond to the Fields in fiConfig.py

Deterministic fault seed for the injections
Seed: 1000

Type of fault to be injected for Scalars and Tensors

Allowed values are {None, Rand, Zero}

ScalarFaultType: Rand
TensorFaultType: Rand

Add the list of Operations and their probabilities here

Each entry must be in a separate line ad start with a '-'

#
#
each line must represent an OP and it's probability value
See fiConfig.py for a full list of allowed OP values
#

NOTE: These should not be any tabs anywhere below

Ops:

- ALL = 1.0 # Chooses all operations

- ADD = 1.8

- DIV = ©.8 # This does not exist - and should be ignored (Test)

- SUB = -0.5 # This should raise an exception

How many times the set of above operations should be skipped before injection
SkipCount: 1

Fig. 4: Example configuration file in YAML format

perform fault injection studies with different parameters and
experimental configurations. We first describe the experimental
parameters and setup we consider, and then the metric(s) we
measure in the study.

A. Experimental Parameters

We investigate how different ML algorithms using a variety
of datasets react to errors under different fault injection rates.
« ML datasets: We make use of six publicly available
machine learning datasets and tasks from the University

of California at Irvine (UCI) Machine Learning reposi-
tory [3]. They are popular ML datasets across different

TABLE I: Details of the Input datasets

Name Domain Description Number Number of | Number of | Source URL
of Output | Instances Features
Classes
Adult Econometrics | Census income predic- 2 48842 14 https://archive.ics.uci.edu/ml/data-sets/adult
tion
Credit Financial Credit card application 2 690 15 https://archive.ics.uci.edu/ml/data-sets/adult
approval
Marketing | Business Prediction of direct mar- 2 45211 17 https://archive.ics.uci.edu/ml/data-sets/bank+marketing
keting campaigns
MNIST Image Anal- Handwritten digit recog- 10 13500 5000 https://archive.ics.uci.edu/ml/databases/mnist/
ysis nition problem
Survive Medical Prediction of patient sur- 2 306 3 https://archive.ics.uci.edu/ml/data-
vival sets/Haberman’s+Survival
Zoo General Animal recognition 7 101 17 http://archive.ics.uci.edu/ml/data-sets/zoo
Classifica-
tion

application domains. All six tasks can be modeled as
either regression or classification problems. However,
we choose to model them as classification problems in
order to compare their resilience. The details of the input
datasets are in Table 1. As seen, the numbers of output
classes (dependent variables) are 7 and 10 in Zoo and
MNIST respectively, and 2 in the rest of input datasets.
The number of features (independent variables) varies
from 3 to 5,000 across datasets. The number of instances
(data points) vary from 101 to 48,842 across datasets.

« ML Algorithm: We choose three machine learning al-
gorithms in this study, namely (1) k-nearest-neighbour
(kNN), (2) logistic regression (LR), and (3) neural net-
works (NN)°. We use the ML algorithms with the six
UCI datasets as classification problems.

o Fault Injection Rate: To study the effect of different fault
rates on the algorithms, we vary fault injection rates as
follows: 0.5%, 1%, 5% and 10%. These correspond to the
probabilities for injecting faults into TensorFlow graph
nodes.

B. Metrics

In each fault injection run, we train one of our models. We
first measure its prediction accuracy without any fault injection
— we call it the original accuracy (OA). We then measure the
prediction accuracy with fault injection using TensorFI (F'A).
We define the difference between OA and F'A as accuracy
drop. We repeat each fault injection run N times and compute
the average accuracy drop for the trained ML model.

VI. RESULTS

We present the results of the fault injection experiments in
this section. They are categorized by the parameter considered.

A. Machine Learning Models & Datasets

Figure 5 shows the fault injection results of different ML
models using different datasets under different error rates.
As we can see, different ML models experience different
average accuracy drops depending on which dataset is used.
For example, the average accuracy drop varies from 0.74% to
33.67% at the error rate of 10%. We observe that accuracy

5The neural network consists of 2 hidden layers.

drops are highly correlated with the number of the output
classes in the dataset. Our intuition is that the total amount
of output classes in the dataset limits the options of wrong
results in an erroneous execution.

As seen, kNN has very low average accuracy drops in the
datasets that have larger number of output classes. For exam-
ple, at 10% error rate, kNN experiences 33.67% and 27.73%
accuracy drops on average in MNIST and Zoo, and accuracy
drops of 2.59%, 0.74% and 1.98% in Survive, Marketing and
Adult. This is because MNIST and Zoo have 10 and 7 output
classes, the rest of the datasets have only 2 output classes
(Table I).

Among the algorithms, kNN has lower accuracy drops on
average across different datasets under faults. In general, it is
higher in LR and NN. NN is the worst algorithm in term of
accuracy drop, except in the datasets of Survive and MNIST. In
MNIST and Zoo which have larger number of output classes,
the average accuracy drop of LR is as close as that of kNN,
though both are lower than NN in most cases.

B. Error Rate

As expected, the average accuracy drop of the models grows
as the error rate increases regardless of which dataset is used.
We see the ranking of the average accuracy drop at different
error rates is fairly consistent in most of the cases. However,
the average accuracy drop of kNN grows more slowly than
those of the other two models. The investigation on why
certain models are more sensitive to the error rates are subjects
of our future work. On the other hand, the average accuracy
drop is almost flat in kNN with Credit and Marketing. Again,
we speculate this is due to the smaller amount of output classes
in these datasets, but more work is needed to better understand
the reasons for the accuracy drop.

VII. RELATED WORK

There has been a large body of work evaluating the error
resilience of ML applications through fault injections [2], [4].
However, their FI procedure is tied to the specific application
being studied, unlike TensorFI which aims to provide a generic
FI framework for ML applications.

Li et al. [8] use the tiny-CNN framework to construct their
fault injector. Reagen et al. [10] propose a generic framework

Adult Credit Marketing
20% 40% 40%
15% — 30% 30%
10% -~ 20% 20%
5% 109 /_/_// 1084 /
094 _;_'/_/_——————' 0% = 0%
6“In 6‘I=' @'F‘ ole tﬁ'l'n cgll"-" 6'|=‘ CE;‘IIP 65:1 lgm (5‘"“ gle
S SOOI S P
—KNN —IR NN —KkNN —ILR NN —KNN —LR NN

(a) Error Margin: +/-0.67% to +/-6.72%

(b) Error Margin: +/-0.00% to +/-9.17%

(c) Error Margin: +/-0.38% to +/-9.12%

MNIST Survive 00
60% 20% 60%
A0% 15% an®,
10%
20% j 5'}% 20% /
0% 0% = 0%
& & s g S OB U L
& S SN PO R PN
—kMNN —LR MM —_—k N —R MM —kNN —ILR MM

(d) Error Margin: +/-2.76% to +/-9.78%

(e) Error Margin: +/-0.16% to +/-7.08%

(f) Error Margin: +/-2.47% to +/-9.75%

Fig. 5: Accuracy Drops for Different Error Rates, Machine Learning Algorithms and Datasets (Y-axis: Average Accuracy Drop;
X-axis: Error Rate; Error margins are measured at 95% confidence interval)

for quantifying the resilience of ML applications. However,
they focus on only deep neural networks (DNNs) and hardware
faults, and hence these techniques cannot be applied to other
types of ML algorithms or faults. In contrast, TensorFI targets
a broad selection of ML algorithms, and can be used to study
both software and hardware faults.

VIII. CONCLUSION

In this paper, we built TensorFI, a fault injection framework
for TensorFlow for evaluating the error resilience of ML
applications. TensorFI is flexible, easy to use, and portable.
We use TensorFI to explore the effects of different parameters
and algorithms on the resilience of ML applications.

Based on our results, we find that the error resilience of
ML applications can be very different under different algo-
rithms and input datasets. Hence, ML applications need to be
evaluated on a per application basis before their deployment,
in order to benchmark their operational resilience. Further,
we find that the error resilience (i.e., accuracy drops) of
ML applications depends on the amount of output classes
available in the input dataset used. This should be taken into
consideration when designing resilient ML applications.

In the future, we plan to explore how different structures and
parameters of the ML models may affect their error resilience.
We also plan to expand our study to include different types of
faults incurred by different ML operators.

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

(10]

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: a system for large-scale machine
learning. In OSDI, volume 16, pages 265-283, 2016.

Cesare Alippi, Vincenzo Piuri, and Mariagiovanna Sami. Sensitivity
to errors in artificial neural networks: A behavioral approach. [EEE
Transactions on Circuits and Systems, 42(6).

A. Asuncion and D. Newman. UCI machine learning repository, 2007.
Simone Bettola and Vincenzo Piuri. High performance fault-tolerant
digital neural networks. IEEE transactions on computers, (3), 1998.
Ravishankar Iyer, Dong Tang, et al. Experimental analysis of computer
system dependability. 1993.

Nathan P Kropp, Philip] Koopman, and Daniel P Siewiorek. Automated
robustness testing of off-the-shelf software components. In Fault-
Tolerant Computing, 1998. Digest of Papers. Twenty-Eighth Annual
International Symposium on, pages 230-239, 1998.

Anna Lanzaro, Roberto Natella, Stefan Winter, Domenico Cotroneo, and
Neeraj Suri. An empirical study of injected versus actual interface errors.
In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, 2014.

Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai,
Karthik Pattabiraman, Joel Emer, and Stephen W Keckler. Understand-
ing error propagation in deep learning neural network (dnn) accelerators
and applications. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2017.
Qining Lu, Mostafa Farahani, Jiesheng Wei, Anna Thomas, and Karthik
Pattabiraman. LIfi: an intermediate code-level fault injection tool for
hardware faults. In Software Quality, Reliability and Security (QRS),
2015 IEEE International Conference on, 2015.

Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough,
Sae Kyu Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei.
Ares: a framework for quantifying the resilience of deep neural net-
works. In 55th Annual Design Automation Conference, 2018.

