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Abstract—Fault injection (FI) is a commonly used experimental
technique to evaluate the resilience of software techniques for
tolerating hardware faults. Software-implemented FI can be
performed at different levels of abstraction in the system stack;
FI performed at the compiler’s intermediate representation (IR)
level has the advantage that it is closer to the program being
evaluated and is hence easier to derive insights from for the design
of software fault-tolerance mechanisms. Unfortunately, it is not
clear how accurate IR-level FI is vis-a-vis FI performed at the
assembly code level, and prior work has presented contradictory
findings. In this paper, we perform an analysis of said prior work,
find an inconsistency in the FI methodology used in one study,
and show that it results in a flawed comparison between IR-
level and assembly-level FI. We further confirm this finding by
performing a comprehensive evaluation of the accuracy of IR-
level FI across a range of benchmark programs and compiler
optimization levels. Our results show that IR-level FI is as
accurate as assembly-level FI for silent data corruptions (SDCs)
across different benchmarks and optimization levels.

Index Terms—Resilience, fault injection, LLVM, PIN, compar-
ison

I. INTRODUCTION

Hardware faults are becoming more common in commodity
computer systems due to the effects of process scaling and
manufacturing variations [1]–[3]. This has led to a concomitant
increase in the rates of hardware faults that are exposed
to the software running on these systems. This is because
techniques to mask all hardware faults from software, such
as full duplication in hardware, consume too much energy,
making their use challenging in commodity systems. There-
fore, researchers have proposed various software techniques
to detect and recover from hardware faults exposed to the
software, with low performance and energy overheads [4]–[6].

An important consideration for deploying any software
technique is a quantitative evaluation of its coverage, i.e., the
technique’s ability to detect (or recover from) hardware faults.
When proposing such a technique, researchers typically use
fault injection tools to evaluate its coverage. Fault injection
(FI) is the process of systematically introducing errors1 into
the program and observing the outcome. Because the injection
space is very large, typical FI tools use Monte Carlo simulation
to sample the space of potential faults, and obtain a statistical
estimate of the techniques’ coverage.

A key design consideration in a FI tool is the level of
abstraction at which it operates. The higher the level of

1We refer primarily to Software Implemented Fault Injection (SWiFI)
techniques when we say FI in this paper.

abstraction, the easier it is to draw meaningful insights from
the tool, as the findings can be directly translated to the
design of software mechanisms. However, raising the level
of abstraction may come with a cost in the accuracy of the
FI process, as hardware faults occur in the lower levels of
the system stack, and modeling them at the higher levels can
be challenging. To alleviate this difficulty, researchers have
proposed implementing FI tools at the intermediate represen-
tation (IR) of modern compilers such as LLVM/Clang [7], [8].
The main advantages of this approach are: (1) many software
protection techniques are implemented at the IR level, and it is
straightforward to use the results of the evaluation to improve
the coverage of these techniques, and (2) IR-level injections
typically abstract the effects of the machine architecture such
as instruction encodings and register file sizes, thereby making
the results applicable to a wide variety of hardware platforms.
Further, the IR of LLVM includes IR-level program type
information, which is useful in guiding the software techniques
towards more vulnerable parts of the program. Consequently, a
wide range of software fault-tolerance techniques use IR-level
injections to validate their results [9]–[11].

However, there has been little work on validating the results
of IR-level FI with respect to FI performed at the assembly
code level, which is arguably more accurate as it is closer
to the hardware. This is concerning, as many of the insights
used in software fault-tolerance techniques are derived from
IR-level fault injections, and inaccuracies in the latter call
into question the efficacy of these techniques. Further, the
dominant platform for IR-level studies, LLVM, has significant
differences with x86 assembly language on which many of
these studies are based, so it is not clear how well the results
of FI performed at the IR-level match those of FI performed
at the assembly language level. The only two previous studies
that have examined this question [12], [13] (to the best of our
knowledge), come to conflicting conclusions, while claiming
to use the same FI tools and similar experimental setups.

In this paper, we provide an analysis of prior work [12], [13]
and present the reasons for their conflicting findings. Further,
we provide an extensive comparison study to re-examine the
accuracy of the statistical estimates of coverage derived from
FI studies at the IR level with respect to FI performed at
the assembly level. Specifically, we compare the results of
FI performed at the LLVM IR level with those at the x86
assembly level, as these are the dominant platforms used by
prior work in this area. We conduct FI experiments on a



set of 25 benchmark programs, including those used in the
aforementioned prior studies [12], [13], as well as several other
benchmarks not used in those studies. Finally, we consider a
wide range of compiler optimization levels in our study, unlike
prior studies which considered only one level.

The main contribution of our work is to systematically
and painstakingly gather benchmarks and experimental con-
figurations used in prior work, and to perform a detailed
comparison between them in order to understand the reason for
their conflicting findings. This is challenging as many details
are sparse in the prior work, and it is unclear whether the
conflicting results are due to differences in their experimental
setups, benchmarks, or compiler optimization decisions. To
the best of our knowledge, we are the first to reconcile
contradictory studies about IR-level FI and assembly-level FI,
design experiments to validate the accuracy of FI tools that
are in question, under different experimental configurations.

Our main findings are as follows:
• We find that an inconsistent fault model (specifically the

bit-sampling model) used in Georgakoudis et al. [13] is the
reason for the contradictory results found in Wei et al. [12]
(Section IV).

• IR-level FI is as accurate as assembly-level FI for emulating
hardware errors that cause SDCs, as well as in measuring
the relative ranking of program SDC probabilities, at all
optimization levels (Section VI-A).

• For crash-causing errors, IR-level FI is only comparable to
assembly-level FI at the lowest optimization level, -O0, but
not at higher optimization levels, -O1 to -O3, suggesting
that IR-level FI becomes less accurate with respect to
crashes when (more) compiler optimizations are applied
(Section VI-B).
Our findings thus confirm the results of prior work [12],

but go well beyond it in exploring the limits and implications
of the results, across a larger suite of benchmarks and con-
figurations. Further, our study highlights common pitfalls in
experimental comparisons of FI tools, beyond the specifics of
the tools studied. Finally, our results enable software develop-
ers to choose when to use IR-level FI tools for evaluation of
error resilience.

II. BACKGROUND

In this section, we provide some relevant definitions and
describe the general notions of code compilation and fault
injection as they pertain to this study.

A. Definitions

• Intermediate representation (IR): A code representation
of a program typically used internally by a compiler (e.g.,
LLVM) between the source code and target language (e.g.,
assembly), independent of both the source language and
target architecture.

• Compiler optimization: A code transformation applied by
the compiler with the goal of improving the program in some
way (e.g., decrease runtime, reduce memory accesses, etc.).

Many mainstream compilers will often package multiple in-
dividual optimizations together in one pass for convenience
(e.g., the -O# flags used in LLVM and GCC).

• Fault: A defect in the computer system that may or may
not end up being read by the program.

• Error: A fault that has been activated (i.e., read by the
program) and has resulted in some deviation of system
behaviour from a fault-free run. This may or may not be
observable as the error may only affect inconsequential sys-
tem states, or be corrected by fault-tolerance mechanisms.

• Benign error: An error that does not cause an observable
deviation from the expected system behaviour (i.e., the error
was either masked or handled by the program).

• Failure: An error has resulted in an observable deviation
from expected system behaviour (e.g., crash, SDC).

• Silent data corruption (SDC): A failure that causes the
program to produce an incorrect output, but with no indica-
tion that the failure has occurred.

• Crash: A failure that causes an exception, and as a result
the program terminates before completing its execution.

• Program SDC/crash probability: The probability of an
error causing an SDC/crash for a given program and input
(other work uses a similar definition [12], [14]–[19]).

• Error Resilience: The error resilience of an application is
its ability to withstand hardware faults if they occur, without
leading to an SDC or crash.

B. Code Compilation

In the context of this paper, we consider the compilation
of a program in the structure shown in Figure 1; this is the
structure that is pertinent to the LLVM/Clang compiler [20].
The front end processes the program’s source code (e.g.,
C/C++ code) and generates an intermediate representation (IR)
of the program, while the middle and back ends perform
platform-independent and platform-specific optimizations on
the code, respectively.

Fig. 1: LLVM/Clang code compilation flow

C. Fault Injection (FI)

Fault injection (FI) is a software testing technique used to
evaluate a program’s error coverage. A typical FI experiment
will consist of many individual FI runs (typically hundreds),
each run being a single execution of the program with an error
introduced. Once an error is introduced in the program, it can
result in a failure, which is either an SDC or a crash2, or a
benign output. Once all FI runs have completed, we can then
obtain a statistical estimate of the SDC/crash probabilities.

2In this paper, we consider program hangs as part of the crash category.



In this paper, we are interested in emulating transient
hardware errors (i.e., soft errors) caused by cosmic ray or alpha
particle strikes affecting flip flops and logic elements. These
errors typically manifest in the form of bit-flips, and thus in
our FI experiements a single bit-flip is injected per FI run. We
consider errors that occur in the processor’s computation units,
e.g., arithmetic operations and address computations for load
and store instructions. However, errors in memory components
such as caches are not considered, since these components
are usually protected at the architectural level using ECC or
parity. We do not consider errors in the control logic of the
processor as this is a small portion of the processor area, nor
do we consider errors in the instruction encoding, as these
can be handled through control-flow checking techniques [21].
Related work has made similar assumptions [9], [22]–[25].

1) Instruction sampling: In each FI run, a dynamic in-
struction needs to be determined as the FI target. Since soft
errors occur randomly, we choose a dynamic instruction at
random among the total executed sequence of instructions
in the program with a uniform distribution. Thus, if the
program has N total dynamic instructions in the execution,
each instruction has 1/N probability to be sampled in each FI
run. This sampling methodology makes an implicit assumption
that each instruction takes approximately the same amount
of time to execute. This is because we are performing the
injection at the program level, where we do not have detailed
information about the microarchitectural or cache state of the
instruction. This is a common assumption in program-level FI
techniques.

2) Bit sampling: Once a dynamic instruction is chosen as
the FI target, a single bit within the destination register of that
instruction needs to be selected as the target of injection. As in
the instruction sampling, a register bit is randomly selected to
be the target. Since we are interested in the program behaviour
given that an error has occurred (as our goal is to measure
error resilience), we only consider activated faults (i.e., errors).
Thus, we only sample from bits in the destination register that
are used by the program. For example, if an instruction writes
a 64-bit value to a 128-bit destination register, only the 64 bits
corresponding to the written value are sampled from, with each
bit having a probability of 1/64 to be sampled.

3) Assembly-level FI: FI can be conducted at different
levels of abstraction, including at the IR and assembly code
levels. Assembly-level FI tools utilize dynamic binary instru-
mentation (e.g., PIN, DynamoRIO and Valgrind) to access the
assembly code for FI. They are considered to be accurate for
studying hardware faults, such as soft errors, since assembly
code is close to hardware [13], [26]. Common assembly-level
fault injectors include BIFIT [27], PINFI [12], FITgrind [28]
and others [29], [30]. The main drawbacks of assembly-level
FI are that (1) it has limited portability because it operates at
the platform-specific assembly code level, and (2) it is difficult
to obtain insights for software design, since IR-level code
abstractions (e.g., loops and data structures) are not available at
the assembly level. Therefore, it is difficult to map FI locations
back to the source code for further investigation. In this paper,

we use PINFI to implement assembly-level FI experiments.
4) IR-level FI: IR-level FI uses compiler techniques to

inject faults into the compiler’s intermediate representation
(IR) code. Popular IR-level fault injectors are LLFI [8],
KULFI [25], VULFI [31], and FlipIt [7]. In addition to its high
platform portability, the IR level preserves the information
of the program source code. Hence, it is easier to map the
FI locations back to the source code. It also allows the
injection of faults into specific code structures (e.g., loops and
data structures). Moreover, the IR level is where significant
program analysis tools are available. Therefore, IR-level FI
makes the post-analysis much easier compared to assembly-
level FI. However, the main concern is accuracy, as there
are various back end optimizations performed on the code
that are not available to the IR. For example, since the IR
is platform-independent and assumes an infinite number of
available registers, register allocation is not performed until
the back end compilation stage, and hence there can be a
mismatch between the number of memory operations in the IR
and assembly code. In this paper, we use LLFI to implement
IR-level FI experiments.

III. RELATED WORK

There is a large body of work on using fault injection to
measure the error resilience of computer programs, using both
hardware and software techniques. Initially, most studies that
investigated error resilience to transient hardware errors relied
on hardware FI, which involves injecting faults through the
hardware layer either with or without physical contact [32].

On the other hand, the use of software techniques to emulate
transient hardware errors has seen increased interest over the
last decade, as it does not require expensive hardware and is
more flexible [33]. It is important to note however that, while
software techniques offer improvements in cost, flexibility, and
portability, it is often difficult or impossible to inject faults into
locations that are inaccessible to software [33]. For example,
a paper by Cho et al. [34] found that assembly-level FI can
only capture a subset of system-level behaviour caused by soft
errors. However, our focus (and specifically the focus of the
two prior studies compared in Section IV) is on the subset of
errors that make their way to the application, and can therefore
be modeled using higher-level FI techniques.

IR-level FI techniques that operate at the compiler level have
become especially popular in recent years, as they are portable
and allow injections into IR-level source code abstractions.
Many studies have adopted such techniques to study transient
hardware faults that cause SDCs. For example, Thomas and
Pattabiraman used LLFI to evaluate their technique for de-
tecting SDC-causing errors [9]. Calhoun et al. used FlipIt [7],
an LLVM-based FI tool, to investigate how SDCs propagate
through a specific HPC computation kernel [10]. Chen et al.
introduced LADR, an application-level SDC detector that was
evaluated using IR-level FI experiments [35]. Finally, Li et al.
used LLFI to estimate program SDC probabilities [11]. Studies
such as these use IR-level FI under the assumption that it is
almost as accurate as assembly-level FI in measuring SDCs.



To the best of our knowledge, only two prior studies directly
compare the accuracy of IR-level FI with that of assembly-
level FI. Wei et al. compare the accuracy of IR-level FI with
that of assembly-level FI for emulating hardware errors. To
represent IR-level FI, they introduce LLFI, which performs
FI at the LLVM compiler’s IR level. To represent assembly-
level FI, they introduce PINFI, which performs FI at the x86
assembly level. They conduct FI experiments on a set of
standard benchmarks using both LLFI and PINFI, and compare
the results. Based on the results of the experiments, the authors
claim that “LLFI is accurate for emulating hardware errors
that cause Silent Data Corruption (SDCs), but not crashes”.

A more recent paper by Georgakoudis et al. [13] investigates
the accuracy of IR-level FI with respect to assembly-level
FI for emulating hardware errors. The paper claims that IR-
level FI is significantly less accurate than assembly-level FI,
and that the inaccuracies are due to assembly-level dynamic
binary instructions and back end compiler optimizations that
are not available at the IR level. Further, they find that such
inaccuracies manifest for both SDCs and crashes. To address
the limitations of IR-level FI, they present REFINE, a fault
injector that performs IR-level FI at the compiler back end, as
opposed to at the IR level. The paper evaluates this tool by
comparing FI experiment results using REFINE, LLFI, and
PINFI, and comes to the conclusion that while REFINE is
accurate when compared to PINFI, LLFI is not.

By looking at the previous two papers, it is unclear to a
reader whether FI performed at the IR level is as accurate as
assembly-level injection for evaluating SDC-causing hardware
errors. Wei et al. [12] claim that LLFI is accurate for emulating
SDC-causing hardware errors, while Georgakoudis et al. [13]
claim otherwise. This contradiction is peculiar considering that
both papers claim to use the same FI tools (i.e., LLFI and
PINFI) and similar hardware platforms (i.e., x86 processors).
In this paper, we perform an analysis of these two studies to
find the root cause of the inconsistent findings. To confirm our
findings, we present an ‘end-to-end’ comparison between IR-
level and assembly-level FI, expanding on those done in prior
work by (1) using a much larger set of benchmarks (larger than
both studies combined), (2) testing across four different levels
of optimization, and (3) employing a more rigorous statistical
analysis of the results.

IV. ANALYSIS OF INCONSISTENCIES IN PRIOR WORK

As mentioned in Section III, there are two studies that
come to contradictory conclusions in their work regarding
the accuracy of IR-level FI. While Wei et al. [12] claim that
IR-level FI is as accurate as assembly-level FI for emulating
SDC-causing hardware errors, Georgakoudis et al. [13] claim
otherwise. Both studies claim to use LLFI and PINFI to
conduct their respective FI experiments. The inconsistency in
their results calls into question the accuracy of IR-level FI. To
address this discrepancy, we conduct our own investigation on
the two studies by attempting to replicate their experiments.

Our investigation consists of the following three steps: (1)
We first attempt to reproduce the results in Georgakoudis

et al. [13], using the same experimental setup that they
used. (2) We then examine any differences between the two
studies to isolate potential causes for the contradictory results,
and develop a hypothesis. (3) Finally, we design our own
experiments to test the hypothesis and draw our conclusions.

Step 1: Reproduction: In this step, we conduct the same
FI experiments presented in Georgakoudis et al. [13], using
the same set of benchmarks and program inputs used in their
experiments. In their study, LLFI3 was used to represent IR-
level FI, without any modification, and hence we do the same.
To represent assembly-level FI, they use PINFI. However, the
paper mentions that PINFI is slightly modified to ”render it
compatible with the recent version of the Intel PIN framework
and for faithfully implementing the fault model” [13]. This
modified version of PINFI was made publicly available by
the research group4. The use of a modified version of PINFI
is a notable difference from Wei et al. [12], which uses the
version hosted on the official PINFI repository5.

Because the two studies use different versions of PINFI,
we perform our experiments using both versions to observe
any effects the modifications may have on the results. To
differentiate between the two versions, we label the official
version of PINFI used by Wei et al. as PINFI-v1. We label
the modified version used by Georgakoudis et al. as PINFI-v2.

In our experiments, we adopt the original FI methodologies
that are used in both studies. We conduct a total of 1000
FI runs for each benchmark in the experiment, and only one
optimization level (-O3) is used to compile the benchmarks,
as is done in the studies. We conduct the FI experiments on
12 benchmarks that are used by Georgakoudis et al., using
the same program inputs they used [13]. Figure 2 shows the
SDC probabilities obtained from our experiments using LLFI,
PINFI-v1, and PINFI-v2. Results obtained using PINFI-v3 are
also included, which we will introduce in Step 3.

Step 2: Hypothesis: From these results, we observe that
the SDC probabilities measured by LLFI are similar to those
measured by PINFI-v1. On the other hand, the SDC prob-
abilities measured by LLFI are significantly different from
those of PINFI-v2. Further, the results obtained using PINFI-
v1 and PINFI-v2 do not match (the latter are almost half the
value of the former), suggesting that modifications in the latter
significantly affect the results of the experiments; we postulate
that these modifications are the cause for the inconsistencies.

Next, we compare the source code for both PINFI-v1 and
PINFI-v2, and isolate any differences that could potentially
lead to different results. We find that one of the code modifi-
cations in PINFI-v2 alters how PINFI determines the range of
bits in the sampled instructions that are considered as FI sites.
In PINFI-v1, only the range of bits in the chosen instruction
that are used by the program are considered. This is consistent
with the methodology used in LLFI. On the other hand,
PINFI-v2 considers the entire range of bits in the instruction’s

3https://github.com/DependableSystemsLab/LLFI
4https://github.com/ggeorgakoudis/REFINE/tree/master/pinfi
5https://github.com/DependableSystemsLab/pinfi



Fig. 2: Program SDC probabilities (y-axis) measured by LLFI and PINFI versions plotted for each benchmark (x-axis).

destination register, regardless of whether the entire range of
bits is actually used by the program. In other words, PINFI-v1
limits its bit selection to only activated faults, while PINFI-v2
considers both activated and unactivated faults.

Fig. 3: The bits of an XMM register that are used in x86 floating-
point instructions

To illustrate this concept, we consider x86 scalar double-
precision floating-point instructions (e.g., addsd, mulsd).
x86 floating-point instructions typically use XMM registers as
the destination register, which are 128-bit registers. As such,
one could consider all 128-bits in the destination register as
potential fault injection sites. However, these instructions per-
form operations using double-precision floating-point values,
and hence only the lower 64 bits are used for computation,
while the upper 64 bits are unused and irrelevant to the
program6. This is illustrated in Figure 3. Thus, if a fault is
injected into the upper 64 bits it is very likely that it will result
in a benign error, regardless of the inherent error-resilience of
the program. While PINFI-v1 considers such cases to ensure
that all faults are activated [12], PINFI-v2 does not.

In the case of floating-point instructions, this difference in
bit-sampling models would likely lead to a difference in the
measured SDC probabilities (as floating-point instructions are
typically only used in the program’s data flow). Other cases
where there is a difference in the bit-sampling model could
potentially lead to differences in measured crash probabilities,
such as cases involving memory access instructions.

We therefore hypothesize that the modification of how the
injected bit is selected is the reason for the inconsistencies
between Wei et al. [12] and Georgakoudis et al. [13].

Step 3: Support for the hypothesis: To test our hypothesis,
we create our own modified version of PINFI, which we label
PINFI-v3. PINFI-v3 is a fork of the PINFI-v1 code, with a
modification to the part of the code that is responsible for bit
selection, to match that of PINFI-v2. We then run the same FI

6This is the case for scalar floating-point instructions; packed floating-point
instructions (e.g., addpd, mulpd) will often store two aligned values thus
utilizing the upper 64 bits as well.

experiments with PINFI-v3, the results of which are shown in
Figure 2. The results show that the SDC probabilities obtained
using PINFI-v3 closely match those obtained using PINFI-v2,
indicating that our hypothesis is valid.

Discussion of findings: In summary, the modification made
by Georgakoudis et al. [13] to the bit-sampling model used
in PINFI caused a disparity in the types of faults that were
injected by the two tools (i.e., only activated faults vs. unac-
tivated faults), which we found significantly alters the SDC
probability measurements made by PINFI. Since the modified
PINFI bit selection method used in Georgakoudis et al. [13] is
inconsistent with the bit selection method used by LLFI, the
paper’s comparison between LLFI and PINFI is invalid.

Note that the low-level mechanisms that allowed for this
change to the bit sampling model are fundamentally not
available at the IR level; the intricacies related to register size
and bit usage are machine-specific. This is a key advantage
of IR-level FI, i.e., one does not need to worry about these
low-level issues when designing FI experiments at the IR level.

As was shown in our investigation, using a different bit-
sampling model can affect the results of a FI experiment very
significantly. We are not claiming one model is superior to
the other, as it depends on the goal of the study. For example,
for error resilience measurements, activated faults are what
matter [11], while for raw FIT rate measurements, all faults
may matter regardless of activation. However, if the goal is
for an apples-to-apples comparison, e.g., comparing the SDC
measurements between LLFI and PINFI, one must keep the
FI configurations consistent in both FI experiments. Unfortu-
nately, Georgakoudis et al. [13] investigated the accuracy of
LLFI by applying a significantly different bit-sampling model
in PINFI, and hence their results are not valid in this respect.

V. END-TO-END COMPARISON: EXPERIMENTAL SETUP

In Section IV, we showed that the conclusions drawn by
Georgakoudis et al. [13] are based on a flawed FI comparison
study. We now expand on this finding by conducting an
extensive set of FI experiments that confirm the conclusions
drawn by Wei et al. [12]. In this section, we first describe the
benchmarks, FI tools, and metrics for our experiments.

A. Benchmarks

In our experiments, we choose a total of 25 different
benchmarks from 8 publicly available benchmark suites. Their
details are shown in Table I. We choose these benchmarks
because they are (1) from a broad selection of application



TABLE I: Details of Benchmarks

Benchmark Suite Input

blackscholes PARSEC 1 in_16K.txt output.txt
fluidanimate PARSEC 1 10 in_5K.fluid out.fluid
lud Rodinia -v -i 512.dat
backprop Rodinia 65536
kmeans Rodinia -i 819200.txt -k 1
bfs Rodinia 1 graph1MW_6.txt
bzip2† SPEC -1kvv image.jpg
libquantum† SPEC 33 5
hmmer† SPEC --seed 10000000 ig.hmm
mcf† SPEC inp.in
ocean† SPLASH-2 -p1 -o
raytrace† SPLASH-2 -p1 -m64 inputs/car.env
CoMD‡ Mantevo -x 10 -y 10 -z 10 -N 50
HPCCG‡ Mantevo 64 64 64
XSBench‡ CESAR -s small
BT‡ NPB S
CG‡ NPB S
DC‡ NPB 10000000 ADC.par
EP‡ NPB W
FT‡ NPB W
IS NPB S
LU‡ NPB W
MG NPB S
SP‡ NPB W
UA‡ NPB W
†Benchmark used in Wei et al. [12]
‡Benchmark used in Georgakoudis et al. [13]

domains, (2) open source and compatible with both fault
injectors, and (3) used in the two related FI studies as indicated
in Table I [12], [13]. The benchmarks represent a large range
of computational complexity and execution times, however we
keep the size of the inputs small when possible to avoid overly
long FI experimental times.

We include all of the benchmarks used in Wei et al. [12],
and all but three of the benchmarks used in Georgakoudis
et al. [13]; AMG2013, lulesh7, and miniFE are not used
because they are either (1) incompatible with the platform
used for our experiments, or (2) incompatible with LLFI when
compiled using some of the pertinent optimization levels. We
also include several benchmarks not used in the two prior
studies. We use the default inputs included in the benchmark
suites, or example inputs where the former are not available.

B. Fault Injection Tools

To be consistent with the tools used in prior studies [12],
[13], we choose LLFI and PINFI for representing IR-level and
assembly-level FI respectively. LLFI operates at the LLVM
compiler’s IR level. It takes the compiled LLVM IR of
the program as input and performs both the profiling pass
and the FI runs at the IR level. PINFI operates at the x86
assembly code level. It is built as a tool for Intel PIN [36], an
assembly-level instrumentation tool for x86 processors. PINFI
operates in a similar fashion to LLFI, with 2 differences, (1)
instrumenting the program at runtime (rather than compile-
time), and (2) taking a program’s executable file as the input
(rather than its source code).

7lulesh was in fact used as one of the benchmarks for the analysis of prior
work in Section IV; this is because the one optimization level that was used
to compile the benchmark for those FI experiments (-O3) does not cause the
same LLFI compatibility issues as the other optimizations.

C. Platforms and Compilations

All experiments are conducted on 64-bit Intel x86 machines.
We use LLVM/Clang 3.4 to compile from the benchmarks’
C/C++ source code to their LLVM IR files and executables.
PINFI uses Intel PIN 3.5 to access the compiled machine code
of the benchmarks.

D. Measurement of Accuracy

We first show a graphical overview of the results for each
benchmark to visually compare the outcomes of FI execution
for each fault injector. We then apply three types of statistical
tests to quantify the difference between IR-level and assembly-
level FI: (1) least squares regression analysis; (2) paired
sample t-test; and (3) Spearman’s rank correlation test.

1) Least squares regression: The first statistical analysis
we apply is a least squares regression model [37]. The
analysis is performed for each optimization level across the
set of benchmarks. The method of least squares is a standard
approach in regression analysis to obtain the line of best fit
for a set of data points. The reason for using this analysis
is to measure the linear relationship between the SDC/crash
probabilities obtained using LLFI and those using PINFI. The
model plots the PINFI probabilities against those of LLFI.

In the ideal situation where LLFI produces the exact same
measurements as PINFI, these data points would form a
straight line with a slope of 1 and y-intercept of 0 (i.e.,
having a linear equation of y = x). For example, if for a
given benchmark and optimization level the SDC probability
measurements obtained from LLFI and PINFI fall on the line
y = x, it indicates that LLFI and PINFI measure the same
SDC probability (for that benchmark and optimization level).
Thus, the linear equation and the corresponding R2 value
obtained from this analysis provide an indication of how close
the data points are to the ideal situation (i.e., higher R2 values
are better). We estimate the slope and y-intercept parameters
with the 95% confidence intervals.

2) Paired sample t-test: We use a paired sample t-test8 to
compare the SDC and crash probability measurements made
by LLFI and PINFI. Our null hypothesis states that the mean
difference between the probabilities measured using LLFI and
those measured using PINFI is zero. In other words, if the
null hypothesis were to hold true, all observable differences
would be explained by random variation, thus implying that
the measurements made by LLFI and PINFI are not signifi-
cantly different. We use a two-tailed alternative hypothesis that
assumes the mean difference is not equal to zero, which would
imply that there is non-random variation in the measurements.

We perform the paired t-test on the set of benchmarks at
each individual optimization level, so that we can compare
the significance of the results at each level. The p-values
calculated using the test give us the probability of observing
the experiment results under the null hypothesis (i.e., a high p-
value indicates increased support for the null hypothesis). We
use a significance level of 0.05, which corresponds to a 95%

8Our dataset meets all t-test assumptions as we examined.



confidence level. If the p-value is less than 0.05, we reject
the null hypothesis and conclude that the measurements made
using LLFI and PINFI are (statistically) significantly different.
Otherwise, we do not reject the null hypothesis.

3) Spearman’s rank correlation test: Program SDC and
crash probabilities are application-specific. This is because
different programs have different characteristics of propagating
SDC- and crash-causing errors. Often developers need to use
FI to find which applications produce higher SDC probabilities
than others to make design choices among them (these include
different versions of the application protected with different
techniques). Therefore, a fault injection technique needs to be
sensitive to the relative rankings of the SDC probabilities.

To examine the sensitivity of the measurement by both
injectors, we conduct a Spearman’s rank correlation test. This
test is used to assess whether the relationship between two
variables is monotonic, i.e., if one value increases or decreases,
the other does the same. A Spearman’s rank correlation
coefficient close to 1 indicates a strong monotonic relationship.
In our case, this would mean that LLFI and PINFI are both
equally sensitive in distinguishing the ranking of program
SDC/crash probabilities. Note that the Spearman’s rank cor-
relation test does not assume normality of the measurement
errors unlike the above two tests, and is hence more robust to
variations from the normal distribution.

VI. END-TO-END COMPARISON: RESULTS

In this section, we present our experimental results based on
fault injection experiments conducted on the 25 benchmarks
listed in Table I. We compile each benchmark with the four
optimization levels respectively (-O0, -O1, -O2, and -O3). For
each benchmark at each optimization level, we perform 1000
fault injections using both LLFI and PINFI respectively to
obtain our SDC, crash, and benign probabilities; this gives us
a sufficiently large sample size to estimate the program SDC
and crash probabilities with tight error bars calculated with a
95% confidence interval. Thus, we perform a total of 100, 000
fault injection runs (= 25 * 4 * 1000) for each tool.

A. Program SDC Probabilities

Figure 4 shows the SDC probabilities obtained using LLFI
and PINFI for each benchmark. We present the numerical
results using bar graphs with error bars for visual comparison.
The error bars represent the 95% confidence interval for 1000
runs. The least squares regression analysis results are shown
in Table II, while the t-test and Spearman’s rank test results
are shown in Table III.

Figure 4 shows that the SDC probabilities measured by
PINFI and LLFI are close, with the error bars overlapping
between the two for the majority of the benchmarks. This
observation is consistent across all four optimization levels.
The mean absolute errors between the SDC probability mea-
surements from LLFI and PINFI are 2.192%, 4.988%, 4.796%,
and 4.428% for -O0 to -O3, respectively, indicating that for
most benchmarks, the SDC probabilities measured using LLFI
are almost indistinguishable from those measured by PINFI.

Further, the results from the least squares linear regression
analysis (Table II) show that the data follows a strong linear
relationship. At every optimization level, the slope, m, is close
to 1 and the y-intercept, b, is almost 0, with little variance.
Furthermore, the values of 1 and 0 are within the confidence
ranges for the slope and intercept values at each optimization
level. The R2 values are also high at each optimization level,
with three out of four values above 0.9. This shows that the
data fits closely with the line given by the slope and y-intercept
values. This regression analysis is illustrated in Figure 5,
which shows how closely the data points fit the regression
line for the SDC probabilities for each optimization. We can
therefore conclude that, at all four optimization levels, the SDC
probabilities obtained using LLFI and those obtained using
PINFI follow a strong linear relationship.

Table III shows the p-values obtained from the paired
sample t-test performed on the SDC probabilities measured
using LLFI and PINFI. As all of the p-values are well
above 0.05, the results from this test are not sufficient to
reject the null hypothesis. Therefore, there is no evidence that
suggests the SDC probabilities measured using the two tools
are significantly different from each other.

Finally, the results from the Spearman’s rank test (Table III)
indicate a strong monotonic relationship between the SDC
probabilities measured using LLFI and those from PINFI.
The correlation coefficients measured are all above 0.9 and
close to 1. We therefore conclude that LLFI is as sensitive
to distinguishing the ranking of individual program SDC
probabilities as PINFI.

TABLE II: Least Squares Regression Analysis Results

slope, m y-intercept, b R2

SDC -O0 0.9948± 0.0689 0.0060± 0.0188 0.9732
-O1 1.1197± 0.1426 −0.0177± 0.0445 0.9147
-O2 1.0381± 0.1463 −0.0024± 0.0495 0.8975
-O3 1.0472± 0.1431 −0.0084± 0.0485 0.9030

Crash -O0 0.8129± 0.2264 0.0398± 0.0956 0.6915
-O1 0.5216± 0.3562 0.0842± 0.1179 0.2716
-O2 0.5191± 0.2565 0.0619± 0.0823 0.4160
-O3 0.4867± 0.2436 0.0637± 0.0796 0.4099

TABLE III: Statistical Test Results

-O0 -O1 -O2 -O3

p-value† SDC 0.4210 0.3920 0.6208 0.7834
Crash 0.0217 0.0215 0.0031 0.0016

Correlation coeff.‡ SDC 0.9636 0.9400 0.9285 0.9354
Crash 0.8398 0.6154 0.6672 0.6659

†Measured using paired sample t-test (Section V-D2)
‡Measured using Spearman’s rank test (Section V-D3)

B. Program Crash Probabilities

Figure 6 shows the crash probabilities obtained using LLFI
and PINFI for each benchmark. As in SDCs, the least squares
regression analysis is shown in Table II, and the t-test and
Spearman’s rank test results are shown in Table III.

Figure 6 shows that unlike SDC probabilities, the crash
probabilities do not consistently match between LLFI and
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Fig. 4: Program SDC probabilities (y-axis) measured by LLFI and PINFI plotted for each benchmark (x-axis).

PINFI for all optimizations. Further examination reveals that at
-O0 the crash probabilities tend to be similar with overlapping
errors for most of the benchmarks, while at -O1, -O2, and -
O3 this is not the case. In addition, the mean absolute error
between the crash probability measurements from LLFI and
PINFI are 6.428%, 11.232%, 11.412%, and 11.664% for -O0
to -O3, respectively. This indicates that the crash probabilities
of LLFI and PINFI are similar at optimization levels -O0, but
not at the other optimization levels, namely -O1 to -O3.

The results from the least squares linear regression analysis
(Table II) follow the same pattern. At -O0, the slope of the
line of best fit is 0.8129, with a slope of 1 falling within
the confidence interval. However, at -O1, -O2, and -O3 the
slopes are only 0.5216, 0.5191, and 0.4867 respectively. The
R2 values also follow this trend, dropping from 0.6915 at -O0
to 0.2716 at -O1. At all optimization levels, the y-intercept is

close to 0, with 0 falling within the confidence interval. While
the linear relationship at -O0 is not as strong as those for
the SDC probabilities, we find that as more optimizations are
applied to the program, the less accurate the crash probabilities
measured by LLFI become compared to PINFI.

Table III shows the p-values obtained from the paired
sample t-test performed on the crash probabilities measured
using LLFI and PINFI. As all of the p-values are below 0.05,
we reject the null hypothesis that the mean difference between
the probabilities measured using LLFI and those measured
using PINFI is zero. This suggests that there is a statistically
significant variation in the crash probability measurements
made using LLFI and PINFI.

As shown in Table III, the results from the Spearman’s
rank test indicate a moderate-to-strong monotonic relationship
between the crash probabilities measured using LLFI and
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Fig. 5: Program SDC probabilities (y-axis) measured by PINFI
plotted against those measured by LLFI (x-axis) at each
optimization level, with least squares regression line. The ideal
line of best fit is a line with slope of 1 and y-intercept of 0.

that of PINFI. At -O0, the correlation coefficient is 0.8398,
indicating a strong monotonic relationship. At -O1, -O2, and
-O3 however, this number drops to between 0.6 and 0.7. Thus,
LLFI is sensitive to distinguishing the ranking of program
crash probabilities at -O0, but not at -O1, -O2, and -O3.

Therefore, we conclude that the crash probabilities do not
consistently match between LLFI and PINFI for all optimiza-
tions. Further, the accuracy of the crash probability measure-
ments is affected by the compiler optimizations applied to the
program, especially going from -O0 to -O1.

VII. DISCUSSION

A. Discussion of FI Results

Based on the results presented in Section VI, we conclude
that the SDC probabilities are measured accurately by IR-level
FI when compared with assembly-level FI. This observation
makes sense, considering that SDCs (i.e., incorrect outputs)
can be mostly attributed to faults in a program’s data flow,
which is relatively unaffected by back end optimizations.

On the other hand, we find that the accuracy of crash
probability measurements are affected by different optimiza-
tions applied to the program. Since a program’s IR and
assembly share common front and middle end compilations,
but have differing back end compilations, the accuracy of crash
probability measurements seem to be affected by back end
optimizations (which are not visible at the IR level). A major
cause for crashes is segmentation faults, which are commonly
known as illegal memory accesses [38]. They are due to
errors propagating into memory operators, such as the address

operators of load or store instructions. Since many back end
optimizations operate on a program’s memory operations, it is
likely that the inaccuracies in crash probability measurements
at higher optimization levels are due to how the optimizations
affect the amount of these memory instructions.

The results of this study are consistent with the findings in
the study by Wei et al. [12], thus also confirming the results
of our analysis in Section IV.

B. When should we use IR-level FI?

In light of the findings discussed in the previous section, we
now address the following question: when is it okay to choose
IR-level FI techniques over assembly-level FI?

For the case of SDCs, IR-level FI is as accurate as assembly-
level FI even in the presence of aggressive compiler opti-
mizations. Thus, we conclude that IR-level FI can be used
when SDCs are the program outcome of interest, e.g., when
(1) characterizing program-level SDC error propagation or (2)
quantifying the SDC probability of a program.

In the case of crashes however, IR-level FI does not offer
the same level of accuracy as assembly-level FI, especially
when compiler optimizations are applied. Therefore, the use
of IR-level FI should be avoided when quantifying the crash
probability of a program. We will explore methods to improve
the accuracy of IR-level FI in future work.

C. Lessons Learned

In Section IV, we find that a small change in how the
injected bit is selected can significantly affect the results of
a FI experiment. While we do not know the exact reasoning
for the specific modification to PINFI in the study [13] that
implemented this change, we assume that the authors were
unaware of the full implications surrounding the change as
uncovered in this paper.

While it may be argued that injecting faults into unused
register bits are more representative of how hardware faults
occur in the real world, most program-level FI studies (in-
cluding ours) aim to measure error resilience - this is the
probability of the program not failing given that a fault has
occurred. This is because it is very difficult, if not impossible,
to accurately capture the effect of all hardware faults at the
program level as there may be significant masking in the lower
layers [34]. With that said, we do not take a position on
the “right” way to perform fault injection experiments in this
paper. One may choose to inject into all register bits (i.e., to
measure “fault sensitivity”) or specifically into bits that are
read by the program (i.e., to measure “error sensitivity”). It is,
however, important to be consistent as these differences can
make a significant difference in the results (Section IV).

The finding that a seemingly insignificant change in a FI
methodology can alter results so drastically means that careful
consideration should be given when defining the parameters
of one’s FI study. This becomes especially important when
conducting any sort of comparison between two tools. While
there will certainly be differences between how the tools
are implemented, all other factors should be controlled for
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Fig. 6: Program crash probabilities (y-axis) measured by LLFI and PINFI plotted for each benchmark (x-axis).

equivalency to provide a fair and useful comparison. This
is not only limited to the bit sampling methodology as is
the case in our findings, but should also be considered when
deciding on other factors such as instruction selection or fault
types. While it often may be easy to miss small variations
between different tool implementations, we believe that the
careful consideration of seemingly negligible implementation
details must become common practice in future FI studies.

VIII. CONCLUSION

Fault Injection (FI) at the intermediate representation (IR)
level is a promising alternative to assembly code level FI
for evaluating software techniques for protecting programs
from hardware faults. In this paper, we conduct a thorough
investigation into the results of two papers, Wei et al. [12] and
Georgakoudis et al. [13], which draw contradictory conclu-
sions regarding the accuracy of IR-level FI for measuring SDC

probability. We find that the root cause of the contradiction is
in the modification made to PINFI by Georgakoudis et al. [13]
in how the bit to be injected is selected. We then conduct a
set of FI experiments using 25 benchmark programs at four
different compiler optimization levels, and find that IR-level
FI is as accurate as assembly-level FI in measuring the SDC
probability of a program, regardless of the optimization level.
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